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Abstract
This paper presents a provable and strong algorithm, termed Innovation Search
(iSearch), to robust Principal Component Analysis (PCA) and outlier detection.
An outlier by definition is a data point which does not participate in forming a
low dimensional structure with a large number of data points in the data. In other
words, an outlier carries some innovation with respect to most of the other data
points. iSearch ranks the data points based on their values of innovation. A convex
optimization problem is proposed whose optimal value is used as our measure of
innovation. We derive analytical performance guarantees for the proposed robust
PCA method under different models for the distribution of the outliers including
randomly distributed outliers, clustered outliers, and linearly dependent outliers.
Moreover, it is shown that iSearch provably recovers the span of the inliers when
the inliers lie in a union of subspaces. In the challenging scenarios in which the
outliers are close to each other or they are close to the span of the inliers, iSearch
is shown to outperform most of the existing methods.

1 Introduction

Outlier detection is an important research problem in unsupervised machine learning. Outliers are
associated with important rare events such as malignant tissues [14], the failures of a system [10,
12, 31], web attacks [16], and misclassified data points [9, 27]. In this paper, the proposed outlier
detection method is introduced as a robust Principal Component Analysis (PCA) algorithm, i.e.,
the inliers lie in a low dimensional subspace. In the literature of robust PCA, two main models for
the data corruption are considered: the element-wise model and the column-wise model. These
two models are corresponding to two different robust PCA problems. In the element-wise model,
it is assumed that a small subset of the elements of the data matrix are corrupted and the support
of the corrupted elements is random. This problem is known as the low rank plus sparse matrix
decomposition problem [1, 3, 4, 23, 24]. In the column-wise model, a subset of the columns of the
data are affected by the data corruption [5, 7, 8, 11, 17, 20, 25, 26, 36–39]. Section 2 provides a review
of the robust (to column-wise corruption) PCA methods. This paper focuses on the column-wise
model, i.e., we assume that the given data follows Data Model 1.

Data Model 1. The data matrix D ∈ RM1×M2 can be expressed as D = [B (A+N)]T , where
A ∈ Rm×ni , B ∈ Rm×no , T is an arbitrary permutation matrix, and [B (A + N)] represents
the concatenation of B and (A+N). The columns of A lie in an r-dimensional subspace U . The
columns of B do not lie entirely in U , i.e., the ni columns of A are the inliers and the no columns of
B are the outliers. The matrix N represents additive noise. The orthonormal matrix U ∈ RM1×r is
a basis for U . Evidently, M2 = ni + no.

In the robust PCA problem, the main task is to recover U . Clearly, if U is estimated accurately, the
outliers can be located using a simple subspace projection [22].
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Summary of Contributions: The main contributions can be summarized as follows.

• The proposed approach introduces a new idea to the robust PCA problem. iSearch uses a
convex optimization problem to measure the Innovation of the data points. It is shown that
iSearch mostly outperforms the exiting methods in handling close outliers and noisy data.

• To the best of our knowledge, the proposed approach and the CoP method presented
in [27] are the only robust PCA methods which are supported with analytical performance
guarantees under different models for the distributions of the outliers including the randomly
distributed outliers, the clustered outliers, and the linearly dependent outliers.

• In addition to considering different models for the distribution of the outliers, we provide
analytical performance guarantees under different models for the distributions of the inliers
too. The presumed models include the union of subspaces and the uniformly at random
distribution on U ∩ SM1−1 where SM1−1 denotes the unit `2-norm sphere in RM1 .

Notation: Given a matrix A, ‖A‖ denotes its spectral norm. For a vector a, ‖a‖p denotes its `p-norm
and a(i) its ith element. Given two matrices A1 and A2 with an equal number of rows, the matrix
A3 = [A1 A2] is the matrix formed by concatenating their columns. For a matrix A, ai denotes
its ith column. The subspace U⊥ is the complement of U . The cardinality of set I is defined as |I|.
Also, for any positive integer n, the index set {1, ..., n} is denoted [n]. The coherence between vector
a and subspaceH with orthonormal basis H is defined as ‖aTH‖2.

2 Related Work
In this section, we briefly review some of the related works. We refer readers to [18, 27] for a more
comprehensive review on the topic. One of the early approaches to robust PCA was to replace the
Frobenius norm in the cost function of PCA with `1-norm because `1-norm were shown to be robust to
the presence of the outliers [2,15]. The method proposed in [6] leveraged the column-wise structure of
the corruption matrix and replaced the `1-norm minimization problem with an `1,2-norm minimization
problem. In [19] and [39], the optimization problem used in [6] was relaxed to a convex optimization
problem and it was proved that under some sufficient conditions the optimal point is a projection
matrix which spans U . In [34], a provable outlier rejection method was presented. However, [34]
assumed that the outliers are randomly distributed on SS−1 and the inliers are distributed randomly
on U ∩SM1−1. In [36], a convex optimization problem was proposed which decomposes the data into
a low rank component and a column sparse component. The approach presented in [36] is provable
but it requires no to be significantly smaller than ni. In [32], it was assumed that the outliers are
randomly distributed on SM1−1 and a small number of them are not linearly dependent. The method
presented in [32] detects a data point as an outlier if it does not have a sparse representation with
respect to the other data points.

Connection and Contrast to Coherence Pursuit: In [27], Coherence Pursuit (CoP) was proposed
as a provable robust PCA method. CoP computes the Coherence Values for all the data points to rank
the data points. The Coherence value corresponding to data column d is a measure of resemblance
between d and the rest of the data columns. CoP uses the inner product between d and the rest of the
data points to measure the resemblance between d and the rest of data. In sharp contrast, iSearch
finds an optimal direction corresponding to each data column. The optimal direction corresponding
to data column d is used to measure the innovation of d with respect to the rest of the data columns.
We show through theoretical studies and numerical experiments that finding the optimal directions
makes iSearch significantly stronger than CoP in detecting outliers which carry weak innovation.

Connection and Contrast to Innovation Pursuit: In [28, 29], Innovation Pursuit was proposed as
a new subspace clustering method. The optimization problem proposed in [28] finds a direction in the
span of the data such that it is orthogonal to the maximum number of data points. We present a new
discovery about the applications of Innovation Pursuit. It is shown that the idea of innovation search
can be used to design a strong outlier detection algorithm. iSearch uses an optimization problem
similar to the linear optimization problem used in [28] to measure the innovation of the data points.

3 Proposed Approach
Algorithm 1 presents the proposed method along with the definition of the used symbols. iSearch
consists of 4 steps. In the next subsections, Step 2 and Step 4 are discussed. In this paper, we use an
ADMM solver to solve (1). The computation complexity of the solver is O(max(M1M

2
2 ,M

2
1M2)).
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Algorithm 1 Subspace Recovery Using iSearch
1. Data Preprocessing. The input is data matrix D ∈ RM1×M2 .
1.1 Define Q ∈ RM1×rd as the matrix of first rd left singular vectors of D where rd is the number of
non-zero singular values. Set D = QTD. If dimensionality reduction is not required, skip this step.
1.2 Normalize the `2-norm of the columns of D, i.e., set di equal to di/‖di‖2 for all 1 ≤ i ≤M2.
2. Direction Search. Define C∗ ∈ Rrd×M2 such that c∗i ∈ Rrd×1 is the optimal point of

min
c
‖cTD‖1 subject to cTdi = 1

or define C∗ ∈ Rrd×M2 as the optimal point of

min
C
‖(CTD)T ‖1 subject to diag(CTD) = 1 . (1)

3. Computing the Innovation Values. Define vector x ∈ RM2×1 such that x(i) = 1/‖DT c∗i ‖1.
4. Building Basis. Construct matrix Y from the columns of D corresponding to the smallest
elements of x such that they span an r-dimensional subspace.
Output: The column-space of Y is the identified subspace.

If PCA is used in the prepossessing step to reduce the dimensionality of the data to rd, the computation
complexity of the solver is O(max(rdM

2
2 , r

2
dM2))

1.

3.1 An Illustrative Example for Innovation Value

We use a synthetic numerical example to explain the idea of computing the Innovation Value. Suppose
D ∈ R20×250, ni = 200, no = 50, and r = 3. Assume that D follows Assumption 1.
Assumption 1. The columns of A are drawn uniformly at random from U ∩ SM1−1. The columns of
B are drawn uniformly at random from SM1−1. To simplify the exposition and notation, it is assumed
without loss of generality that T in Data Model 1 is the identity matrix, i.e, D = [B A].

Suppose d is a column of D, define c∗ as the optimal point of

min
c
‖cTD‖1 subject to cTd = 1 , (2)

and define the Innovation Value corresponding to d as 1/‖DT c∗‖1. The main idea of iSearch is that
c∗ has two completely different behaviours with respect to U (when d is an outlier and when d is
an inlier). Suppose d is an outlier. The optimization problem (2) searches for a direction whose
projection on d is non-zero and it has the minimum projection on the rest of the data points. As d is
an outlier, d has a non-zero projection on U⊥. In addition, as ni is large, (2) searches for a direction
in the ambient whose projection on U is as weak as possible. Thus, c∗ lies in U⊥ or it is close to U⊥.
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Figure 1: The first 50 columns are outliers. The left panel shows vector DT c∗ when d is an outlier.
The middle panel depicts DT c∗ when d is an inlier. The right panel shows the Innovation Values
corresponding to all the data points (vector x was defined in Algorithm 1).

The left plot of Figure 1 shows DT c∗ when d is an outlier. In this case, c∗ is orthogonal to all the
inliers. Accordingly, when d is an outliers, ‖DT c∗‖1 is approximately equal to ‖BT c∗‖1. On the

1If the data is noisy, rd should be set equal to the number of dominant singular values. In this paper, we do
not theoretically analyze iSearch in the presence of noise. In the numerical experiments, we set rd equal to the
index of the largest singular value which is less than or equal to 0.01 % of the first singular value.
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other hand, when d is an inlier, the linear constraint strongly discourages c∗ to lie in U⊥ or to be
close to U⊥. Inliers lie in a low dimensional subspace and mostly they are close to each other. Since
c∗ has a strong projection on d, it has strong projections on many of the inliers. Accordingly, the
value of ‖AT c∗‖1 is much larger when d is an inlier. Therefore, the Innovation Value corresponding
to an inlier is smaller than the Innovation Value corresponding to an outlier because ‖AT c∗‖1 is
much larger when d is an inliers. Figure 1 compares the vector DT c∗ when d is an outliers with the
same vector when d is an inlier. In addition, it shows the vector of Innovation Values (right plot).
One can observe that the Innovation Values make the outliers clearly distinguishable.

3.2 Building the Basis Matrix

The data points corresponding to the least Innovation Values are used to construct the basis matrix Y.
If the data follows Assumption 1, the r data points corresponding to the r smallest Innovation Values
span U with overwhelming probability [35]. In practise, the algorithm should continue adding new
columns to Y until the columns of Y spans a r-dimensional subspace. This approach requires to
check the singular values of Y several times. We propose two techniques to avoid this extra steps.
The first approach is based on the side information that we mostly have about the data. In many
applications, we can have an upper-bound on no because outliers are mostly associated with rare
events. If we know that the number of outliers is less than y percent of the data, matrix Y can be
constructed using (1− y) percent of the data columns which are corresponding to the least Innovation
Values. The second approach is the adaptive column sampling method proposed in [27]. The adaptive
column sampling method avoids sampling redundant columns.

4 Theoretical Studies
In this section, we analyze the performance of the proposed approach with three different models
for the distribution of the outliers: unstructured outliers, clustered outliers, and linearly dependent
outliers. Moreover, we analyze iSearch with two different models for the distribution of the inliers.
These models include the union of subspaces and uniformly at random distribution on U ∩ SM1−1. In
the theoretical investigations, we do not consider noisy inliers. In Section 5, it is shown with real
and synthetic data that iSearch accurately estimates U even in the low signal to noise ratio cases and
it mostly outperforms the existing approaches when the data is noisy. The theoretical results are
followed by short discussions which highlight the important aspects of the theorems. The proofs of
the presented theorems are available in an extended version of this work [30].

4.1 Randomly Distributed Outliers

In this section, it is assumed that D follows Assumption 1. In order to guarantee the performance of
the proposed approach, it is enough to show that the Innovation Values corresponding to the outliers
are greater than the Innovation Values corresponding to the inliers. In other word, it suffices to show

max
(
{1/‖DT c∗i ‖1}

M2
i=no+1

)
< min

(
{1/‖DT c∗j‖1}

no
j=1

)
. (3)

Before we state the theorem, let us provide the following definitions and remarks.
Definition 1. Define c∗j = argmin

dTj c=1

‖cTD‖1. In addition, define χ = max
(
{‖c∗j‖2}

no
i=1

)
, and

n
′

z = max
(
{|Ii0|}

no
i=1

)
where Ii0 = {i ∈ [no] : c

∗
i
Tbi = 0} and bi is the ith column of B. The value

|Ii0| is the number of outliers which are orthogonal to c∗i .
Remark 1. In Assumption 1, the outliers are randomly distributed. Thus, if no is significantly larger
than M1, n

′

z is significantly smaller than no with overwhelming probability.

Theorem 1. Suppose D follows Assumption 1 and define A =
√

1
2π

ni√
r
−√ni −

√
ni log

1
δ

2r−2 . If

A >

[
no
M1

+ 2

√
no
M1

+

√
2no log 1/δ

(M1 − 1)M1
+

√
noc

′′
δ log no/δ

M2
1

+

n
′

z

√
c
′′
δ

M2
1

+

√(
no
M2

1

+
ηδ
M1

)
log no/δ

]√
4M1cδ
M1 − cδr

and

A >max

χ no√
M1

+ 2
√
no(1 +

√
χ) + 2

√
2χno log

1
δ

M − 1
, 2n

′

z

√
cδr

M1
+ 2

√
nocδr log no/δ

M1

 ,

(4)
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then (3) holds and U is recovered exactly with probability at least 1 − 7δ where
√
cδ =

3max
(
1,
√

8M1π
(M1−1)r ,

√
8M1 logn0/δ
(M1−1)r

)
,
√
c
′′
δ = 3max

(
1,
√

8M1π
M1−1 ,

√
16M1 logn0/δ

M1−1

)
, and ηδ =

max
(

4
3 log

2M1

δ ,
√

4 noM1
log 2M1

δ

)
.

Theorem 1 shows that as long as ni/r is sufficiently larger than no/M1, the proposed approach is
guaranteed to detect the randomly distributed outliers exactly. It is important to note that in the
sufficient conditions ni is scaled with 1/r but no is scaled with 1/M1. It shows that if r is sufficiently
smaller than M1, iSearch provably detects the unstructured outliers even if no is much larger than ni.
The numerical experiments presented in Section 5 confirms this feature of iSearch and they show that
if the outliers are unstructured, iSearch can yield exact recovery even if no > 100 ni. It is important
to note that when the outliers are structured, by the definition of outlier, no cannot be larger than ni.

4.2 Structured Outliers

In this section, we analyze the proposed approach with structured outliers. In contrast to the
unstructured outliers, structured outliers can form a low dimensional structure different from the
structure of the majority of the data points. Structured outliers are associated with important rare
events such as malignant tissues [14] or web attacks [16]. In this section, we assume that the
outliers form a cluster outside of U . The following assumption specifies the presumed model for the
distribution of the structured outliers.

Assumption 2. A column of B is formed as bi = 1√
1+η2

(q+ ηvi). The unit `2-norm vector q does

not lie in U , {vi}noi=1 are drawn uniformly at random from SM1−1, and η is a positive number.

According to Assumption 2, the outliers cluster around vector q where q 6∈ U . In Algorithm 1, if the
dimensionality reduction step is performed, the direction search optimization problem is applied to
QTD. Thus, (2) is equivalent to

min
c
‖cTD‖1 subject to cTd = 1 and c ∈ Q , (5)

where c ∈ RM1×1 and D ∈ RM1×M2 . The subspaceQ is the column-space of D. In this section, we
are interested in studying the performance of iSearch in identifying tightly clustered outliers because
some of the existing outlier detection algorithms fail if the outliers form a tight cluster. For instance,
the thresholding based method [13] and the sparse representation based algorithm [32] fail when the
outliers are close to each other. Therefore, we assume that the span of Q is approximately equal to
the column-space of [U q]. The following Theorem shows that even if the outliers are close to each
other, iSearch successfully identifies the outliers provided that ni/

√
r is sufficiently larger than no.

Theorem 2. Suppose the distribution of the inliers/outliers follows Assumption-1/Assumption-2.
Assume that Q is equal to the column-space of [U q]. Define q⊥ = (I−UUT )q

‖(I−UUT )q‖2 , define β =

max
(
{1/|dTi q⊥| : di ∈ B}

)
, define c∗i as the optimal point of (5) with d = di, and assume that

η < |qTq⊥|. In addition, define A =

√
1+η2

2β

(√
2
π
ni√
r
− 2
√
ni −

√
2ni log

1
δ

r−1

)
. If

A > no‖UTq‖2 + η

√
norcδ log no/δ

M1
,

A > no|qTq⊥|+ noη

√
c′′δ log no/δ

M1
,

(6)

then (3) holds and U is recovered exactly with probability at least 1− 5δ.

In contrast to (4), in (6) no is not scaled with 1/
√
M1. Theorem 2 shows that in contrast to the

unstructured outliers, the number of the structured outliers should be sufficiently smaller than the
number of the inliers for the small values of η. This is consistent with our intuition regarding the
detection of structured outliers. If the columns of B are highly structured and most of the data points
are outliers, it violates the definition of outlier to label the columns of B as outliers.
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The presence of parameter β emphasizes that the closer the outliers are to U , the harder it is to
distinguish them. In Section 5, it is shown that iSearch significantly outperforms the existing
methods when the outliers are close to U . The main reason is that even if an outlier is close to
U , its corresponding optimal direction obtained by (2) is highly incoherent with U. Therefore, its
corresponding optimal direction is incoherent with the inliers.

When the outliers are very close to the span of the inliers, the norm of c∗ should be large to satisfy
the linear constraint of (2) becuase c∗ is orthogonal or nearly orthogonal to U . Accordingly, in the
applications in which the outliers are highly coherent with U , the `2-norm of c∗ should be normalized
before computing the Innovation Values.

4.3 Linearly Dependent Outliers

In some applications, the outliers are linearly dependent. For instance, in [9], it was shown that a
robust PCA algorithm can be used to reduce the clustering error of a subspace segmentation method.
In this application, a small subset of the outliers can be linearly dependent. This section focuses on
detecting linearly dependent outliers. The following assumption specifies the presumed model for
matrix B and Theorem 3 provides the guarantees.

Assumption 3. Define subspace Uo with dimension ro such that Uo /∈ U and U /∈ Uo. The outliers
are randomly distributed on SM1−1 ∩ Uo. The orthonormal matrix Uo ∈ RM1×ro is a basis for Uo.

Theorem 3. Suppose the distribution of the inliers/outliers follows Assumption-1/Assumption-3.

Define A =
√

2
π
ni√
r
− 2
√
ni −

√
2ni log

1
δ

r−1 . If

A > 2n
′

z‖UTUo‖+ 2‖UTUo‖
√
no log no/δ ,

A >
2‖UTUo‖

ξ

(
no√
ro

+ 2
√
no +

√
2no log

1
δ

ro − 1
+ 2

√(
no
ro

+ η
′
δ

)
log

no
δ

+ n
′

z

)
,

A >

χno√
ro

+ 2
√
χno +

√
χ
2no log

1
δ

ro − 1

 ‖UT
oU
⊥‖ ,

(7)

then (3) holds and U is recovered exactly with probability at least 1 − 5δ where η
′

δ =

max
(

4
3 log 2(ro)/δ ,

√
4noro log 2rd

δ

)
and ξ =

min
(
{‖bTj U⊥‖2}no

j=1

)
‖UT

oU
⊥‖ .

Theorem 3 indicates that ni/r should be sufficiently larger than no/ro. If ro is comparable to r, it
is in fact a necessary condition because we can not label the columns of B as outliers if no is also
comparable with ni. If ro is large, the sufficient condition is similar to the sufficient conditions of
Theorem 1 in which the outliers are distributed randomly on SM1−1.

It is informative to compare the requirements of iSearch with the requirements of CoP. With iSearch,
ni/r should be sufficiently larger than no

ro
‖UoU

⊥‖ to guarantee that the algorithm distinguishes the
outliers successfully. With CoP, ni/ri should be sufficiently larger than no/ro+‖UT

oU‖ni/ri [9,27].
The reason that CoP requires a stronger condition is that iSearch finds a direction for each outlier
which is highly incoherent with U .

4.4 Outlier Detection When the Inliers are Clustered

In the analysis of the robust PCA methods, mostly it is assumed that the inliers are randomly
distributed in U . In practise the inliers form several clusters in the column-space of the data. In
this section, it is assumed that the inliers form m clusters. The following assumption specifies the
presumed model and Theorems 4 provides the sufficient conditions.

Assumption 4. The matrix of inliers can be written as A = [A1 ...Am]TA where Ak ∈ RM1×nik ,∑m
k=1 nik = ni, and TA is an arbitrary permutation matrix. The columns of Ak are drawn uniformly

at random from the intersection of subspace Uk and SM1−1 where Uk is a d-dimensional subspace.
In other word, the columns of A lie in a union of subspaces {Uk}mk=1 and (U1 ⊕ ...⊕ Um) = U
where ⊕ denotes the direct sum operator.
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Theorem 4. Suppose the distribution of the outliers/inliers follows Assumptions 1 to 4. Further

define A = ρ

(√
2
π
ng√
d
− 2
√
ng −

√
2ng log 1

δ

r−1

)
where g = argmink inf

δ∈Uk
‖δ‖=1

‖δTAk‖1, and

ρ = inf
δ∈U

‖δ‖=1

∑m
k=1 ‖δTUk‖2 . If the sufficient conditions in (4) are satisfied, then (3) holds and U is

recovered exactly with probability at least 1− 7δ.

Since the dimensions of the subspaces {Uk}mk=1 are equal and the distribution of the inliers inside
these subspace are similar, roughly g = argmink nik [19]. Thus, the sufficient conditions indicate
that the population of the smallest cluster scaled by 1/

√
d should be sufficiently larger than no/M1.

The parameter ρ = inf
δ∈U

‖δ‖=1

∑m
k=1 ‖δTUk‖2 is similar to the permeance statistic introduced in [19]. It

shows how well the inliers are distributed in U . Evidently, if the inliers populate all the directions
inside U , a subspace recovery algorithm is more likely to recover U correctly. However, having a
large value of permeance statistic is not a necessary condition. The reason that permeance statistic
appears in the sufficient conditions is that we establish the sufficient conditions to guarantee the
performance of iSearch in the worst case scenarios. In fact, if the inliers are close to each other or
the subspaces {Ui}mi=1 are close to each other, generally the performance of iSearch improves. The
reason is that the more inliers are close to each other, the smaller their Innovation Values are.

5 Numerical Experiments

A set of experiments with synthetic data and real data are presented to study the performance and
the properties of the iSearch algorithm. In the presented experiments, iSearch is compared with the
existing methods including FMS [17], GMS [39], CoP [27], OP [36], and R1-PCA [6].

5.1 Phase Transition

In this experiment, the phase transition of iSearch is studied. Define Û as an orthonormal basis for
the recovered subspace. A trial is considered successful if

‖(I−UUT )Û‖F
‖U‖F

< 10−2 .

The data follows Assumption 1 with r = 4 and M1 = 100. The left plot of Figure 2 shows the phase
transition of iSearch versus ni/r and no/M1. White indicates correct subspace recovery and black
designates incorrect recovery. Theorem 1 indicated that if ni/r is sufficiently large, iSearch yields
exact recovery even if no is larger than ni. This experiment confirms the theoretical result. According
to Figure 2, even when no = 3000, 40 inliers are enough to guarantee exact subspace recovery.
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Figure 2: Left panel: The phase transition of iSearch in presence of the unstructured outliers versus
ni/r and no/M1 (M1 = 100 and r = 4). Middle panel: The probability of accurate subspace
recovery versus the number of structured outliers (ni = 100, η = 0.1, M1 = 100, and r = 10).
Right panel: The probability of exact outlier detection versus SNR. The data contains 10 structured
outliers and 300 unstructured outliers (ni = 100, no = 310, r = 5, and M1 = 100).

5.2 Structured Outliers

In this experiment, we consider structured outliers. The distribution of the outliers follows Assump-
tion 2 with η = 0.1 and M1 = 100. In addition, the inliers are clustered and they lie in a union of
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5 2-dimensional linear subspaces. There are 20 data points in each subspace (i.e., ni = 100) and
r = 10. A successful trial is defined similar to Section 5.1. We are interested in investigating the
performance of iSearch in identifying structured outliers when they are close to U . Therefore, we
generate vector q, the center of the cluster of the outliers, close to U . Vector q is constructed as
q = [U p]h

‖[U p]h‖2
, where the unit `2-norm vector p ∈ RM1×1 is generated as a random direction on

SM1−1 and the elements of h ∈ R(r+1)×1 are sampled independently from N (0, 1). The generated
vector q is close to U with high probability because the column-space of [U p] is close to the
column-space of U. The middle plot of Figure 2 shows the probability of accurate subspace recovery
versus the number of outliers. The number of evaluation runs was 50. One can observe that in contrast
to the unstructured outliers, the robust PCA methods tolerate few number of structured outliers.

5.3 Noisy Data

In this section, we consider the simultaneous presence of noise, the structured outliers and the
unstructured outliers. In this experiment, M1 = 100, r = 5, and ni = 100. The data contains 300
unstructured and 10 structured outliers. The distribution of the structured outliers follow Assumption 2
with η = 0.1. The vector q, the center of the cluster of the structured outliers, is generated as a
random direction on SM1−1. The generated data in this experiment can be expressed as D = [B An].
The matrix An = A+ ζN where N represents the additive Gaussian noise, and ζ controls the power
of the additive noise. Define SNR =

‖A‖2F
‖ζN‖2F

. Since the data is noisy, the algorithms can not achieve
exact subspace recovery. Therefore, we examine the probability that an algorithm distinguishes all
the outliers correctly. Define vector f ∈ RM2×1 such that f(k) = ‖(I − ÛÛT )dk‖2. A trial is
considered successful if

max

(
{f(k) : k > no}

)
< min

(
{f(k) : k ≤ no}

)
.

The right plot of Figure 2 shows the probability of exact outlier detection versus SNR. It shows that
iSearch robustly distinguishes the outliers in the strong presence of noise. The number of evaluation
runs was 50.

5.4 Outlier Detection in Real Data

An application of the outlier detection methods is to identify the misclassifed data points of a
clustering method [9,27]. In each identified cluster, the misclassified data points can be considered as
outliers. In this experiment, we assume an imaginary clustering method whose clustering error is
25 %. The robust PCA method is applied to each cluster to find the misclassified data points. The
clustering is re-evaluated after identifying the misclassified data points. We use the Hopkins155
dataset [33], which contains data matrices with 2 or 3 clusters. In this experiment, 27 matrices with
3 clusters are used (i.e., the columns of each data matrix lie in 3 clusters). The outliers are linearly
dependent and they are very close to the span of the inliers since the clusters in the Hopkins155
dataset are close to each other. In addition, the inliers form a tight cluster. Evidently, the robust PCA
methods which assume that the outliers are randomly distributed fail in this task. This experiment
with real data contains most of the challenges that a robust PCA method can encounter. For more
details about this experiment, we refer the reader to [9, 27].

Table 1: Clustering error after using the robust PCA methods to detect the mis-classified data points.

iSearch CoP FMS R1-PCA PCA
2 % 7 % 20.3 % 16.8 % 12.1 %

Table 1 shows the average clustering error after applying the robust PCA methods to the output of the
clustering method. The outlier Pursuit method did not reduce the clustering error. One can observe
that iSearch significantly outperforms the other methods. The main reason is that iSearch is robust
against outliers which are closed to U . In addition, the coherency between the inliers enhances the
performance of iSearch.
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5.5 Activity Detection in Real Noisy Data

In this experiment, we use the robust PCA methods to identify a rare event in a video file. We use
the Waving Tree video file [21]. In this video, a tree is smoothly waving and in the middle of the
video a person crosses the frame. The frames which only contain the background (the tree and the
environment) are inliers and the few frames corresponding to the event, the presence of the person,
are the outliers. Since the tree is waving, the inliers are noisy and we use r = 3 for all the methods.
In addition, we identify column d as outlier if ‖d− ÛÛd‖2/‖d‖2 ≥ 0.2 where Û is the recovered
subspace. In this experiments, the outliers are very similar to each other since the consecutive frames
are quite similar to each other. We use iSearch, CoP, FMS, and R1-PCA to detect the outlying frames.
iSearch, CoP, and FMS identified all the outlying frames correctly. R1-PCA could not identify those
frames in which the person does not move. The reason is that those frames are exactly similar to each
other. Figure 3 shows some of the outlying frames which is missed by R1-PCA.

+

Figure 3: Some of the frames of the Waving Tree video file. The highlighted frames are detected as
outliers by R1-PCA.

6 Conclusion

A new robust (to outlier) PCA method, termed iSearch, was proposed which uses a convex optimiza-
tion problem to measure the innovation of the data points. The proposed approach recovers the span
of the inliers using the least innovative data points. It was shown that iSearch can provably recover
the span of the inliers with different models for the distribution of the outliers. In addition, analytical
performance guarantees for iSearch with clustered inliers were presented. It was shown that finding
the optimal directions makes iSearch significantly robust to the outliers which carry weak innovation.
Moreover, the experiments with real and synthetic data demonstrate the robustness of the proposed
method against the strong presence of noise.
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