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ABSTRACT

While previous diffusion-based neural vocoders typically follow a noise-to-data
generation pipe-line, the linear-degradation prior of the mel-spectrogram is often
neglected, resulting in limited generation quality. By revisiting the vocoder task
and excavating its connection with the signal restoration task, this paper proposes
a novel time-frequency (T-F) domain-based neural vocoder with the Schrödinger
Bridge, called BridgeVoC, which is the first to follow the data-to-data genera-
tion paradigm. Specifically, the mel-spectrogram can be projected into the target
linear-scale domain and regarded as a degraded spectral representation with a de-
ficient rank distribution. Based on this, the Schrödinger Bridge is leveraged to
establish a connection between the degraded and target data distributions. During
the inference stage, starting from the degraded representation, the target spectrum
can be gradually restored rather than generated from a Gaussian noise process. We
conduct extensive experiments on the LJSpeech and LibriTTS benchmarks. Quan-
titative and qualitative results demonstrate that the proposed method enjoys faster
inference speed and outperforms existing diffusion-based vocoder baselines, while
also achieving competitive or better performance compared to other non-diffusion
state-of-the-art methods across multiple evaluation metrics.

1 INTRODUCTION

Neural vocoders are essential for generating high-quality waveforms from acoustic features, playing
a crucial role in speech and audio generation tasks such as text-to-speech (TTS) (Wang et al., 2017;
Ren et al., 2020; 2019; Tan et al., 2024), text-to-audio (TTA) (Huang et al., 2023; Majumder et al.,
2024), singing voice synthesis (SVS) (Liu et al., 2022c; Hwang et al., 2025), voice conversion (Qian
et al., 2019; Choi et al., 2021), audio editing (Wang et al., 2023), and speech enhancement (SE) (Liu
et al., 2022a;b). The core challenge lies in their ability to faithfully reconstruct high-fidelity wave-
forms while maintaining computational efficiency - a dual objective that continues to drive research
innovation in this field.

The evolution of vocoding techniques has been significantly accelerated by deep neural networks
(DNNs). Early auto-regressive (AR) approaches like WaveNet (Dieleman et al., 2016; Oord et al.,
2018), SampleRNN (Mehri et al., 2022), and LPCNet (Valin & Skoglund, 2019) achieved remark-
able quality but suffered from inherent latency due to sequential generation. Flow-based vocoder
methods, such as WaveGlow (Prenger et al., 2019), FlowWaveNet (Kim et al., 2019), and Real-
NVP (Laurent et al., 2017), address these issues by enabling faster generation speeds and improved
performance through bijective mappings between a normalized probability distribution and the tar-
get data distribution using stacked invertible modules. Non-autoregressive (NAR) methods like
HiFiGAN (Kong et al., 2020) have emerged, offering parallel processing and enhanced efficiency.

1



Published as a conference paper at DeLTa Workshop (ICLR 2025)

Figure 1: Illustrations of the various neural vocoder paradigms.

A paradigm shift emerged with time-frequency (T-F) domain approaches that leverage spectral pro-
cessing in the STFT domain. Methods such as BigVGAN (Lee et al., 2023), Vocos (Hubert, 2024),
and APNet2 (Du et al., 2024) demonstrated superior inference speeds by directly estimating spec-
tral components (magnitude and phase) followed by iSTFT reconstruction, effectively decoupling
temporal resolution challenges from neural network processing. As illustrated in Figure 1(a), these
frameworks typically employ hybrid architectures combining learned spectral transformations with
deterministic signal processing components.

Recent advances in generative modeling have introduced diffusion-based vocoders that trade com-
putational efficiency for exceptional audio naturalness. WaveGrad is a conditional waveform gen-
eration model that refines white Gaussian noise into high-fidelity audio using a gradient-based
sampler conditioned on the mel-spectrogram, effectively balancing the inference speed and sam-
ple quality (Chen et al., 2021). DiffWave is a non-autoregressive diffusion probabilistic model that
efficiently converts white Gaussian noise into high-fidelity audio through a Markov chain by opti-
mizing a variational bound on data likelihood. It provides a significantly smaller model size and
computational resource requirement compared to WaveGrad while excelling in unconditional gen-
eration tasks (Kong et al., 2021). Unlike DiffWave, which uses a standard Gaussian prior, PriorGrad
employs an adaptive prior based on data statistics, resulting in faster convergence and improved
perceptual quality (Lee et al., 2022). Compared with PriorGrad and DiffWave, FreGrad enjoys sig-
nificantly faster training and inference speeds, and a smaller model size, by operating on a simplified
feature space and incorporating frequency-aware components (Nguyen et al., 2024). The process-
ing paradigm of diffusion-based vocoders is fundamentally illustrated in Figure 1(b). Using the
mel-spectrogram or other acoustic features as the condition, these vocoders usually start from a ran-
dom Gaussian distribution and gradually approximate the target distribution by iterative denoising
process, which essentially follows a noise-to-data pipeline.

In this work, we revisit the neural vocoding task and introduce the Schrödinger Bridge (SB) frame-
work to establish a data-to-data process between the target spectrogram in the T-F domain and
a corrupted spectrogram. This approach is formulated from a general restoration perspective,
rather than the conventional generative paradigm, as illustrated in Figure 1(c). Specifically, mel-
spectrograms—derived through a linear-to-mel transform—are projected back to the linear-scale
domain using their pseudo-inverse (Lv et al., 2024), based on the range-null decomposition (RND)
theory. This projection provides robust structural information about the target spectrogram, en-
abling a principled approach to vocoding. The core objective of our vocoding framework is to
reconstruct ground-truth spectrograms from mel-spectrograms, addressing two critical challenges:
spectral compression and phase reconstruction. Through rank analysis, we observe that the mel-
domain conversion and reversion process tends to reduce the spectral rank, necessitating that the
neural vocoding task increase the spectral rank to restore clean speech. This stands in contrast to
speech denoising tasks, which exhibit the opposite trend. This insight establishes a novel connection
between waveform generation and speech restoration techniques, offering a unified perspective that
bridges these traditionally distinct domains. To further enhance generation quality, we incorporate
advanced discriminative components, including the multi-period discriminator (MPD) (Kong et al.,
2020) and the multi-resolution spectrogram discriminator (MRSD) (Won et al., 2021). These dis-
criminators operate at multiple temporal and spectral resolutions, ensuring fine-grained perceptual
quality and improved fidelity in the synthesized waveforms. The contributions of this paper are
summarized as follows:

• BridgeVoC is the first T-F domain-based vocoder with the Schrödinger Bridge (SB) frame-
work, exploring a data-to-data process rather than the conventional noise-to-data process
in the previous literature.
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• BridgeVoC introduces a novel perspective on bridging waveform generation and restora-
tion, a connection not investigated in the preliminary literature.

• By integrating the SB framework with multi-mel losses and a generative adversarial net-
work (GAN), BridgeVoC achieves performance comparable to the state-of-the-art model
BigVGAN, addressing the limitations of diffusion models in achieving excellent objective
metrics.

2 MOTIVATION

In this section, we start with the fundamental signal models to elucidate how we transition from the
conditional mel-to-waveform paradigm to the spectrum-to-spectrum restoration paradigm. Firstly,
through the RND theory, a novel insight is provided to convert the mel-spectrogram back to degraded
counterpart in the linear-scale spectrogram. Subsequently, rank analysis reveal contrasting rank
trends between vocoding and denoising tasks. This observation inspired us to apply restoration
methods commonly used in speech enhancement to the vocoding task.

2.1 SIGNAL MODELS

The signal model of the speech denoising task in the T-F domain is represented as:

Xt,f = St,f +Nt,f , (1)

where {X,S,N} ∈ CT×F denote the mixture, target, and noise signals, respectively. The subscripts
t ∈ {1, ..., T} and f ∈ {1, ..., F} represent the time and frequency indices, respectively.

For the vocoder task, mel-spectrograms Y mel ∈ RT×Fmel are obtained through the signal model

Y mel = |S|A, (2)

where A ∈ RF×Fmel denotes the linear mel filter. Fmel is the mel size and typically satisfies
Fmel ≪ F for a compressed representation. The transform indicates that 1) the phase part is
discarded, and 2) a linear compression is applied in the frequency dimension.

2.2 RANGE-NULL SPACE DECOMPOSITION

For a classical signal compression physical model in the noise-free scenario, the target x ∈ RD and
the observed signals y ∈ Rd can be simplified into y = Ax. If the pseudo-inverse of A ∈ Rd×D

is defined as A† ∈ RD×d, which satisfies AA†A ≡ A and d ≪ D, then the signal x can be
decomposed into two orthogonal sub-spaces:

x ≡ A†Ax+
(
I−A†A

)
x, (3)

where A†Ax defines the range-space component and
(
I−A†A

)
x corresponds to the remaining

null-space component. By comparing Eq. (2) and Eq. (3), we notice the mel-spectrogram can be
converted into the range space, i.e., the first term on the right-hand side of the equal sign in Eq. (3),
by left-multiplying the pseudo-inverse of A, i.e., A†. Since the null-space component is unknown in
practice, the vocoder task can be formulated into the target estimation problem given the range-space
component as the prior input, which is actually a classical signal recovery problem. Thanks to the
powerful capability of the generative approach, we can effectively recover the remaining null-space
component. Therefore, the RND theory provides us a different perspective to rethink the vocoder
task. Recall that in the classical compressive sensing (CS) field (Zhang & Ghanem, 2018), a similar
target is shared, where the target signal can be recovered from a linearly-compressed representation
with the help of the structural sparseness prior. In the following part, we delve into the analysis from
the perspective of the matrix rank.

2.3 RANK ANALYSIS

Following the RND, we use the pseudo-inverse to map mel-spectrograms back to the original linear-
scale domain, despite imperfections due to information loss, non-unique inverse mapping, approxi-
mation limitations, and lack of phase information(Meinard, 2015). This process is formulated as

Ŷ = Y melA† = |S|AA†, (4)
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Figure 2: Left: The relative rank difference with respect to the target spectrum for denoising and vocoding
tasks. The ranks are calculated from the test set of the VoiceBank-DEMAND dataset. An absolute threshold η
of 0.5 is set for rank calculation; Right: The ranks of mel- and pseudo-inverse spectrograms on the dev-clean
and dev-other subsets of the LibriTTS dataset, with the upper limit of the y-axis truncated for clarity.

where A† ∈ RFm×F is the pseudo-inverse transform matrix satisfying AA†A ≡ A. The linear-scale
representation Ŷ ∈ RT×F matches the feature dimensions of the target signals S. By appending a
zero-phase component to Ŷ , we can obtain its complex form S† ∈ CT×F :

S† = Ŷ + i · 0, (5)
where 0 ∈ RT×F is a zero matrix. Mapping S† to S is a restoration problem akin to speech
denoising, differing in that denoising involves additive degradation and can increase the spectral
rank, while vocoding involves the signal compression and thus decreases the spectral rank. We
demonstrate these spectral rank changes with proofs, defining R(·) : RT×F → Z as the matrix rank
operation. Using fundamental matrix rank properties, we have

R(|X|) ≈ R(|S|+ |N |) ≤ R(|S|) +R(|N |), (6)

R(Ŷ ) = R(|S|AA†) ≤ min{R(|S|),R(AA†)}. (7)
In Eqs. (6)-(7), the phase component is omitted, as the rank is associated with eigenvalues, which
are more closely related to signal energy. Eq. (6) provides an upper bound on the rank of the mixture
spectrum X . This implies that after adding noise N , the upper bound of the matrix rank tends to
increase, and the stronger the noise, the higher the upper bound. For Eq. (7), it is deduced that with
the decrease in the number of mel bands, i.e., R(AA†) decreases, the rank R(Ŷ ) tends to decrease.
These two disparities in the rank distribution between noise-induced and mel-oriented degradations
are visualized in Figure 2, where we define the rank difference between the degraded and target
spectrum as

∆Rdenoising = R(|X|)−R(|S|), (8)
∆Rvocoding = R(Ŷ )−R(|S|). (9)

The noise degradation employs three levels: “mild”, “moderate”, and “heavy” with decreasing
signal-to-noise ratios (SNRs). For vocoding, we use three mel-band configurations (40, 80, and
100) to represent varying spectral compression. An STFT operation results in 257-dimensional
features. Higher noise level has higher spectral rank and hinders sparsity, while higher mel-band
compression leads to a negative rank difference. Therefore, from the perspective of the matrix rank,
the vocoder and speech enhancement can share a similar goal, i.e., decrease the rank difference be-
tween the degraded and target spectra, further motivating us to address the vocoder task with the
restoration paradigm.

3 BRIDGEVOC
In this section, we introduce BridgeVoC, an SB-based T-F domain vocoder. We begin with a brief
overview of the most commonly used diffusion models, specifically score-based generative models
(SGMs), including the forward and reverse stochastic differential equations (SDE) and the score
matching objective of the score network. Then we define the paired data for the restoration task
based on the signal model described in Section 2.3. Next, we detail the specific operations of SB
and the model’s training objectives and provide a comprehensive description of the loss functions
employed during training. However, the description of SGMs and the loss functions is provided in
the Appendix due to space limitations and conventional usage.
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3.1 SCHRÖDINGER BRIDGE

The SB problem (Schrödinger, 1932; Bortoli et al., 2021) originates from the optimization of path
measures with constrained boundaries. For vocoder task, we define the target distribution pS to be
equal to the data distribution pdata, and we consider the distribution of S†, denoted as pS† , to be the
prior distribution. Considering p0, pT the marginal distributions of p at boundaries, SB is defined as
minimization of the Kullback-Leibler (KL) divergence:

min
p∈P[0,T ]

DKL(p ∥ pref), s.t. p0 = pS, pT = pS† , (10)

where P[0,T ] is the space of path measures on a finite time index [0, T ] with pref the reference
path measure. When pref is defined by the same form of forward SDE as SGMs in Eq. (15), the
SB problem is equivalent to a couple of forward-backward SDEs (Wang et al., 2021; Chen et al.,
2022):

dxt = [f(xt, t) + g2(t)∇ logΨt(xt)]dt+ g(t)dwt, x0 ∼ pS, (11)

dxt = [f(xt, t)− g2(t)∇ log Ψ̂t(xt)]dt+ g(t)dw̄t, xT ∼ pS† , (12)

where f , g and wt are from the forward SDE in Eq. (15). With Ψt and Ψ̂t the optimal forward
and reverse drifts, the marginal distribution of the SB state xt can be expressed as pt = Ψ̂tΨt.
Typically, SB is not fully tractable; closed-form solutions exist only when the families of pref are
strictly limited (Bunne et al., 2023; Chen et al., 2023).

3.2 SCHRÖDINGER BRIDGE BETWEEN PAIRED DATA

We assume the maximum time T = 1 for convenience. Exploring the tractable SB between
Gaussian-smoothed paired data with linear drift in SDE, we consider Gaussian boundary condi-
tions pS = NC(x, ϵ

2
0I) and pS† = NC(x1, e

2
∫ 1
0
f(τ)dτ ϵ20I). As ϵ0 → 0, Ψ̂t and Ψt converge to the

tractable solution between the target data x0 and the corrupted data x1:

Ψ̂t = NC(αtx0, α
2
tσ

2
t I),Ψt = NC(ᾱtx1, α

2
t σ̄

2
t I), (13)

where αt = e
∫ t
0
f(τ)dτ , ᾱt = e−

∫ 1
t
f(τ)dτ , σ2

t =
∫ t

0
g2(τ)
α2

τ
dτ and σ̄2

t =
∫ 1

t
g2(τ)
α2

τ
dτ are determined

by f and g in the reference SDE, which are analogous to the noise schedule in SGMs (Kingma et al.,
2021). The marginal distribution of the SB also has a tractable form:

pt = ΨtΨ̂t = N
(
αtσ̄

2
tx0 + ᾱtσ

2
tx1

σ2
1

,
α2
t σ̄

2
t σ

2
t

σ2
1

I

)
. (14)

Several noise schedules (Chen et al., 2023; Ante et al., 2024), such as variance-preserving (VP),
variance-exploding (VE) and gmax, are listed in Table 1 with ∆β = β1 − β0.

Following the approach in (Ante et al., 2024), we let the neural model Bθ directly predict the target
data, using both reconstruction and adversarial losses as the training criteria similar to the SE tasks,
where S denotes the target signal and S̃ = Bθ(xt,xT , t) represents the current estimate produced
by the neural network. We empirically observe that the introduction of adversarial loss effectively
improves generation quality. The specific loss functions are detailed in the Appendix.

Sch. f(t) g2(t) αt σ2
t

gmax 0 β0 + t∆β 1 1
2∆βt2 + β0t

Scaled VP − 1
2 (β0 + t∆β) c(β0 + t∆β) e−

1
2

∫ t
0
(β0+τ∆β)dτ c(e

∫ t
0
(β0+τ∆β)dτ − 1)

VE 0 ck2t 1
c(k2t−1)
2 log(k)

Table 1: Demonstration of the noise schedules in BridgeVoC.

4 EXPERIMENTS

4.1 DATASETS

Two benchmarks are utilized in this study: LJSpeech (Keith & Linda, 2017) and LibriTTS (Heiga
et al., 2019). The LJSpeech dataset comprises 13,100 clean speech clips from a single female
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speaker, with a sampling rate of 22.05 kHz. Consistent with the partitioning in the publicly avail-
able VITS repository, the dataset is divided into {12500, 100, 500} clips for training, validation,
and testing, respectively. The LibriTTS dataset encompasses a variety of recording environments
with a sampling rate of 24 kHz. Following the partitioning scheme in (Lee et al., 2023), the sub-
sets {train-clean-100, train-clean-300, train-other-500} are used for model training. The subsets
dev-clean + dev-other are employed for objective evaluation, while test-clean + test-other are used
for subjective evaluations. To evaluate the generalization capability of neural vocoders, the VCTK
dataset (Yamagishi, 2012) is utilized for out-of-distribution evaluations, where around 200 clips are
randomly selected from the dataset for evaluations.

4.2 CONFIGURATIONS

Since the bridge between the target data S and the corrupted data S† can be viewed as a restoration
task, it is intuitive to choose the noise-conditional score network (NCSN++) (Song et al., 2021) as
the backbone neural model. Our ablation study experimented with three sizes of NCSN++, with
trainable parameter counts of 16.2M, 36.5M, and 64.9M, respectively. The number of the sampling
in the reverse process is empirically set to 10.

In terms of noise schedulers, β0 = 0.01 and β1 = 20 are set for both gmax and scaled VP types. For
VE type, we use k = 2.6 and c = 0.40, and for scaled VP type, we use c = 0.30. The processing
time for the proposed SB is set to T = 1 with tmin = 10−4. The reverse SDE and the probability
flow Ordinary Differential Equation (ODE) (Chen et al., 2022) samplers are chosen in the inference
stage. Ablation studies are conducted and can be found in the Appendix.

For the weight hyperparameters of the losses in Eq. (24), λmel, λg and λfm are 0.1, 10.0 and 10.0,
respectively. “+GAN” refers to the inclusion of the loss terms Lg and Lfm in Eq. (24).

We train all models for 1 million steps, except for BigVGAN, which is trained for 5 million steps.
The training configurations for the T-F domain SE models are aligned with those of APNet2 and
BigVGAN. For feature extraction, we employ a 1024-point FFT, a Hann window of length 1024, and
a hop size of 256. For the LJSpeech dataset, we utilize 80 mel-bands with the upper-bound frequency
fmax set to 8 kHz, meaning the model is required to conduct a super-resolution task to generate the
spectral component over 8 kHz. For LibriTTS, the mel-bands and upper-bound frequency are set to
100 and 12 kHz, respectively.

4.3 RESULTS AND ANALYSIS

For vocoding performance comparisons, we select popular vocoding models as baselines, including
time-domain methods (BigVGAN (Lee et al., 2023), HiFiGAN (Kong et al., 2020)), T-F domain
methods (Vocos (Hubert, 2024), FreeV (Lv et al., 2024), APNet2 (Du et al., 2024)), and diffusion-
based methods (DiffWave (Kong et al., 2021), PriorGrad (Lee et al., 2022), and FreGrad (Nguyen
et al., 2024)). To compare the model efficiency, we calculate the number of model parameters
(#Params) and real-time factor (RTF) which is measured on a single Tesla V100 GPU.

Eight metrics are involved in the objective evaluations: (1) Wide-band version of Perceptual eval-
uation of speech quality (PESQ) (Rec, 2005) serves to assess the objective speech quality. (2)
Extended Short-Time Objective Intelligibility (ESTOI) (Taal et al., 2011) measures the intelligibil-
ity of speech. (3) Periodicity RMSE, V/UV F1 score, F0, and pitch RMSE (Morrison et al., 2022;
Kawahara et al., 1999) are regarded as major artifacts for non-autoregressive neural vocoders. (4)
Virtual Speech Quality Objective Listener (VISQOL) (Hines et al., 2015) predicts the Mean Opinion
Score-Listening Quality Objective (MOS-LQO) score by evaluating the spectro-temporal similarity.
(5) UTMOS (Saeki et al., 2022) is used to obtain subjective scores related to the perceived quality
of speech, providing an objective approximation of human judgment.

For subjective evaluations, we employ the MUSHRA and ABX testing methodologies based on the
BeaqleJS platform (Kraft & Zölzer, 2014). A total of 19 participants, all specializing in audio signal
processing, are involved in the testing. In the MUSHRA test, each participant is required to rate the
speech processed by various algorithms on a scale from 0 to 100, based on the overall similarity to
a reference. In the ABX test, participants are asked to select the clip they prefer in terms of overall
speech quality, or choose “equal” if no preference can be given.
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Models Domain #Param. #MACs Inference PESQ↑ ESTOI↑ V/UV↑ VISQOL↑ UTMOS↑ Periodicity↓ Pitch↓ F0↓
(M) (Giga/5s) Speed F1 RMSE RMSE RMSE

HiFiGAN-V1 T 14.0 152.90 0.0092 3.574 0.8892 0.9474 4.771 4.219 0.1344 33.69 36.23
BigVGAN-base T 14.0 152.90 0.0395 3.603 0.9569 0.9562 4.822 4.210 0.1198 30.28 39.21
BigVGAN T 112.4 417.20 0.0584 4.065 0.9782 0.9716 4.863 4.296 0.0838 20.69 34.43
APNet2 T-F 31.5 13.53 0.0027 3.476 0.9412 0.9592 4.752 3.985 0.1126 25.36 41.76
Vocos T-F 13.5 5.80 0.0009 3.522 0.9455 0.9559 4.774 3.970 0.1213 29.13 36.56
FreeV T-F 18.3 7.84 0.0015 3.593 0.9474 0.9603 4.743 4.015 0.1118 25.99 39.09
DiffWave T 6.91 231.07×200 0.8738 3.652 0.9321 0.9375 4.325 3.871 0.1585 27.42 37.84
FreGrad T 2.62 34.42×50 0.3959 3.774 0.9475 0.9432 4.450 3.933 0.1413 24.17 36.72
PriorGrad T 2.62 71.43×50 0.8874 3.961 0.9579 0.9506 4.509 4.004 0.1283 19.46 36.07
BridgeVoC-base(ours) T-F 16.2 113.79×10 0.1747 4.418 0.9883 0.9576 4.817 4.237 0.1160 15.24 32.94
BridgeVoC(ours) T-F 64.8 450.45×10 0.5409 4.440 0.9896 0.9598 4.824 4.262 0.1136 15.04 32.72

Table 2: Results of objective evaluations on the dev-clean and dev-other subset of LJSpeech dataset. “#Param.”
denotes the number of trainable parameters. Metrics with ↓ indicate that lower values are better. The inference
speed on a GPU is evaluated based on a single Tesla V100. The computational complexity of the diffusion
methods needs to be multiplied × by the number of reverse sampling steps. The best and second-best perfor-
mances are namely highlighted in bold and underlined.

Models PESQ↑ Pitch↓ VISQOL↑RMSE

WaveGlow-256† 3.138 - -
HiFiGAN-V1 3.056 52.53 4.721
iSTFTNet-V1 2.880 53.07 4.655
UnivNet-c32† 3.277 41.51 4.753
Avocodo 3.217 51.60 4.762
BigVGAN-base(1M steps)† 3.519 - -
BigVGAN(1M steps)† 4.027 - -
BigVGAN-base(5M steps)† 3.841 32.54 4.907
BigVGAN(5M steps)† 4.269 24.28 4.963
APNet 2.897 39.66 4.666
APNet2 2.834 46.37 4.582
Vocos† 3.615 35.58 4.879
PriorGrad 4.043 28.34 4.381
FreGrad 3.793 39.88 4.337
BridgeVoC-base(ours) 4.419 17.84 4.908
BridgeVoC(ours) 4.459 14.89 4.914

Table 3: Objective comparisons among baselines on the
LibriTTS benchmark. “-” denotes the results are not re-
ported, and † denotes the results are calculated using the
open-sourced model checkpoints.

Models PESQ↑ Pitch↓ VISQOL↑ MUSHRARMSE
Ground Truth - - - 89.61±0.62
HiFiGAN-V1 3.090 33.29 4.723 72.47±1.07
Vocos 3.684 23.46 4.866 75.77±1.24
BigVGAN-base† 3.859 28.85 4.893 80.23±0.99
BigVGAN† 4.282 20.32 4.958 82.78±0.81
PriorGrad 3.911 19.56 4.278 77.53±1.10
FreGrad 3.653 27.93 4.201 78.06±1.11
BridgeVoC-base 4.323 19.31 4.855 82.15±0.93
BridgeVoC 4.334 18.31 4.863 *83.34±1.02

Table 4: Metric comparisons on VCTK. All mod-
els are pretrained on the LibriTTS dataset. For the
MUSHRA test, with a confidence level of 95%,
we performed a t-test comparing BridgeVoC with
BigVGAN, yielding a p-value of less than 0.05
(*p<0.05).

4.3.1 COMPARISONS WITH SOTA METHODS

Tables 2 and 3 present objective comparisons on the LJSpeech and LibriTTS datasets, revealing
several key observations. First, the T-F domain-based methods exhibit faster inference speeds com-
pared to the time-domain methods, primarily due to the use of STFT and its inverse transform,
iSTFT, which eliminate the need for upsampling operations. Second, the T-F domain-based meth-
ods generally have significantly lower computational complexity, e.g., 5.8 GMACs for Vocos versus
152.9 GMACs for HiFiGAN, making them increasingly attractive. Third, despite these advantages,
the speech quality of these existing T-F domain-based neural vocoders remains inferior to that of
BigVGAN. Fourth, previous diffusion-based methods start from noise in the time domain and use
the mel-spectrogram as a diffusion condition, failing to fully leverage the prior information of the
mel-spectrogram. The proposed BridgeVoc, however, benefits from the prior structural information
provided by the pseudo-inverse operation and the combination of the T-F domain-based Schrödinger
bridge and auxiliary losses. This allows BridgeVoc to achieve both relatively fast inference speeds
and promising performance. Notably, even when compared to BigVGAN trained for 5 million steps
on the LibriTTS benchmark, our method remains competitive, fully validating the effectiveness of
the proposed approach.

Table 4 presents the results on the out-of-domain test set. Compared to Table 3, the relative advan-
tage of BridgeVoc over BridgeVoc-base in objective metrics slightly decreases. This is because the
amount of data in LibriTTS is probably insufficient for a large NCSN++ network. The MUSHRA
results on the test set of the VCTK dataset reveal that our BridgeVoc is statistically superior to BigV-
GAN (p < 0.05), further demonstrating the advantage of our method in achieving subjective quality
close to the ground truth signal.
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Figure 3: Spectral visualization of different vocoder methods. The audio clip is a singing voice from the
MUSHDB18 test set.

Figure 4: The rank differences between different mod-
els and the Ground Truth on the dev-clean and dev-
other subsets of the LibriTTS dataset.

Figure 5: Average preference scores (in %) of ABX
tests between BridgeVoC-base and two other base-
lines. (a)-(c) Mel-spectrograms are obtained from nat-
ural speech clips in the LibriTTS test set. (d)-(f) Mel-
spectrograms are synthesized from F5-TTS (Chen
et al., 2024), where the transcripts are from the Lib-
riTTS test set.

Figure 3 presents spectral visualizations of different models for a vocal clip from the out-of-
distribution MUSDB18 (Rafii et al., 2017) test set. Our approach more effectively recovers har-
monic details and avoids artificial harmonic fluctuations compared to other baselines, particularly
BigVGAN-base. Subjective experiments revealed that some listeners reported “strange pitch shifts”
relative to the ground truth in the MUSHRA experiments, with most instances traced back to
BigVGAN-base. While BigVGAN also shows some “artificial generation” artifacts, their extent
is significantly reduced. The rank differences between various models and the Ground Truth are
shown in Figure 4. Diffusion models, PriorGrad and BridgeVoC, mostly have positive rank differ-
ences, indicating they generate more rank information than the Ground Truth. In contrast, APNet2
and HiFiGAN mostly have negative rank differences. Vocos and BigVGAN results are close to zero,
indicating their inferred ranks are similar to the Ground Truth. Although using GAN in BridgeVoC
eliminates high-frequency artifacts (Figure 8), it also increases meaningless rank.

The preference scores are shown in Figure 5. For both nature and synthesized mel cases, the prefer-
ence performance of the BridgeVoC-base is significantly better over FreGrad (p < 0.001), and is not
significantly different from BigVGAN and Vocos (p > 0.05). Note that we choose PriorGrad as the
baseline diffusion model because the Mean Opinion Score (MOS) experiments in (Nguyen et al.,
2024) indicate that PriorGrad achieves slightly higher subjective scores compared to FreGrad.

5 CONCLUSIONS

In this work, we present a novel time-frequency (T-F) domain-based diffusion neural vocoder that
seamlessly integrates the data-to-data Schrödinger Bridge framework with range-null decomposition
(RND) theory. Our approach involves converting the original acoustic features from the mel-scale
domain to the target linear-scale domain using the range-space component, while the null-space
component reconstructs the remaining spectral details through a diffusion generation process. To
enhance synthesis quality, we incorporate generative adversarial networks (GANs) and conduct sys-
tematic optimization of hyperparameters. Comprehensive experiments on the LJSpeech and Lib-
riTTS benchmarks demonstrate the effectiveness of our method, achieving state-of-the-art perfor-
mance in both objective metrics and subjective evaluations.
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A APPENDIX

A.1 SCORE-BASED GENERATIVE MODELS

Given a data distribution pdata(x),x ∈ Rd, SGMs (Song et al., 2021) are built on a continuous-time
diffusion process defined by a forward SDE:

dxt = f(xt, t)dt+ g(t)dwt, x0 ∼ p0 = pdata, (15)

where t ∈ [0, T ] is a finite time index, xt ∈ Rd is the state of the process, f is a vector-valued drift
term, g is a scalar-valued diffusion term, and wt ∈ Rd is a standard Wiener process. To ensure that
the boundary distribution is a Gaussian prior distribution pprior = N (0, σ2

T I), we construct the drift
term f and the diffusion term g accordingly. This construction guarantees that the forward SDE has
a corresponding reverse SDE:

dxt = [f(xt, t)− g2(t)∇ log pt(xt)]dt+ g(t)dw̄t,

xT ∼ pT ≈ pprior, (16)

where w̄t is the reverse-time Wiener process, and ∇ log pt(xt) is the score function of the marginal
distribution pt. To enable inference generated data samples at t = 0, we can replace the score
function with a score network sθ(xt, t) and solve it reversely from pprior at t = T . A score network
is usually learned by the denoising score matching objective (Song et al., 2021) :

Ep0(x0)pt|0(xt|x0),t

[
∥sθ(xt, t)−∇ log pt|0(xt|x0)∥22

]
, (17)

where t ∼ U(0, T ) and pt|0 is the conditional transition distribution from x0 to xt, determined by
the pre-defined forward SDE and analytical for a linear drift f(xt, t) = f(t)xt.

A.2 LOSS FUNCTION

Given that we employ the pseudo-inverse to map mel-spectrograms back to the original uncom-
pressed linear-scale spectrogram, the extraction of amplitude information in the mel domain can
assist the model in better reconstructing the original linear-scale information. Therefore, the re-
construction losses include both the mean-square error (MSE) loss Lmse and the mel loss Lmel

following the settings in (Ai & Ling, 2023; Du et al., 2024). The former is defined as the MSE
between S̃ and S in the STFT domain:

Lmse =
1

FT

∑
f,t

∥∥∥S̃f,t − Sf,t

∥∥∥2
2
. (18)

The mel loss measures the mean absolute error (MAE) between the mel-spectrograms of the esti-
mated Ỹ mel and target waveforms Y mel:

Lmel =
1

FmelT

∑
f,t

∥∥∥Ỹ mel
f,t − Y mel

f,t

∥∥∥
1
. (19)

For the multi-mel loss, we compute the sum of mel losses across seven different configurations:

Lmel = Lmel0 + Lmel1 + ...+ Lmel6 . (20)

These configurations vary in the Fast Fourier Transform size (nfft) and the number of mel frequency
bins (nmels), which are set to (32, 64, 128, 256, 512, 1024, 2048) and (5, 10, 20, 40, 80, 160, 210),
respectively. For all configurations, the upper-bound frequency (fmax) is fixed at half the sampling
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rate, while the window size and hop size are set to nfft and nfft/4, respectively. The single mel loss
defined in Eq. (19) corresponds to the specific configuration where nfft = 1024 and nmels = 160.

The adversarial losses includes the hinge GANs of discriminators Dm and generator Bθ, denoted as
Ld and Lg , respectively:

Ld =
1

M

M∑
m=1

max (0, 1−Dm (s)) + max (0, 1 +Dm (̃s)) , (21)

Lg =
1

M

M∑
m=1

max (0, 1−Dm (̃s)) , (22)

where s̃ = iSTFT(S̃) ∈ RL denotes the reconstructed waveforms, iSTFT (·) refers to the iSTFT op-
eration, and M is the number of sub-discriminators. Discriminators includes multi-period discrim-
inator (MPD) (Kong et al., 2020) and multi-resolution spectrogram discriminator (MRSD) (Won
et al., 2021).

The discriminator settings for the adversarial loss include two components: Multi-Period Discrim-
inator (MPD) and Multi-Resolution Spectral Discriminator (MRSD). The MPD captures variations
in audio periodic patterns using five sub-discriminators. Each sub-discriminator reshapes the 1D
raw audio waveform into a 2D format based on predefined period values, which are set to {2, 3, 5,
7, 11}. The MRSD consists of three sub-discriminators, where the magnitude spectrum serves as
the input. This input is then fed into a stack of Conv2d layers to compute the discriminative scores.
The configurations for {window size, hop size, nfft} in the three sub-discriminators are (512, 128,
512), (1024, 256, 1024), and (2048, 512, 2048), respectively.

Besides, the feature matching loss is also utilized:

Lfm =
1

LM

∑
l,m

|fml (̃s)− fml (s) |, (23)

where fml (·) denotes the l-th layer feature for the m-th sub-discriminator. Finally, the loss for the
neural model is

LB = Lmse + λmelLmel + λgLg + λfmLfm, (24)

where λmel, λg , and λfm are the are the weight hyperparameters of corresponding loss.

A.3 ABLATION STUDIES

To determine the optimal configuration of diffusion hyperparameters and network settings for
BridgeVoC, we conducted ablation experiments on the LJSpeech benchmark.

Table 5 presents the test performance with various combinations of losses and noise schedules when
the network parameter count is 16.2M. From the experimental results, it is evident that the intro-
duction of auxiliary losses, single mel loss “+mel” and multi-mel loss “+mmel”, can significantly
enhance the model’s performance. Furthermore, adding GAN on top of “+mmel” further improves
the WB-PESQ score by 0.016. Correspondingly, other metrics also show certain improvements.
When comparing Scaled VP and VE under the “+mmel+GAN” condition, gmax emerges as the
optimal choice for the majority of indicators. Additionally, when the sampler is switched from the
reverse SDE to the probability flow ODE, there is a slight degradation in performance.

Table 6 lists the results for the methods of reconstructing the signal from the network output and
varying the network size under the settings of “gmax”, “+mmel+GAN”, and “SDE”. “map” and
“crm” denote that the network output is the complex spectrum mapping and the complex mask,
respectively. “decouple” indicates that the network outputs the amplitude and phase of the sig-
nal separately, which are then coupled to form the output signal. The results indicate that the
“crm”configuration is optimal for our task, rather than the previously default “map” form used in the
NCSN++ network. Additionally, increasing the network size also improves the final output scores.
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Figure 6: Metrics with different numbers of sampling steps during the reverse process on the test set of the
LJSpeech dataset.

Figure 7: Metrics with different values of β1.

Shedules Losses Sampler PESQ VISQOL UTMOS
gmax mse SDE 4.005 4.182 3.966
Scaled VP mse SDE 4.207 4.389 3.804
VE mse SDE 4.195 4.421 3.640
gmax +mel SDE 4.314 4.681 4.062
gmax +mmel SDE 4.400 4.805 4.195
gmax +mmel ODE 4.311 4.778 4.203
gmax +mmel+GAN SDE 4.416 4.798 4.217
Scaled VP +mmel+GAN SDE 4.379 4.796 3.987
VE +mmel+GAN SDE 4.370 4.816 3.796

Table 5: Ablation study of loss function and noise sched-
ules on the LJSpeech benchmark.

Recon. #Param.(M) PESQ VISQOL UTMOS
map 16.2 4.416 4.798 4.217
crm 16.2 4.418 4.817 4.237
decouple 16.2 4.369 4.764 3.765
crm 36.5 4.431 4.807 4.258
crm 64.9 4.440 4.824 4.262

Table 6: Ablation study of the signal recon-
struction methods and net sizes on the LJSpeech
benchmark.

For the case of “gmax” / “+mmel” / “map” / “16.2M”, Figure 6 shows the results of the number of
reverse sampling steps ablations. We found that for certain metrics, increasing the number of reverse
sampling steps yields better results. However, for other metrics, a specific number of steps achieves
the highest score. Similar observations have been reported in other diffusion-based works (Ho et al.,
2020). This phenomenon maybe due to the trade-off between the granularity of the sampling process
and the accumulation of numerical errors. As the number of sampling steps increases, the model can
more accurately capture the underlying data distribution, leading to improved performance for some
metrics. However, beyond a certain point, the benefits of additional steps may be outweighed by the
increased potential for error accumulation, resulting in a decline in performance for other metrics.
This finding also implies that 10 steps are adequate for BridgeVoC, while reducing the number of
steps to 7 does not lead to a substantial performance decline. Therefore, BridgeVoC has the potential
to further reduce computational complexity and increase inference speed.

For the hyperparameter β1 in the noise schedule, prior studies Bortoli et al. (2021); Chen et al.
(2023); Ante et al. (2024) have empirically explored values ranging from 1 to 50. To determine
the optimal value of β1 in this work, we conducted an ablation experiment under the configuration
“gmax” / “+mmel” / “map” / “16.2M”. As shown in Figure 7, the results reveal that there is no
significant difference in the three metrics—PESQ, VISQOL, and V/UV F1—within the range of 10
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Figure 8: Spectral visualization of BrdigeVoc-base (with GAN) and BrdigeVoc-base without GAN. The audio
clip is a singing voice from the MUSHDB18 test set.

Sampling Methods Losses PESQ↑ ESTOI↑ V/UV↑ VISQOL↑ UTMOS↑ Periodicity↓ Pitch↓ F0↓
F1 RMSE RMSE RMSE

Score Matching mse 4.211 0.9859 0.9528 4.767 3.436 0.0733 14.32 37.60
Rectified Flow Matching mse 4.317 0.9890 0.9711 4.711 3.595 0.0903 15.84 32.99

Optimal-transport Flow Matching mse 4.309 0.9884 0.9708 4.709 3.586 0.0911 15.46 32.96
Schrödinger Bridge mse 4.005 0.9791 0.9534 4.182 3.966 0.1438 13.45 33.20
Schrödinger Bridge mse+mmel 4.400 0.9835 0.9644 4.805 4.195 0.1047 14.19 31.75

Table 7: Metric comparisons of several Probabilistic Sampling Methods on LJSpeech. The best and second-
best performances are namely highlighted in bold and underlined.

to 35. However, when β1 increases from 10 to 20, a noticeable improvement in UTMOS is observed.
Consequently, we chose β1 = 20 as the optimal value for the final experimental setup.

A.4 COMPARISONS BETWEEN BRIDGEVOC W/ AND W/O GAN

Analysis of the inference results from BridgeVoc without GAN reveals the presence of a regular
dotted spectral distribution in the high-frequency region, as shown in Figure 8. Compared with the
output from BridgeVoc with GAN, i.e., BridgeVoc-base, it becomes evident that the dotted structure
mainly appears in frequency bands where clear prior band structures are not obtainable from the
mel inversion. This indicates that it is challenging to accurately recover high-frequency components
even with the incorporation of GAN.

In the ablation study of the loss function, detailed in the main text, objective metrics such as PESQ
and VISQOL show that the dotted structures do not significantly affect the intrusive evaluation
scores. However, they do have a noticeable impact on UTMOS, a non-intrusive metric that better
reflects perceptual quality. Therefore, it can be inferred that the regular dotted structure we observe
is the representation of the posterior energy probability in regions where prior information is un-
clear. It reflects the tendency of the model to distribute energy in a sparse and structured manner to
approximate the high-frequency content.

A.5 COMPARATIVE ANALYSIS OF SAMPLING STRATEGIES IN PROBABILISTIC MODELING

We also compared several probabilistic sampling methods, such as score matching with an Ornstein-
Uhlenbeck SDE with a variance-exploding (OUVE) and a one-step corrector Song et al. (2021),
rectified flow matching Guo et al. (2024), and optimal-transport flow matching Mehta et al. (2024),
within the same training framework. Both flow matching methods employed an Euler sampler for the
ODE. Unlike the score network, which takes ∇ log pt as its training objective, or the flow matching
network that predicts the velocity field to transform the initial distribution into the target distribution,
Schrödinger Bridge methods can directly predict the target data through model parameterization.
This characteristic enables the incorporation of auxiliary loss functions.
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The experimental results presented in Table 7 show that when the loss function is solely mean
squared error (MSE), each of the four sampling strategies exhibits a slight advantage in one or
two specific objective metrics. However, performance improves across all metrics except for Pitch
RMSE when the Schrödinger Bridge method incorporates an auxiliary multi-mel loss. Notably,
the UTMOS score increases from 3.966 to 4.196, indicating that the multi-mel loss helps capture
features that are both measurable and perceptually relevant to human listeners.
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