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Groupwise Registration of Multimodal Images
by an Efficient Joint Entropy Minimization Scheme

Ziga Spiclin, Bostjan Likar, and Franjo Pernus

Abstract—Groupwise registration is concerned with bringing
a group of images into the best spatial alignment. If images in
the group are from different modalities, then the intensity corre-
spondences across the images can be modeled by the joint density
function (JDF) of the cooccurring image intensities. We propose
a so-called treecode registration method for groupwise alignment
of multimodal images that uses a hierarchical intensity-space
subdivision scheme through which an efficient yet sufficiently
accurate estimation of the (high-dimensional) JDF based on the
Parzen kernel method is computed. To simultaneously align a
group of images, a gradient-based joint entropy minimization
was employed that also uses the same hierarchical intensity-space
subdivision scheme. If the Hilbert kernel is used for the JDF
estimation, then the treecode method requires no data-dependent
bandwidth selection and is thus fully automatic. The treecode
method was compared with the ensemble clustering (EC) method
on four different publicly available multimodal image data sets
and on a synthetic monomodal image data set. The obtained
results indicate that the treecode method has similar and, for
two data sets, even superior performances compared to the EC
method in terms of registration error and success rate. The ob-
tained good registration performances can be mostly attributed to
the sufficiently accurate estimation of the JDF, which is computed
through the hierarchical intensity-space subdivision scheme, that
captures all the important features needed to detect the correct
intensity correspondences across a multimodal group of images
undergoing registration.

Index Terms—Entropy, groupwise, image registration, joint den-
sity function (JDF), multimodality, multiscale, space partition.

I. INTRODUCTION

EGISTRATION of images is needed in most of the ap-

plications that perform automated image analysis. Such
applications are now well established in various fields ranging
from medical imaging and remote sensing to computer vision.
To perform a joint automated analysis of multiple images that
were acquired by using different sensors, by varying illumina-
tion setups, at different times and/or viewpoints etc., these im-
ages must be spatially aligned. Thus, image registration should
be a versatile tool that enables accurate, robust, and time-effi-
cient spatial alignment of two or even more images.
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Scene information acquired from multiple sources or in-
stances is generally represented by images, which are not
directly comparable in intensities. In medical imaging for
example, different insight about the underlying patient anatomy
and/or function is offered by different acquisition techniques
such as magnetic resonance (MR), computed tomography (CT),
position emission tomography (PET), and ultrasound (US).
In remote sensing, images capture the radiation intensity at
different spectral bands of light, whereas in computer vision,
changing the viewpoint or illumination direction diversely
exposes the depth and shape information on the imaged scene.
Such diverse scene information is likely to yield intensity
uncorrelated images known as multimodal images. Bringing
into spatial alignment two or more multimodal images presents
a difficult image registration problem.

The intensity correspondences needed to guide the registra-
tion process can be established by assuming some form of a
functional relationship between the intensity values of corre-
sponding structures in the images. This functional relationship
can either be explicit in a form of intensity transformation model
[1] or implicit in a form of a JDF of image intensities [2]. The
former seems less attractive since it needs to be parameterized
specifically for the nature of the images being registered, which
is contrary to the JDF that explains the statistical dependence
between the image intensities. The JDF forms the basis of the
state-of-the-art multimodal image registration methods [3], [4].
However, the dimensionality of the JDF grows by the number
of images being registered. For the purpose of the groupwise
image registration of multimodal images, an efficient but robust
method is needed to estimate the high-dimensional JDF.

In this paper, we propose a so-called treecode registration
method for registering a group of multimodal images that es-
timates the JDF through an efficient hierarchical subdivision of
the joint intensity space (JIS). All images are simultaneously
considered in the registration process, which is formulated as an
iterative least-square gradient-based minimization of the joint
entropy. The treecode method is compared with the ensemble
clustering (EC) method [5] using similar image data sets and
similar testing conditions. The main difference between the two
methods is in the estimation of the JDF. In the EC method, a
parametric Gaussian mixture model (GMM) is used, where the
number of mixture components corresponding to the number
of modes in the JDF has to be determined in advance either
manually or automatically. This parameter critically defines the
performances of the EC method [5]. Instead of modeling the
clusters explicitly, the treecode method implements a Parzen
kernel density through the hierarchical intensity-space subdivi-
sion scheme to obtain a representative high-dimensional JDF
estimate.
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II. BACKGROUND

The main advantage of the emerging groupwise registration
methods over the common pairwise registration methods [6] is
that the correspondences between each pair of images depend
on the joint information from the entire group of images. De-
pending on how this joint information is managed through the
registration process, groupwise methods can be classified into
sequential and simultaneous approaches.

Sequential approaches usually require a common reference
or a template to which all images are registered in a pair-
wise manner. In [7], a mean geometry template was estimated
through multidimensional scaling of unaligned images, whereas
Marsland et al. [8] and Cootes et al. [9] applied the minimum
description length principle in the search of a template that
would most effectively explain the images and the pairwise
transformations that are needed to align the images. Wang et
al. [10] hierarchically cluster the images into a pyramid of
classes and perform groupwise registration of similar images
within each class at the bottom of the pyramid. Then, the center
images of different classes are aligned from the bottom to the
top of the pyramid. A similar strategy using a minimal spanning
tree (MST) to find image pairs for registration was used in
[11]. While effective for groupwise registration, these methods
suffer from high computational complexity and have not been
demonstrated to work with multimodal images.

More efficient groupwise registration methods are based on
the simultaneous approach, in which a global criterion mea-
sures the information coherence across a group of images. The
image group is then iteratively aligned by optimizing this global
criterion with respect to (w.r.t) transformations of each image
in the group. Among the first, Woods et al. [12] proposed added
sums of squared intensity differences between all possible
image pairs as the global criterion. Congealing framework [13]
introduced the elementwise intensity entropy criterion that has
been adopted for groupwise registration of MR images of the
same acquisition protocol in [14]. They computed the so-called
stack entropy from a density function of a stack of intensity
values at each image location. To improve the correspondence
detection, Wang et al. [15] used attribute vectors to represent
contextual information about each image location in a form
of local intensity density functions. This approach was further
improved in [16] by allowing fuzzy correspondences in the
spatial domain and across images in the group. If the intensity
transformations between images are nonmonotone functions, as
is usually the case for multimodal images, the mentioned global
criteria might not measure the true intensity correspondences
across the image group. Hence, these methods cannot be used
to align multimodal images.

True multimodal groupwise image registration methods focus
on the direct analysis and manipulation of the cooccurring in-
tensities in the JIS, which spans the JDF. The rationale behind
these methods is that the dominant cooccurring intensities form
clusters in JIS. These clusters represent the most probable in-
tensity correspondences between the images.

If the same clusters can be approximately identified when
the images are misaligned, then this information can be used to
guide the image registration process. Studholme and Cardenas
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[17] approximated the high-dimensional JDF, with the number
of dimensions equal to the number of images being registered,
by first finding the dominant clusters of cooccurring intensities
and then replacing the clusters with weighted Gaussian func-
tions. Their global criterion was a sum of total self-informa-
tion (an asymptotic variant of the joint entropy) and two penalty
terms enforcing geometric constraints on the registration solu-
tion. A similar technique based on high-dimensional histogram-
ming was proposed in [4], in which the intensities were first
binned and then the frequencies of only the nonempty histogram
bins were computed. A multimodality extension to mutual in-
formation is proposed that uses the JDF estimate based on the
high-dimensional histogram to align the images.

More recent methods have applied clustering or space parti-
tioning techniques to capture the distribution of intensity points
in JIS. Orchard and Jonchery [18] used normalized cuts to ini-
tialize the clusters in JIS, which represented a set of regressors,
and then minimized generalized Euclidean distance from the
set of regressors. An improved version of their method is done
in [5], in which the authors used clustering based on a GMM.
Then, the log-likelihood of the GMM was maximized that, in
effect, reduced dispersion of the intensity points in JIS. Another
class of methods is based on the graph representations of in-
tensity points in JIS [19], [20], in which the dispersion of in-
tensity points was quantified by computing the edge length of
a MST. The mentioned methods try to directly minimize the
dispersion of intensity points in JIS, which is intimately linked
to the concepts of information-theoretic criteria for multimodal
image registration [2], [3].

We propose a method for groupwise registration of multi-
modal images called the treecode registration method that mini-
mizes directly the joint entropy so as to indirectly reduce the dis-
persion of intensity points in JIS. We note here that groupwise
registration based on the minimization of joint entropy has al-
ready been proposed [5], [14], [17]; however, previous methods
are either not adequate for registering multimodal images or
may require data-dependent tuning of its parameters. There are
two main contributions in this paper: 1) the hierarchical in-
tensity-space subdivision scheme is the essential breakthrough
that enables a representative and efficient approximation of the
high-dimensional JDF and the joint entropy by the Parzen kernel
method; and 2) the use of the Hilbert kernel that captures all im-
portant features of the JDF without the need to tune the kernel
bandwidth parameters, as with the common Gaussian kernel, for
each specific image group undergoing registration.

III. METHOD

The proposed treecode method for groupwise registration of
multimodal images is based on minimizing the joint entropy of
the images by 1) using the Parzen kernel method to estimate the
JDF, 2) evaluating the joint entropy, and 3) moving the images
so as to minimize the joint entropy. The process of JDF estima-
tion, joint entropy calculation, and motion adjustment is simul-
taneously executed through 4) an efficient hierarchical subdivi-
sion of the JIS.

The method takes as input an image group Z that consists of
D images 7. . .., Zp. Pixel coordinates in the overlapping do-

main 2 € 2z of images in Z define the D-dimensional vectors
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of image intensities, which we refer to as infensity points and
denote as z; € R for corresponding pixel coordinates (i),
i = 1,...,N. Thus, the kth row of intensity point z; holds in-
tensities of the kth image, which are referred to as [z;];. Inten-
sity points populate the JIS and are treated as independent and
identically distributed random variables. A sample-based esti-
mate of their JDF is required to compute the joint entropy.

The joint entropy is closely related to mutual information [2],
[3], originally defined between two images as

MI(Z1, Z3)

where H(Z;) = — [ p([z]x) log p([z]x )dzk is the univariate
entropy values and H {7, ZZ = — [ p(z)logp(z)dz is the
joint entropy. p([z]x) and p(z) are the univariate and the bi-
variate density functions, respectively. A straightforward exten-
sion of mutual information for more than two variables is known
as the total correlation [21], which in the case of D images reads

=> H(Z,) - H(Z).
k=1

The total correlation measures the degree of statistical depen-
dence of a group of variables. In the image registration case,
the highest statistical dependence is expected when all images
are best aligned. A strategy for groupwise registration is thus to
maximize the total correlation. In (2), the statistical dependence
between images is directly expressed by the multivariate joint
entropy, which acts as a lower bound of the total correlation. In-
stead of maximizing the total correlation, it is more simple to
maximize its lower bound, i.e., to minimize the joint entropy of
the images.

The next subsections describe the estimators of density, joint
entropy, motion parameters, the hierarchical JIS subdivision
method, and the implementation details.

= H(Z1) + H(Z2) — H(Zy, Z) ey

2)

A. Density Estimation

We will use the Parzen kernel method to estimate the true
probability density p(z) from the intensity points z € Z. By
definition of the Parzen kernel method [22], the true probability
density p(z) can be estimated as a superposition of kernel func-
tions centered on M samples z; drawn from Z

1 M
= MZK’L(Z - Zj)
j=1

where the kernel function Kj(z) integrates to 1, Ky(z) =
1/(hP)K(z/h), and h is the smoothing parameter known as
the bandwidth [23]. The most common kernel function Ky (z)
is the (multivariate) Gaussian

p(2) = p*(2) 3)

Kgpyp(z) = 4/ (2m) P lyp| Lexp (—% ZT1/212> 4)

where 1 is the covariance matrix, typically defined as 1 =
diag([h3,...,h3]T). We will also use the Hilbert kernel pro-
posed in [24], which is defined as

Ky (z) = [Vplog M1/ (272)~P

)
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where Vp is the volume of the unit ball in RP. Note that A
is canceled in K (z/h), where K (z) is defined as Kp(z) =
1/(hP) 1/||z||P, hence, the Hilbert kernel has no bandwidth pa-
rameters. The density estimate based on the Hilbert kernel is
weakly consistent at almost all z, i.e., p*(2) — p(z) in proba-
bility at almost all z [24].

B. Joint Entropy

By using the Parzen kernel density estimate p*(z) the
joint entropy can be computed as H(Z) = —E.[logp*(z)].
This expression is difficult to evaluate; therefore, we
will approximate the joint entropy by a sample mean
H(Z) =~ -1/N ZIN:I log p*(z;) that converges to the true
expectation at a rate proportional to /1/N [3]. By using
kernel functions in (4) and (5), the density estimate can be
expressed as p*(z) = 1/Vx Z;\il K(z — z;), where Vi is the
kernel-dependent density normalization. In this way, the joint
entropy is computed as

(6)

IR T
= )

J#

where the case 7 = ¢ was excluded to avoid the singularity of
the Hilbert kernel for K,(0); hence, M = N — 1. This issue
will be further addressed in Sections III-E and V-F.

In (6) and in the following equations, all sums run over all
intensity points, except if otherwise indicated.

C. Motion Adjustment

Let 6 represent the motion parameters of all images in the
image group. During the image registration process, the inten-
sity points z change w.r.t. the motion parameters §, which we
will denote as z%. We want to find such motion parameters ¢ that
minimize the joint entropy H*(Z?) and thus bring all D images
into the best spatial alignment. Following [5], we propose an it-
erative solution using a Newton-type minimization step.

The minimal joint entropy H*(Z?) w.r.t. motion parameters
can be obtained by setting its gradient vector to zero as follows:

SH (7)) =0

90 (7

Registration of 1) images, each having P motion parameters,
yields PD motion parameters in 8, i.e., the gradient vector in
(MisaPD x 1 Vector

We set dg =2z —z; ¢ and use (6) to rewrite the gradient vector
of joint entropy as

O ppe( g0
gt (2") = Z og |10 M Vic - log > K (d]
i
(®)
By partial differentiation, the right-hand side becomes
NZZWQRK ”d” 9)

i g
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where

0 K (d7;)
wé = V)
S ZA;& ( m)

is a scalar weight between 0 and 1. R is a kernel-dependent
factor that evaluates to 2~ and D||d? ;|| =% for the Gaussian and
the Hilbert kernel, respectively. Lastly, ad? ;/00isa PD x D
matrix of derivatives of D intensity values W.r.t. the P.D motion
parameters.

Improved motion parameters that set expression (9) to a zero
vector can be found by using a linear approximation of the spa-
tial transformation

(10)

9 T
ZH 52

d6+A6 :
a

Al

(11)

where Af is a small step in the motion parameters. Note that, in
¢ ;> both z¢ and 7 are dependent on the motion parameters. We
replace d in (9) by a linear approximation in (11) and obtain a

linear equatlon in Ad

Z Z WMRI\

i g

()d”

odl, "
di; + —2 A@] = (12)

06

By factoring out Aé, we get a linear system, i.e.,

YD WEHR 0di; 0y d
(I ST
{ZZVI“RK “d(’] (13)
i |
or
AANG =b (14)

where 4 is a PD x PD system matrix, and b is the PD x 1
response vector, as defined in (13). This linear system can be
easily solved to obtain the motion step A, which is used to
update the current motion parameters 6.

D. Hierarchical Joint Intensity-Space Subdivision

The computational complexity of (13) is O(N2P?2D?),
typically with N > max(P, D). To break the O(N?) com-
plexity due to the double sum in (13), we propose an efficient
O(Nlog N) scheme based on a tree-structured recursive hi-
erarchical subdivision of the JIS into hypercubes [25]. The
idea is to group together increasingly large groups of intensity
points at increasingly large intensity differences. In this way,
interactions between distant groups of intensity points in JIS
can be efficiently approximated without summing over each
pair of intensity points. Overall, the computational complexity
can thus be reduced to O(N log N P2D?).

We start the space subdivision with an empty hypercubic cell
that is big enough to contain all intensity points. Then, intensity
points are sequentially loaded into this root cell. If more than
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one intensity point is contained in the same cell, that cell is di-
vided into 2” equally sized hypercubic subcells. This process
of subdividing is continued to as high a level as required. These
cells are then grouped together into larger hypercubic cells up
to the root cell, forming a hierarchical tree structure. The final
step in constructing the tree is to tag each cell B with

keB
1
7%, =% Ny 28 (15)
keB
~ 1 a2
EY =5 ZNk 09" (16)
ke
~ 1 828
Fl=_— N N, k0 17
B NBk-eB k59 K a7
Go _ 1 ZN 822(92,2 (18)
T Np &= ko0 o0

where N is the number of intensity points in each cell or
subcell of B. By propagating tags from the bottom-level cells
up to the tree root, a tagged tree may be obtained in time of
O(N log NP2D3).

For each intensity point, we evaluate the sum over j’s in
the bracketed terms of (13) by a simple recursive calculation
starting at the root cell of the tree. Let Iz be the length of cell
B being processed and d? the difference between the cell’s
center-of-mass z% to intensity point z¢. If Ip /d; < ¢, where
¢ is a fixed accuracy threshold, then we compute

Aip = Wi Rk [G? + G B BT - EfE%T} (19)

bip =W/ Rxc [EBZ + B2 - F) - ﬁg} (20)
where A;p is the partial system matrix and b, 3 is the partial re-
sponse vector. Note that Ry is computed as ||d?z|| 2 for the
Hilbert kernel. While traversing the tree structure, A; and b;
are added to the total system matrix A and the total response
vector b in (14), respectively. E?, F?, and G? represent the re-
spective cell tags, as in (16)—(18), for the case of a cell con-
taining a single intensity point.

For lp/dlg > ¢, the current cell B3 is resolved into its 27
subcells, which are then recursively examined one by one. This
process continues down to the bottom-level tree cells and is of
O(log N P2D3). The JIS subdivision and the interpretation of
the cell acceptance criterion can be observed in Fig. 1.

E. Implementation

The proposed method was implemented in Matlab (Math-
works Inc., Natick, MA). The pseudocode in Algorithm 1 sum-
marizes the main computational steps of the proposed method.
Image groups in our registration experiments were successively
registered at scales 1:16, 1:8, 1:4, and 1:2 of the original reso-
lution and at the original image resolution. Motion parameters
obtained at one scale were used as initial motion parameters on
the successive higher scale.
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Fig. 1. (a) Two-dimensional JIS with a corresponding cell subdivision and
(b) cell interaction approximation between cell B with its center-of-mass %
and intensity point z?.

For resolution scales that yielded a large number of intensity
points, we randomly sampled the intensity points in each itera-
tion of the registration process so as to limit the maximal number
of intensity points to 2000; hence, N* = min(2000, N). This
random sampling scheme introduces some noise in the gradient
estimation in (9); however, as shown in the Section V, the pro-
posed method still registers images close to their gold-standard
position. Moreover, similar random sampling schemes were
used in [3] and [14] to improve the computational efficiency of
the registration method and to effectively escape from the local
minima in the registration criterion.

The covariance matrix 3 of the Gaussian kernel density esti-
mate in (4) was set according to the maximal smoothing prin-
ciple [23] as follows:

2/(D+4)

9—D (D+6)/2
270 (D +8) =

I6NT (252) (D +2)

/

where »* is the diagonal N*-sample covariance, i.e., X* =
diag([o,....0%]"), and I'(-) denotes the Gamma function.
Contrary, the Hilbert kernel in (5) has no bandwidth parame-
ters. However, to guarantee the numerical stability of K (2)
for z — 0, we regularize the Lo-norm in (5) as follows:

Ky.(2) = [Vp log M] 14/ (2Tz +£2) D, (22)
The regularization parameter € must be set so as to renormalize
via (10) the influence of the intensity points closest in distance.
Since, for e=0, the individual intensity points closest in distance
dominate the motion step direction computed from (19) and
(20), & can be set w.r.t. the average minimal distance between
the intensity points, i.e., ¢ ~ E[min;(d?)];i,j = 1,..., N,
1 # j. The robust estimator of this distance can be derived from
the distribution of hypercubic cells B w.r.t. the tree level L, i.e.,
#B(L), obtained by the hierachical space subdivision scheme
proposed in Section ITI-D. We take the tree level at the 95th per-
centile of #B(L), denoted as Lg g5, and set £ according to the
corresponding cell diagonal as

£ = loDY/?9 Losss (23)

where [y is the sidelength of the root cell. The hierarchical JIS
subdivision had a maximum of 32 levels, whereas the cell ac-
ceptance threshold ¢ was set to 1. The influence of selecting
parameters e, ¢, and N* on the performances of the treecode
method is further examined in Section V-F.
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Exceptions to the given testing conditions and details about
experiments are given in Section I'V.

Algorithm 1: Pseudocode of the treecode registration method

1: input: initial image group Zy
2: input: initial motion parameters ¢
3: for each scale do

4:  Zscaled < scale image group %y

5: 7 « apply motion (f) to image group Zscaled

6:  repeat

7: Z* « sample N* feature points from Z

8: T « create tree using Z* (see Section II1-D)
9: for cach feature point Z* do

10: B « init cell list and insert root cell of T
11: repeat

12: B — retrieve new cell from B

13: iflg/ds < ¢ then

14: compute A, and b;g

15: A— A4+ Aip

16: b—b+bp

17: else

18: B — insert subcells 7(B)

19: end if

20: until cell list 5 empty

21: end for

22: Af — motion adjustment (see Section III-C)
23: 0 — 0+ Af

24: 7 « apply motion (#) to image group Zscaled

25:  until converged (A# is small)
26: end for
27: output: Z is registered image group at full scale

28: output: # holds optimal motion parameters

IV. EXPERIMENTS

The proposed treecode method was tested and compared with
the EC method [5] so as to demonstrate that: 1) the treecode
method has similar and, for some data sets, even superior perfor-
mances as the EC method; and 2) the proposed method requires
no data-dependent tuning of its parameters. To enable a direct
comparison between the two methods, the outline of the experi-
ments and results sections closely follows the one in [5]. The EC
method was run using the parameter values (i.e., the number of
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T2-MR

Fig. 3. Satellite images of different spectral bands of light that were used to test the 2-D affine registration. The ROI that was used for testing the image registration

methods is outlined in image A.

Gaussians in GMM), as proposed in [5], since the experiments
were carried out on similar image data sets and under similar
testing conditions. The GMM was initialized by the k-means
clustering algorithm. All experiments were executed using all
images simultaneously in the registration process.

The criteria for evaluating and comparing the performances
of the registration methods were also similar to the ones pro-
posed in [5]. The estimated transformations, as output by the
registration methods, were compared with the gold-standard
transformations. Registration error was defined as the average
pixel displacement from its true (gold standard) position,
which is computed for each image pair in the data set and
over all pixels used in the registration. The accuracy of the
registration methods was measured by the average registration
error, which is computed only for the successful registrations.
Registration of an image pair was considered successful if
the registration error was below three pixels. The image-pair
success rate was defined as the overall percentage of success-
fully registered image pairs, whereas the frial success rate was
defined as the percentage of trials that successfully registered
all image pairs. To compare the accuracy of the methods, the
P values of the one-sided paired #-test were computed between
the corresponding means of the average registration errors
of the successful trials. Let A and B be the methods under
comparison for which p4 > p15; then, the null hypothesis was
defined as Hy : 14 = pp and the alternative hypothesis as
Hy : ps > pp. The significance level was set at a = 0.05.
The reported P values, which are denoted as Pa4—p, refer to
the likelihood of the null hypothesis.

Four publicly available multimodal image data sets and a syn-
thetic monomodal image data set were used to test the perfor-
mances of the registration methods. Each image data set was
first registered by a supplied gold-standard registration. Then,
known displacements were applied to the registered images to
obtain multiple trial image data sets to run the registration ex-
periments. Details about image data sets and the registration ex-
periments are given in the following subsections.

A. 3-D Medical Volumes

Medical volumes obtained from the Retrospective Image
Registration Evaluation (RIRE) project’s training data set [26]
were used to test the 3-D rigid-body registration. Fig. 2 shows
a slice from the aligned image group. The group consists of a
CT, PET, and three MR volumes (PD-, T1- and T2-weighted).
The volumes were initially aligned by ground-truth registration
supplied by the RIRE project, then rescaled and zero padded
to 80 x 80 x 32 isotropic voxels. Refer to [5] for details. One
hundred trial image groups were generated by applying ran-
domly three translations and three rotations to each image. The
random translations and rotations were chosen from the range
[—5, 5] pixels and degrees, respectively. A multiresolution
registration was carried out at scales of 1:4 and 1:2 and at the
original resolution.

B. Satellite Images

Landsat 7 satellite images were used to test the affine regis-
tration. Images were obtained from the Landsat website (http://
landsat.gsfc.nasa.gov) using as parameters the latitude 46.0 and
longitude 13.6 while the acquisition date was 29 April 2001. A
800 x 800 pixels ROI was cut out of the original Landsat 7 im-
ages, with the upper-left corner at (4600, 2200). The Landsat 7
spectral-band images 7, 6H, 5, 4, 3, and 1 are shown in Fig. 3
as images A to F, respectively. One hundred trial image groups
were generated by applying to the images a random six de-
gree-of-freedom (DOF) affine displacements. Parameter values
for scale [0.95, 1.05], shear [—0.2, 0.2], translation [— 5, 5], and
rotation [—5 5] were uniformly sampled from the given ranges.
Note that the translations and rotations are given in pixels and
degrees, respectively. The overlap region used for registration
is shown in the image A in Fig. 3.

C. Variable Illumination

Face images illuminated from different angles (far left to
far right) are shown in Fig. 4 and were obtained from the
Extended Yale Face Database B [27]. One hundred trial image
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Fig. 4. Images from the Extended Yale B Face Database, in which faces were illuminated from different angles. The ROI that was used for testing the image

registration methods is outlined in image F1.

groups were assembled by generating random rigid-body dis-
placements of the images by [— 10, 10] pixels or degrees. The
overlap region marked by ROI in the image F1 of Fig. 4 was
used for registering the images.

D. Monomodal Time Series

A figure of merit for the groupwise methods is also the
number of images that can be simultaneously registered. There-
fore, a time series of ten simulated functional MRI (fMRI)
images was composed by adding artificial activation to the
occipital and temporal regions of a single 80 x 80 pixels
T2-weighted MR the brain image. The artificial activations
were generated using the fMRI Simulation Toolbox (SimTB)
(http://mialab.mrn.org). The parameters of the fMRI simulator
were set to trigger a series of three events overlapping in the
time domain over a period of 20 s, and the acquisition period
was set to 2 s. One hundred trial image groups were generated
by applying to each image a random translation and rotation
from the range of [—10, 10] pixels or degrees, respectively.
Finally, all the images were corrupted by additive Gaussian
noise that presented 5% of the average brain intensity.

Three methods were tested on the fMRI time series, namely
the EC method [5], the congealing method (CG) [14], and the
proposed method. The EC method was initialized with one
Gaussian for the GMM, whereas in the CG, the bandwidth o
of the Gaussian kernels was set to 1, and the same random
sampling scheme was used as for the proposed method. All the
methods were run successively at scales of 1:4 and 1:2 and at
the original resolution.

E. Nonrigid Registration

In the medical imaging community, images usually need to
be aligned with a high-DOF spatial transformation so as to
facilitate automatic image analysis. Image registration with
a high-DOF spatial transformation is also known as nonrigid
image registration [6]. To test the proposed treecode method
in the nonrigid setting, we used three simulated MR images
(T1-, T2, and PD-weighted) from the BrainWeb project [28]
that contained artificial multiple sclerosis lesions, had a noise
level of 3% relative to the brightest tissue, and a 20% intensity
nonuniformity. From each of the 181 x 217 x 181 volumes,
only the axial 2-D slices #105 were used for testing the nonrigid
groupwise registration (see Fig. 5).

Nonrigid groupwise image registration was based on thin-
plate splines (TPSs) [29], in which the spatial transformation
is defined by the displacement of control points from their ref-
erence position. We used a 3 x 3 grid of the TPS control points,

Fig. 5. (a) BrainWeb simulated MR images were used to test the nonrigid reg-
istration based on TPSs, using (top left) 3 x 3 control point grid. Example of
(b) deformed test images and (c) corresponding deformation maps.

as depicted in Fig. 5 on T1 image, yielding 18 free parameters
per image. One hundred trial image groups were generated by
displacing control points’ coordinates randomly in the range
of [—10, 10] pixels. The EC [30] and the proposed treecode
methods were run successively at scales of 1:8, 1:4, and 1:2 and
at the original resolution.

F. Properties and Performances of the Treecode Method

First, we assessed the accuracy of the approximate motion up-
date A6*, as computed by the treecode method using (19) and
(20), w.r.t. the number of intensity samples NV and w.r.t. the cell
acceptance threshold ¢, which governs how point-to-group in-
teractions are computed within the hierarchical intensity-space
subdivision. For this purpose, trial image groups from the Yale
Face Database were used (c.f. Section IV-C). Relative error be-
tween the approximate motion update A#™* and the true motion
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TABLE I
SUMMARY OF IMAGE REGISTRATION RESULTS ON FIVE DIFFERENT DATA SETS BY RUNNING THE EC, THE CG, AND THE PROPOSED TREECODE
REGISTRATION METHODS. THE TREECODE METHOD WAS TESTED WITH THE GAUSSIAN (TG) AND THE HILBERT (TH) KERNEL. NUMBERS IN
BOLD INDICATE BEST RESULTS FOR EACH CRITERION AND DATA SET. STARS ¥ INDICATE STATISTICALLY SIGNIFICANT DIFFERENCE IN ERROR
MEANS FOR ¢v = (.05 BETWEEN THE TREECODE AND OTHER METHODS. SEE FIG. 6 FOR P VALUES

Mean average . .
. . . Image-pair success rate [%] Trial success rate [%]
registration error [pixels]
Dataset \ Method EC TG TH CG EC TG TH CG EC TG TH CG
RIRE (Sec. IV-A) 1.18 0.181 0.159* 45.6 100 100 31 100 100
Satellite (Sec. IV-B) 0.055 0.094 0.074 97.7 100 100 80 100 100
Faces (Sec. IV-C) 0.931* 1.03 1.03 100 99.6 99.6 100 99 99
fMRI (Sec. IV-D) 0.061* 0.089 0.087  0.083 100 98.9 98.9 100 100 97 97 100
BrainWeb (Sec. IV-E) 0.595  0.621 0.119* 91.3 85.7 100 88 79 100

update A#, obtained by direct implementation of (13), was com-
puted by

||AG* — Ad)]

6Ae[%] =100 - 1A0]

24

Moreover, the computational efficiency was evaluated by mea-
suring the corresponding execution times.

Next, we studied the accuracy of the JDF as estimated by the
treecode method. For this purpose, artificial JDFs were gener-
ated with a predefined number of modes R and dimensionality
D as

1 R
p2) =5 > Koy, (2= m) (25)
k=1

where mode positions 45, and the covariances +, were randomly
chosen. Note that (25) is a randomly generated GMM. From
each such JDF, N samples were drawn and used to reestimate
the JDF by the treecode method and the expectation—maximiza-
tion GMM (EM-GMM) with a fixed number of components /2*.
Note that EM-GMM is used in the EC method. Pointwise ac-
curacy of the estimated JDF was measured by the integrated
squared error (ISE) [23]

SE = [ (2) - o)) dz (26)
while the overall accuracy was assessed by the mean ISE
(MISE) as MISE = E[ISE(p*, p)]. MISE was evaluated for
ten trial JDFs and assessed for various ranges of R, D, and V.

V. RESULTS

A. 3-D Medical Volumes

Results for the 3-D rigid-body registration of the RIRE mul-
timodality medical volumes are shown in Table I and Fig. 6(a).
The average registration error for the unregistered volumes was
6.6 pixels. In the successful trials, the proposed treecode method
had an average registration error of 0.181 and 0.159 pixels for
the Gaussian kernel and the Hilbert kernel, respectively, which
was considerably lower than the average registration error of
1.18 pixels for the EC method. Treecode methods successfully

registered all trials and all image pairs, whereas the respective
percentages were much lower for the EC at 31% and 45.6%.
The average times to register the volumes were 384 and 268 s
for the EC and the treecode methods, respectively.

The trial success rate of the EC method was strongly influ-
enced by the initial JDF estimate at 1:4 scale of resolution (see
Fig. 6), where the number of intensity points for the JDF esti-
mate was the lowest. If the initial JDF estimate could not locate
the true intensity correspondences, then usually, all the images
in the group failed to converge to their gold-standard position.
In the EC method, one has to specify in advance the number
of components for the GMM, which might not reflect the cor-
rect number of modes in the JDF. Moreover, the number of
modes might change during the registration process. The pro-
posed method measures the joint entropy directly from the in-
tensity points and, thus, does not need to model the modes ex-
plicitly, which might explain a considerably higher trial success
rate of the proposed method versus the EC method.

B. Satellite Images

One hundred trial image groups had a 19.9-pixel initial av-
erage registration error. The treecode method had an average
registration error of 0.094 and 0.074 for the Gaussian kernel and
the Hilbert kernel and has successfully registered all trials and
all image pairs. The EC method had a slightly lower average reg-
istration error of 0.055 pixels, 80% successully registered trials,
and 97.7% successfully registered image pairs [c.f. Table I and
Fig. 6(b)]. The difference in the average registration errors be-
tween the methods is, however, statistically insignificant with
Prg—gc = 2.3-107" and Prg—gc = 1.7- 1071, according
to the paired #-test. The trial success rate was lower for the EC
method mostly due to the image pair B-D (see Fig. 3) that failed
to align in 17 trials (see Fig. 6). By adding only one Gaussian
to the GMM (total of seven) in the EC method, the average reg-
istration error rose to 0.52 pixels, and the trial and image-pair
success rates were 69% and 86.6%.

Average times to execute the registrations were 140 and 183 s
for the EC and the treecode method, respectively. The treecode
method spent most of the time (>90%) registering images in the
last resolution scale. The motion parameters oscillated about the
gold-standard position due to the random sampling scheme, and
the registration was stopped when reaching the maximal number
of iterations.
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Fig. 6. Box—whiskers diagrams of the average registration errors for (a) 3-D RIRE, (b) Satellite, (c) Faces, (d) fMRI, and (e) BrainWeb image data sets. The
initial average registration errors are plotted on the left of each box—whisker diagram, then the corresponding errors, as output by the registration methods at the
initial and original resolution scales, are plotted to the right. The open dots represent those trials in which the average registration error was more than 1.5 of the
interquartile range away from the median value (closed dot). The tested methods are referred to as EC, treecode with Gaussian (TG) and with Hilbert (TH) kernel,
and CG. Corresponding P values for the one-sided paired ¢-tests are printed to the right of each box—whisker diagram (c.f. Section IV for definitions). Significance
level is set at & = (0.05; thus, for clarity, the I” values <0.05 are marked in bold.

C. Variable Illumination

Results for the variable illumination experiment using face
images are shown in Table I and Fig. 6(c). The initial average
registration error for the unregistered images was 20.4 pixels.
The EC method had an average registration error of 0.931
pixels and successfully registered all 100 trial image groups
and all image pairs. If one Gaussian was added to the GMM,
the average registration error was slightly worse at 0.96 pixels,
whereas the trial and image-pair success rates dropped signif-
icantly to 76% and 82.4%. This indicates that the number of
Gaussian components in the GMM has to be perfectly tuned to
the registration problem at hand.

The treecode method had a higher average registration error
at 1.03 pixel for both the Gaussian kernel and the Hilbert
kernel. Similarly, using either of the kernels, 99% trial and
99.6% image-pair success rates were achieved. Average times
to execute the registrations were 129 and 55 s for the EC and
the treecode method, respectively.

D. Monomodal Time Series

Results for the fMRI time-series registration are shown in
Table I and Fig. 6(d). The average registration errors for the
successful registrations were 0.061 and 0.083 pixels for the EC
and the congealing registration method. The treecode method
had 0.089 and 0.087 pixels of average registration error for the
Gaussian kernel and the Hilbert kernel, respectively. Both the
EC and the CG successfully registered all trials and image pairs,
whereas the proposed method successfully registered 97% of
trials and 98.9% of image pairs, regardless of the kernel function

used. The average times for a trial image group to register were
1.81, 32, and 145 s for the EC, the treecode method, and the CG,
respectively.

Surprisingly, small average registration errors and fast reg-
istration time of the EC method result from using only one
Gaussian for the GMM. Using only one Gaussian tricks the
GMM to model only the intensity points in the brain overlap re-
gion that form a distinct cluster near the diagonal of JIS. Thus,
other intensity points that may distract the registration are ef-
fectively ignored. We found that, by using two or three GMM
components, the accuracy drops to 0.17 or 0.39, respectively. To
set the optimal number of Gaussians for the GMM thus requires
a priori analysis of the JIS. Similarly, for the CG, we had to iter-
atively reset the bandwidth parameters so as to achieve optimal
performance, which is also not feasible in real situations.

The treecode method failed to converge in three cases, in
which the brain region overlap between image pairs in the trial
data set was less than 50%. In these cases, accurate modeling of
the density function reveals the off-diagonal JIS clusters, which
then causes the registration process to diverge. The average reg-
istration error was slightly worse compared with the other two
tested methods owing to the random oscillations of the motion
parameters about the gold-standard position in the original reso-
lution scale. This issue was observed before for satellite images
and is due to the random sampling scheme.

Second, the proposed method can register a maximum of
ten images at once due to the implementation of the hierar-
chical subdivision scheme (see Section III-D). As the hierar-
chical tree is constructed, each cell containing more than two
separate points is recursively subdivided into 27 subcells down
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Fig. 7. Treecode properties: (a) relative error ea¢ of the approximated motion
update Aé and (b) corresponding computation times shown for different cell
acceptance threshold ¢ and w.r.t. the number of samples /V. Note that, in (b),
the curve for ¢ = 0.0 represents times measured for direct implementation.

to the maximal tree level L, (set to 32). Similarly to [4],
only the nonempty cells are stored and tagged by expressions
in (15)—(18); however, the problem lies in the indexing scheme
needed to reach the cells, which has exponential storage com-
plexity of O(2L==) Note that this issue is related only to the
implementation and can be therefore avoided by using a more
advanced indexing scheme, e.g., hash functions, or other space
partitioning methods.

E. Nonrigid Registration

Results for the BrainWeb nonrigid registration are shown
in Table I and the corresponding box—whisker diagram in
Fig. 6(e). Initial average registration error was 9.5 pixels.
The average registration errors for the successful trials were
0.595, 0.621, and 0.119 pixels, respectively, for the EC and
the proposed treecode methods based on the Gaussian kernel
and the Hilbert kernel. The treecode method based on the
Hilbert kernel successfully registered all trials and image pairs,
whereas the EC and the Gaussian-based treecode achieved
88% (91.3%) and 79% (85.7%) trial (image pair) success rates.
Both the EC and the Gaussian-based treecode methods suc-
cessfully aligned the skin-background edges, whereas they had
difficulties registering the brain structures that lack strong edge
information. Thus, most of the registration error resulted from
the misaligned central control point (c.f. Fig. 5). The average
times for a trial image group to register were 127 and 107 s for
the EC and for the proposed treecode methods, respectively.

F. Properties and Performances of the Treecode Method

Fig. 7 shows the relative error ey of the approximated mo-
tion update Af* and corresponding computation times shown
for different cell acceptance thresholds ¢ and w.r.t. the number
of samples V. The graphs were obtained by repeatedly drawing
samples of different sizes NV from one trial data set so as to factor
out the influence of the data distribution. For ¢ = 0.5, the rel-
ative error is strictly below 1%, whereas for ¢ > 1, it is about
3%. Note that the relative error reduces gradually for higher NV.

For ¢ > 1, the approximate motion update A§* computed
from (19) and (20) is obtained in shorter times (< 1/10) than
by direct implementation of (13) for each of the tested sam-
ples sizes N. Execution times are longer for ¢» = 0.5 since the
tree-structured hierarchical JIS subdivision is explored down to
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Fig. 8. Density estimation performances according to ISE (c.f. Section IV-F).
Effect of Hilbert kernel regularization = is shown in (a), while (b), (c), and (d)
plot the dependence of MISE w.r.t. NV, 2, and D, respectively. In all tests, ten
repetitions were run to obtain MISE. Default testing parameters were N =
2000, 2 = 5, and D = 5, except when observed as the independent variable.
EM-GMM was run with R* = 3 components.

smaller cells so as to satisfy the cell acceptance threshold. Com-
pared with direct implementation, the actual speedup is still sig-
nificant, particularly for higher .

The dependence of ISE on the observed minimal distance be-
tween the intensity points in JIS is shown in Fig. 8(a). By setting
e according to (22), ISE is improved and becomes independent
of the minimal intensity point distances.

In the following, we study the performance of density esti-
mators, applied in the image registration experiments, in terms
of MISE for N samples drawn from a known density function
p(z), defined in (25), with R modes in D-dimensional space. As
expected, the performance of the density estimators increases by
drawing more samples from p(z). Conversely, the performance
decreases with increasing the dimensionality of the underlying
true density function [c.f. Fig. 8(c) and (d)].

The most interesting results are for varying I? in the true
density function. The treecode-based density estimators exhibit
steady performance with MISE ~ 10~*, whereas the EM-GMM
method has superior performance for I2* > I [see Fig. 8(c)].
For I?* < I the performance of EM-GMM drops significantly
since the separate modes in the density function are modeled
using fewer insufficient number of GMM components. This
observations further stress the issue of choosing the correct
number of GMM components 2* for the EC registration
method. Although, for the experiments in Sections V-B-V-D,
the EC was run with higher I2* than that suggested in [5], the
results obtained were significantly worse. This indicates that,
even for It* > IR, the EM-GMM does not necessarily find all
modes of the density function (see Fig. 9), i.e., the information
which is not reflected in MISE but plays a crucial role in the
image registration process.
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Fig. 9. Artificial density function in (a) has five distinct modes. In (b), the EM-GMM estimate had the same number of components as the true number of modes
but found only two modes; in (c), the treecode with the Gaussian kernel found four; and in (d), with the Hilbert kernel, it found all five modes. Comparing the
pointwise accuracy of density estimates by ISE indicates that ISE puts more stress on the tails of the density and does not reflect the missed modes.

VI. DISCUSSION

Results indicate that the proposed method has similar and, on
two data sets, even superior performances compared with the
EC method [5] in terms of the registration error, the trial suc-
cess rate, and the image-pair success rate. Both methods share
the Newton-type minimization scheme so as to avoid biasing the
results. Global criteria are also similar since, under certain as-
sumptions, maximizing log-likelihood can be shown to be equal
to minimizing the joint entropy [3]. The main difference be-
tween the methods is in the estimation of the JDF. In the EC
method, a parametric GMM is used, where the number of mix-
ture components that correspond to the number of modes in the
JDF has to be determined in advance either manually or auto-
matically. As shown in the results section, this parameter crit-
ically defines the performances of the EC method. Moreover,
the actual number of modes in the JDF can vary during the reg-
istration process, which may also require adapting the number
of components. Instead of modeling explicitly the modes, the
proposed method implements a Parzen kernel density method
through the hierarchical JIS subdivision scheme to obtain a rep-
resentative high-dimensional JDF estimate.

By using the Hilbert kernel in the derivation of the joint
entropy, scalar terms W}, ||df;]| =2 in (13) reveal close resem-
blance to the gravitational potential g(r)/r?. This observation
inspired the hierarchical intensity-space subdivision method
[25] that enabled an approximate (relative error <3%) but
highly efficient computation (10x speedup) of the motion
parameters Af#*. We have demonstrated through various
image registration and MISE-performance experiments that
the Hilbert kernel provides sufficiently accurate JDF estimates,
which reveal a higher number of true modes of the underlying
density function, compared with the frequently oversmoothed
density estimates obtained by methods using the Gaussian
kernel. Finding the modes of the density functions is essential
to define the correct correspondences between the multimodal
images that guide the registration process.

The computational complexity of the proposed method is
O(N*log N*P2D?), which is higher than O(RNP2D?) of
the EC method. However, a number of improvements can be
made to reduce the computational complexity of the proposed
method. First, the hierarchical JIS subdivision could be re-
peated only over a fixed number of motion updates, similarly
to the update of the GMM in the EC method. Second, the
approximation scheme for the joint entropy currently computes
only the point-to-group interactions in JIS, whereas a signifi-
cant speed-up can be achieved if the interactions would also be
computed between groups of intensity points. This should cut
the computational complexity down to O(N P2D3), which we
plan to explore in our future work.

If a large number of images is used in the registration process,
then resolving the intensity correspondences from JIS may be
hampered by the so-called curse of dimensionality. The image
overlap region defines the number of intensity points N used
to estimate the JDF. However, the dimensionality of the JDF
equals the number of images D used in the registration process.
Therefore, as more images are added to the registration process,
the JIS will be increasingly more sparse, and the relative dis-
tances between the intensity points will become more similar
and thus less informative. In other words, the clusters in JIS will
be harder to detect, and only the intensity points closest in the
distance will guide the alignment of the images. Therefore, for
extremely large image data sets, both the EC and the proposed
method will not be robust. We have demonstrated through ex-
periments that the proposed method is capable of registering up
to ten images simultaneously, i.e., the density function and its
gradient were effectively computed from a 10-D JIS.

Groupwise registration methods typically employ clustering
techniques to efficiently represent the intensity points in JIS [5],
[17], [18]. The proposed method inherently performs clustering
on the cooccurring intensity pairs via the hierarchical intensity-
space subdivision method. However, clustering is adapted via
the cell acceptance threshold (¢) to efficiently compute each
partial contribution to the joint entropy. Entropic graph methods
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[19], [20] perform clustering based on the edge length between
intensity points, which was shown to be a consistent estimator
of « entropy [19]. In the proposed method, the Hilbert kernel
estimate of the JDF is a harmonically weighted nearest-neighbor
JDF estimate [24]. Therefore, the proposed method can be seen
as an adaptive k-nearest neighbor entropic graph method.

VII. CONCLUSION

We proposed a method for groupwise registration of multi-
modal images that has no data-dependent tuning parameters and
is fully automatic. The registration performances are compa-
rable to the state-of-the-art EC method, under the condition that
the EC is initialized with an optimal number of Gaussian com-
ponents for the GMM. However, this parameter might be hard
to determine in practical image registration applications. On the
other hand, the proposed method uses the nonparametric ap-
proach to JDF estimation that automatically captures all the im-
portant features needed to detect the correct intensity correspon-
dences between multimodal images that are being registered.

In addition to the rigid-body, affine, and TPS transformation
models, the proposed treecode method supports any class of
parametric spatial transformations. To use the nonparametric
registration framework, the joint entropy could be minimized
directly, and the method would also need to incorporate a trans-
formation regularization term.

Further research is directed toward extending the hierarchical
intensity-space subdivision scheme so as to enable an efficient
computation of the multivariate extensions of mutual informa-
tion [4]. In our opinion, additional entropy terms would favor-
ably reward image complexity in the overlapping image domain
and thereby improve registration performances.

ACKNOWLEDGMENT

The authors would like to thank the following organizations
for the use of their data: the RIRE project, the BrainWeb
project, Landsat, and the Yale Face Database. Medical Image
Analysis Lab is acknowledged for providing the fMRI Simu-
lation Toolbox (SimTB).

REFERENCES

[17 A. Guimond, A. Roche, N. Ayache, and J. Meunier, “Three-dimen-
sional multimodal brain warping using the Demons algorithm and
adaptive intensity corrections,” IEEE Trans. Med. Imag., vol. 20, no.
1, pp. 58-69, Jan. 2001.

[2] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual informa-
tion,” IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 187-98, Apr. 1997.

[3] P. Viola and W. M. Wells, “Alignment by maximization of mutual in-
formation,” Int. J. Comput. Vis., vol. 24, no. 2, pp. 137-154, Sep. 1997.

[4] J. Zhang and A. Rangarajan, “Multimodality image registration using
an extensible information metric and high dimensional histogram-
ming,” Inf. Process. Med. Imag. LCNS, vol. 3565, pp. 725737, 2005.

[5] J. Orchard and R. Mann, “Registering a multisensor ensemble of im-
ages,” IEEE Trans. Image Process.,vol. 19,no. 5, pp. 1236—1247, May
2010.

[6] B. Zitova and J. Flusser, “Image registration methods: A survey,”
Image Vis. Comput., vol. 21, no. 11, pp. 977-1000, Oct. 2003.

2557

[7] H.Park, P. H. Bland, A. O. Hero, and C. R. Meyer, “Least biased target
selection in probabilistic atlas construction,” Med. Image Comput.
Comput.-Assisted Intervention, LNCS, vol. 3750, pp. 419-426, 2005.

[8] S. Marsland, C. Twining, and C. Taylor, “A minimum description
length objective function for groupwise non-rigid image registration,”
Image Vis. Comput., vol. 26, no. 3, pp. 333-346, Mar. 2008.

[9] T. F. Cootes, C. J. Twining, V. S. Petrovi, K. O. Babalola, and C. J.
Taylor, “Computing accurate correspondences across groups of im-
ages,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp.
1994-2005, Nov. 2010.

[10] Q. Wang, L. Chen, P.-T. Yap, G. Wu, and D. Shen, “Groupwise reg-
istration based on hierarchical image clustering and atlas synthesis,”
Hum. Brain Mapp., vol. 31, no. 8, pp. 11281140, Aug. 2010.

[11] G. Wu, H. Jia, Q. Wang, and D. Shen, “SharpMean: Groupwise regis-
tration guided by sharp mean image and tree-based registration,” Neu-
rolmage, vol. 56, no. 4, pp. 1968—1981, Jun. 2011.

[12] R.P. Woods, S. T. Grafton, C. J. Holmes, S. R. Cherry, and J. C. Mazz-
iotta, “Automated image registration: I. General methods and intrasub-
ject, intramodality validation,” J. Comput. Assist. Tomogr., vol. 22, no.
1, pp. 139-152, Jan. 1998.

[13] E. G. Learned-Miller, “Data driven image models through continuous
joint alignment,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no.
2, pp. 236-250, Feb. 2006.

[14] L. Zollei, “A unified information theoretic framework for pair- and
group-wise registration of medical images,” Ph.D. dissertation, Mass-
achusetts Inst. Technol., Cambridge, MA, 2006.

[15] Q. Wang, G. Wu, P.-T. Yap, and D. Shen, “Attribute vector guided
groupwise registration,” Neurolmage, vol. 50, no. 4, pp. 1485-1496,
May 2010.

[16] G. Wu, Q. Wang, H. Jia, and D. Shen, “Feature-based groupwise reg-
istration by hierarchical anatomical correspondence detection,” Hum.
Brain Mapp., vol. 33, no. 22, pp. 253-271, Feb. 2012.

[17] C. Studholme and V. Cardenas, “A template free approach to volu-
metric spatial normalization of brain anatomy,” Pattern Recognit. Lett.,
vol. 25, no. 10, pp. 1191-1202, Jul. 2004.

[18] J. Orchard and L. Jonchery, “Ensemble registration: Aligning many
multi-sensor images simultaneously,” Proc. SPIE, vol. 33, pp.
724 500-1-724 500-12, 2009.

[19] B. Ma, A. Hero, J. Gorman, and O. Michel, “Image registration with
minimum spanning tree algorithm,” in Proc. IEEE Int. Conf. Image
Process., Vancouver, BC, Canada, 2000, vol. 1, pp. 481-484.

[20] H. Neemuchwala, A. Hero, S. Zabuawala, and P. Carson, “Image
registration methods in high-dimensional space,” Int. J. Imag. Syst.
Technol., vol. 16, no. 5, pp. 130-145, 2006.

[21] S. Watanabe, “Information theoretical analysis of multivariate correla-
tion,” IBM J. Res. Develop., vol. 4, no. 1, p. 66, 1960.

[22] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Math. Stat., vol. 33, no. 3, pp. 1065-1076, 1962.

[23] S. J. Sheather, “Density estimation,” Stat. Sci., vol. 19, no. 4, pp.
588-597, Nov. 2004.

[24] L. Devroye and A. Krzyzak, “On the Hilbert kernel density estimate,”
Statist. Probab. Lett., vol. 44, no. 3, pp. 299-308, Sep. 1999.

[25] J. Barnes and P. Hut, “A hierarchical O(N log N') force-calculation
algorithm,” Nature, vol. 324, no. 6096, pp. 446—449, 1986.

[26] J. West, J. M. Fitzpatrick, M. Y. Wang, B. M. Dawant, C. R. Maurer,
Jr., R. M. Kessler, R. J. Maciunas, C. Barillot, D. Lemoine, A. Col-
lignon, F. Maes, P. Suetens, D. Vandermeulen, P. A. van den Elsen, S.
Napel, T. S. Sumanaweera, B. Harkness, P. F. Hemler, D. L. Hill, D. J.
Hawkes, C. Studholme, J. B. Maintz, M. A. Viergever, G. Malandain,
X. Pennec, M. E. Noz, G. Q. Maguire, Jr., M. Pollack, C. A. Pelizzari,
R. A. Robb, D. Hanson, and R. P. Woods, “Comparison and evaluation
of retrospective intermodality brain image registration techniques,” J.
Comput. Assist. Tomogr., vol. 21, no. 4, pp. 554-566, Jul./Aug. 1997.

[27] A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to many:
Illumination cone models for face recognition under variable lighting
and pose,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp.
643-660, Jun. 2001.

[28] R.K.Kwan, A. C. Evans, and G. B. Pike, “MRI simulation-based eval-
uation of image-processing and classification methods,” IEEE Trans.
Med. Imag., vol. 18, no. 11, pp. 1085-1097, Nov. 1999.

[29] F.L.Bookstein, “Principal warps: Thin-plate splines and the decompo-
sition of deformations,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
11, no. 6, pp. 567-585, Jun. 1989.

[30] H. Y. Kim and J. Orchard, “Registering a non-rigid multi-sensor en-
semble of images,” in Proc. IEEE Eng. Med. Biol. Conf., Buenos Aires,
Argentina, 2010, vol. 1, pp. 5935-5938.



2558

Ziga Spiclin received the B.Sc. and Ph.D. degrees
in electrical engineering from the University of
Ljubljana, Ljubljana, Slovenia, in 2006 and 2011,
respectively.

He is currently a Research Fellow with the Labo-
ratory of Imaging Technology, Faculty of Electrical
Engineering, University of Ljubljana. His research
interests include computer vision and biomedical and
hyperspectral imaging, with particular interest for the
development of image registration, restoration, and
reconstruction techniques.

Bostjan Likar received the B.Sc., M.Sc., and Ph.D.
degrees from the University of Ljubljana, Ljubljana,
Slovenia, in 1995, 1998, and 2000, respectively, all
in electrical engineering, and the Ph.D. degree from
Utrecht University, Utrecht, The Netherlands, in
2000.

Since 1996, he has been with the Faculty of Elec-
trical Engineering, University of Ljubljana, where he
is currently a Full Professor. He is the author of over
60 SCI journal papers with over 400 clear citations,
a reviewer of over ten SCI journals, a principal re-
searcher of six research projects, a designer of more than ten new computer vi-
sion products, and a cofounder of the high-tech company Sensum. His research
interests concentrate on visual quality inspection, computer and machine vision
systems, and biomedical and hyperspectral imaging.

Dr. Likar is a program committee member of over 15 international
conferences.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 5, MAY 2012

Franjo Pernu$ received the Diploma, M.S., and
Ph.D. degrees in electrical engineering from the
University of Ljubljana, Ljubljana, Slovenia, in
1976, 1979, and 1991, respectively.

Since 1976, he has been with the Department
of Electrical Engineering, University of Ljubljana,
where he is currently a Professor and the Head
of the Imaging Technologies Laboratory. He is a
Cofounder of Sensum, a company that supplies
machine vision solutions for the pharmaceutical
industry. He is an author or coauthor of over 150
refereed scientific articles on biomedical image processing and computer
vision and has supervised seven Ph.D. students. His research interests include
biomedical image processing and analysis, computer vision, and the applica-
tions of image processing and analysis techniques to various biomedical and
industrial problems.

Dr. Pernus is an Associate Editor of the IEEE TRANSACTIONS ON MEDICAL
IMAGING and of Computer Aided Surgery. In the past, he was an Associate Ed-
itor of Pattern Recognition Letters and of Electrotechnical Review.



