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ABSTRACT

The transformer has become a central model for many NLP tasks from translation
to language modeling to representation learning. Its success demonstrates the ef-
fectiveness of stacked attention as a replacement for recurrence for many tasks.
In theory attention also offers more insights into the model’s internal decisions;
however, in practice when stacked it quickly becomes nearly as fully-connected
as recurrent models. In this work, we propose an alternative transformer archi-
tecture, discrete transformer, with the goal of better separating out internal model
decisions. The model uses hard attention to ensure that each step only depends
on a fixed context. Additionally, the model uses a separate “syntactic” controller
to separate out network structure from decision making. Finally we show that
this approach can be further sparsified with direct regularization. Empirically, this
approach is able to maintain the same level of performance on several datasets,
while discretizing reasoning decisions over the data.

1 INTRODUCTION

The transformer has achieved state-of-the-art performances in a variety of sequence modeling tasks,
including language modeling (Radford et al., 2019), machine translation (Vaswani et al., 2017),
question answering (Radford et al., 2018; Devlin et al., 2018), among others. To facilitate parallel
training, as well as to reduce the path length of the dependencies, transformer dispenses recurrence
and builds up hidden states by attending to the source side (inter-attention) and attending to its past
predictions (self-attention) with multiple heads in multiple layers (Vaswani et al., 2017).

Compared to recurrent models the attention mechanism adds some “interpretability” to a model’s
decision (Bahdanau et al., 2014; Xu et al., 2015; Chan et al., 2015). However, in the commonly
used soft attention mechanism (Luong et al., 2015) each input element receives non-zero weight,
and so it is unclear whether the magnitude of attention weights reflects the relative importance of the
corresponding inputs (Jain & Wallace, 2019). To make things worse, due to the existence of multiple
stacked attention layers in transformer, it becomes even harder to discriminate the contributions of
each input to the final decisions made by the model.

Can we force the transformer to make sharper, discrete internal decisions? In this work, we consider
a variant of the transformer architecture with the goal of maintaining performance while forcing
discrete decisions. Specifically, we consider a discrete transformer with three changes to the archi-
tecture: (a) we propose to treat attention as a categorical latent variable (Deng et al., 2018; Shankar
et al., 2018) and use hard attention mechanism to get discrete attention decisions (Xu et al., 2015),
(b) we propose to separate out the querying mechanism from value computation into intertwine
soft “syntactic” and hard “semantic” model streams, and (c) we consider extension to the discrete
transformer to allow for further additions such as attention sparsity regularization.

Training of the model is very similar to standard transformer training. The key benefits come at
inference time. First, we can use a simple decoding procedure where we take argmax attentions such
that each intermediate representation is only built up based on the subset of the attended lower layer
outputs. In turn, each final prediction uses limited receptive field, and we can even the guarantee
that any hidden state does not depend on input elements not being directly attended to. Second, we
can split out attention prediction from computation, and even fix the structure of the feed-forward
network for a given example.

To validate this approach, we perform experiments on several tasks. We first validate that with proper
attention and sparsity regularization the model can learn the truly necessary attentions on a synthetic
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language modeling task. Next on two real world machine translation datasets, we show that with our
approach we can learn transformer models using limited context for making predictions while not
deteriorating their performance by too much, indirectly validating the selectiveness of the attention
mechanism.

The rest of the paper is organized as follows: In Section 2 we draw the connections of our work to the
literature. We introduce background and discuss our approach in Sections 3, 4 and 5. Experiments,
results and analyses are presented in Sections 6 and 7, and we conclude our paper in Section 8.

2 RELATED WORK

Attention has been used to imply transparency into model’s prediction. This is crucially important
in domains health care (Caruana et al., 2015; Choi et al., 2016; Rajkomar et al., 2018) but has also
been used in other natural language sequence modeling tasks (Rush et al., 2015; Deng et al., 2017;
Alvarez-Melis & Jaakkola, 2017). Since the soft attention mechanism assigns non-zero weights
everywhere, to get interpretability, a general assumption is that larger attention weights correspond
to higher importance in making a decision (Unanue et al., 2018). However, a recent work (Jain &
Wallace, 2019) shows that attention magnitude does not correlate well with gradient-based measures
of input elements importance (Selvaraju et al., 2017).

To get around with the difficulty of credit assignment in soft attention, researchers have proposed
to use sparse attentions. Peters et al. (2018) uses sparsemax (Martins & Astudillo, 2016) to induce
sparse attention structures. Lei et al. (2016) model attention as Bernoulli random variables and
use an encoder to produce the final prediction only from the attended input elements such that
the final predictions can be rationalized. To optimize the final objective, Lei et al. (2016) apply
policy gradients. Our work follows the spirit of their work, but we consider multi-head multi-layer
attentions in transformer, which subjects REINFORCE algorithm to large gradient variance. Instead
we use the Gumbel-Softmax trick (Jang et al., 2016; Maddison et al., 2016) to get reparameterizable
samples and reduce the gradient variance (Kingma & Welling, 2013).

Broadly speaking, there are two directions of work towards improving interpretability: model in-
terpretability and prediction interpretability (Alvarez-Melis & Jaakkola, 2017). Prediction inter-
pretability relies on an external interpreter that is both interpretable and locally consistent with the
black box model being explained, through which we can analyze the causal relationships between
inputs and outputs (Ribeiro et al., 2016). In model interpretability, researchers try to build models
that are commonly regarded as interpretable (Louppe, 2014; Calders et al., 2013; Doshi-Velez &
Kim, 2017; Peters et al., 2018). Our approach aims to improve model interpretability by modifying
the attention mechanism and objective function where we implicitly assume that more sparsity in the
attention structure implies more interpretability, rather than relying on another model to analyze an
existing one. While our approach does not directly lead to prediction interpretability, we can draw
connections between our approach and the prediction interpretability framework of Alvarez-Melis
& Jaakkola (2017) if we consider local permutations of input embeddings: for inputs not being di-
rectly or indirectly attended to at a specific prediction step, the local interpreter does not need to use
them at all, hence there is no causal relationship between these inputs and the prediction.

The separation between query mechanism and value computation resembles the two-stream atten-
tion mechanism in XLNet (Yang et al., 2019), where a separate query stream is introduced in addi-
tion to the normal content stream to enable the usage of target position information while avoiding
“cheating” to work with arbitrary generation factorization order. Recently, Russin et al. (2019) used
word embeddings as content vectors whereas the attention is computed based on the outputs of an
LSTM network. This approach shares a similar goal with ours to separate syntax and semantics, but
transformer presents its unique challenges due to the existence of multiple layers and multi-headed
attentions and its lack of recurrence.

3 BACKGROUND: TRANSFORMER

We begin by briefly reviewing the transformer architecture that will serve as the basis for this work.
Specifically we will consider a transformer for simplified classification task over a sentence (exper-
iments will expand this to autoregressive models). Let x1:T be a sequence of input tokens and y is a
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discrete output label. We begin by encoding tokens with a position-specific embedding function e to
vectors h0

i . Each layer of the transformer then produces new vectors under the following recursion1:

Bi ← FFN(h
(l−1)
i ) ∀ i ∈ 1, . . . , T

K ,V ,Q ← (BW (K),BW (V ),BW (Q))

A ← softmax(
QKT

√
dk

)

h
(l)
i ← h

(l−1)
i + V Ai ∀ i ∈ 1, . . . , T

Here l is the layer index, FFN is a large, feed-forward NN, W are learned projection parameters,
and dk is a constant for the size of the network. The key intermediary terms are the key K, value V ,
and query Q matrices which contain a vector for each position 1 . . . T , and the attention matrix A
which gives a distribution for each position over its “attention” to all other positions. This attention
is computed from the queries and keys and then used to take a convex combination of the values.
At the final layer L we can then make a prediction utilizing h(L), e.g. a softmax over all possible y
labels.

The main processing work of the transformer happens in the FFN layers which contain the majority
of the non-embedding parameters. These can be thought of as large, width-1 convolutional networks
that process the full sentence at each layer. However, for these layers to be effective it is crucial that
information from other tokens be aggregated together. The attention layer serves as the single source
of this aggregation in the model. Attention is the only point where inter-word information routing
occurs.

Because attention is central for routing and determines the receptive field of the transformer, it has
been a main source of study for the transformer and related models. If attention can be understood
then in theory the interconnection between words can be mapped and perhaps even manipulated.

Unfortunately much of this work has so far produced negative results. The underlying problem is that
while any one attention layer may target a small amount of keys, in aggregate repeated applications
of multi-headed attention quickly connect every position to every other. Learned attention acts in
a soft way and roughly pools together all elements into a vector. While this may be usable for
high-level analysis, it does not allow us to truly separate out anything about the model decisions.

4 DISCRETE ATTENTION TRANSFORMER

In several recent works (Deng et al., 2018; Shankar et al., 2018), researchers have explored alterna-
tives to soft attention for single-layer (pre-transfomer) attention models. The goal of this work has
been to learn models that can replace soft-attention with latent control variables that select a single
position to use. This form of discrete attention can produce models that make these intermediate
decisions explicit, which has been shown to produce models that perform as well or better than soft
models.

We begin by considering applying this approach directly to transformer. Formally, we can replace
the above deterministic equations with an intermediate sampling step:

Bi ← FFN(h
(l−1)
i ) ∀ i ∈ 1, . . . , T

K ,V ,Q ← (BW (K),BW (V ),BW (Q))

A ← softmax(
QKT

√
dk

)

h
(l)
i ← h

(l−1)
i + Vzl

i
where zli ∼ Cat(Ai) ∀ i ∈ 1, . . . , T

1We elide layernorm, dropout, most residual connections, and multi-headedness for presentational simplic-
ity. These are all included in our final model.
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This makes the transformer stochastic and requires computing, p(y|x) =
∑

z p(y, z|x) since we do
not observe z. In a single layer model such as a sequence-to-sequence RNN, this might be a tractable
sum, but for stacked attention, we would need to be able to sum out over all possible choices for
z. In transformer this is combinatorial, and computing this term even for single-headed attention is
O(TL).

Because of this complexity several alternative methods have been proposed in the literature. Given
the success of soft attention for transformer, we opt for using a Gumbel-Softmax approach for train-
ing, which modulates between soft training and hard inference (Jang et al., 2016; Maddison et al.,
2016).

The Gumbel-Softmax approach gives a continuous approximation to sampling from the categorical
distribution. Given a categorical distribution defined by log probabilities l, the Gumbel-Softmax
generative process is defined by first sampling Uk ∼ Uniform(0, 1), and then returns

Gumbel-Softmax(l) ∝ exp((lk + gk)/τ)

where gk = log( log(Uk)) is called Gumbel noise (the distribution of gk is Gumbel distribution),
and τ is a temperature parameter controlling the entropy of the distribution. As τ → 0, samples
given by the Gumbel-Softmax function conforms to the same distribution as one-hot categorical
samples.

At training time, we can use this approach to obtain differentiable samples approximating sampling
from the categorical attention distributions. Unlike REINFORCE, we can apply reparameterization
to get a low variance gradient estimator and directly back-propagate through it in modern deep
learning libraries. We use fixed temperature τ throughout training but we tune its value on the
validation set.

At test time, we replace Gumbel-Softmax with the argmax from the vector. This corresponds to
a greedy choice over the random variable. This test time model is almost identical to the original
transformer: we simply replace softmax with argmax. The main benefit of this method though is
that for every position we have a fixed tree of all the previous words that influenced it. We can
effectively guarantee that if a word was not in this tree, then it did not contribute to the hidden state
value of that position.

5 TRANSFORMER WITH SEPARATE SYNTACTIC AND SEMANTIC STREAMS

Figure 1: Discrete Transformer architec-
ture. Syntactic transformer stream com-
putes the attention distribution which is
used to produce next hidden states while
also constructing the semantic architecture
through latent hard attention.

By utilizing discrete attention, we can ensure that
model routing is done through hard choices by the
transformer. Since the final computation is done only
based on the hidden state at the top layer, we can en-
sure that this decision was only made based on the hard
pathway to the original words.

To formalize this concept we consider the continu-
ous receptive field of any hidden state h

(l)
i , that is

the input vectors that directly determined its current
value. The structure of hard attention ensures that the
receptive field is defined by the recursion r(i, l) =

r(i, l − 1) ∪ r(z(l)i , l − 1) where r(i, 0) = {i} and zli
is the hard sample taken at layer l for position i. While
this receptive field grows exponentially with layers, its
branching factor is much more constrained than with
soft attention.

However, we note that this same property can be ob-
tained by giving more flexibility to the calculation of
keys and values used in hard attention. In fact, these
calculations can be kept soft throughout the entirety of
the transformer without changing the continuous re-
ceptive field.
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We therefore propose an extension to the model structure of transformer that aims to separate out
the “synatactic” routing control of the model from the “semantic” computation part. Motivated by
Russin et al. (2019), we follow the distinction that the semantic part of the model should consist of a
fixed, sparse feed forward network, whereas the syntactic part is free to consider the entire sentence
at any step. We build these together using a two stream transformer network.

To build this model, we make the observation that values should be computed only by the semantic
network, and that keys and queries should be computed only by the syntactic network. Let the
syntatic representation at timestep i in layer l be g

(l)
i and the semantic representation be h

(l)
i . The

first layer representations are set to the corresponding word embedding, g(0)
i = eg(xi) and h

(0)
i =

eh(xi).

For each attention layer l, the two streams are updated as follows:

Semantic Stream Syntactic Stream

Ci ← FFN(h
(l−1)
i ) Bi ← FFN(g

(l−1)
i ) ∀ i ∈ 1, . . . , T

V
′
← CW (h) K ,V ,Q ← (BW (K),BW (V ),BW (Q))

A ← softmax(
QKT

√
dk

)

h
(l)
i ← h

(l−1)
i + V ′zl

i
where zli ∼ Cat(Ai) g

(l)
i ← g

(l−1)
i + V Ai ∀ i ∈ 1, . . . , T

Note that the syntactic stream (right) is completely independent of the semantic stream and could
even be computed before hand. Furthermore assuming a fixed syntactic distribution the semantic
distribution becomes a vanilla feedforward network. Practically, the two streams distributions can
be trained together as a single network. Each attention step can be aligned as well as the FFN
computations.

5.1 EXTENSION: SPARSIFYING THE RECEPTIVE FIELD

A secondary benefit of utilizing an explicit latent variable within the model is the ability to impose
structural constraints on the variable directly based on prior knowledge such as structured attention
(Kim et al., 2017) or sparse attention (Niculae & Blondel, 2017). Here we consider a way to penalize
the size of the receptive field at the final layer |

⋃
i r(i, L)|. We want a differentiable version of

|
⋃

i r(i, L)|. Let’s use slij to denote whether the representation of token i relies on embedding of
token j at layer l, i.e. j ∈ r(i, l), then we have the recursion that

slij = min

(
sl−1ij +

∑
k

zliks
l−1
kj , 1

)
(1)

Where the internal representation of token i depends on embedding of token j if sl−1ij = 1 (due to
residual connections, the dependencies of a layer below are also the current dependencies) or if i
attends to k at layer l − 1 and sl−1kj = 1 (the dependencies of the token attended to also become
the current dependencies). Based on this recursion (and initial conditions that s0ij = 1(i = j)), the

final layer receptive field size can be calculated as |
⋃

i r(i, L)| =
∑

i min
(∑

j s
L
ij , 1

)
. We note

that since during training z comes from the Gumbel-Softmax, the zik values are computed as a soft
approximation (as opposed to indices). Therefore it provides useful gradients and can be directly
applied as a regularizer.

6 EXPERIMENTAL SETUP

We run experiments on several different benchmark datasets including machine translation and lan-
guage modeling. We also test if our approach is able to recover the true underlying dependencies
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with the sparsity regularizer. For each dataset, we start with a strong transformer baseline, with the
goal of inducing a similarly performing model with explicit latent structure.

Data For translation, we conduct experiments on two machine translation datasets: IWSLT (Cet-
tolo et al., 2014), a standard small-scale benchmark, and the much larger WMT English to German
(Bojar et al., 2017). To test whether our approach is possible to discover the true dependencies in the
data, we also constructed a synthetic language modeling task with known underlying dependencies.

Architecture and Hyperparameters While we describe the method using a simplified model,
for experiments, we model our system directly off standard transformer models. For translation that
means using both an encoder and a decoder transformer stack. Our DISCRETE TRANSFORMER uses
encoder and decoder stacks analogous to those in TRANSFORMER. For self attention, we replace the
scaled dot-product attention in TRANSFORMER by our two stream attention. The input consists of
queries Q and keys K obtained from the syntactic representation g and two values V and V

′
, one

each from the syntactic representation g and the semantic representation h respectively. Multi-Head
Attention is computed analogously.

For encoder-decoder context attention, the syntactic stream of the encoder provides the keys K and
the syntactic values V , the encoder’s semantic stream provides the semantic values V

′
, and the

decoder’s syntactic stream provides the queries Q.

For WMT, we use the base model with dmodel = 512, dff = 2048, L = 6, h = 8 (we refer to Vaswani
et al. (2017) for hyperparameter definitions). For IWSLT, we use dmodel = 512, dff = 1024, L = 6,
h = 4 since it is more prone to overfitting. We implement our models based on Fairseq (Ott et al.,
2019). For WMT a single model was obtained by averaging the last 5 checkpoints saved every 1000
update steps. The Gumbel temperature is set to 1 throughout this paper, and we set the sparisity
regularizer strength to 0.1 for the synthetic language modeling task.

For language modeling, we we use only the decoder network of the transformer for language mod-
eling. We use dmodel = 64, dff = 256, L = 4, h = 2 for the synthetic stack language modeling
task.

Baselines The first baseline we consider is the normal transformer model with soft attention
TRANSFORMER. Then we make the attentions discrete by applying Gumbel-Softmax at training
time and argmax at test time, which we term SINGLE STREAM DISCRETE TRANSFORMER. We
compare those baselines to our model equipped with discrete attention and two-stream attention
DISCRETE TRANSFORMER. We also consider experiments separating out the syntactic and seman-
tic streams.

7 RESULTS AND ANALYSIS

7.1 PRELIMINARY ANALYSIS: STACK LANGUAGE

To test whether the sparse attentions learned by our approach correspond to true underlying depen-
dencies, we adapt a synthetic stack language dataset from Strobelt et al. (2017) where we know
the true dependencies. The vocabulary consists of {0, 1, 2, 3, 4, (, )}, and the language must match
parentheses. Numbers are emitted randomly, but must match the nesting level (the number of open
left parentheses). Nesting is limited to depth 4. We follow this grammar and created a training set
of 50k sequences, validation/test sets of 5k/5k sequences, with sequence length being 30. We train
models to do language modeling on this dataset, where the true dependency for a given target word
is the span between the last number and the previous word.

On this dataset, we train SINGLE STREAM DISCRETE TRANSFORMER with proper sparsity reg-
ularization (coefficient 0.1). At test time, we use argmax to get discrete attentions, and aggregate
attentions to get the receptive field of each prediction. We were able to get precision of 0.959 and
recall of 0.920 compared to the ground truth dependencies. In Figure 2, we show an example of the
learned receptive field versus the ground truth dependency. On the other hand, if we aggregate atten-
tions of a soft TRANSFORMER model via Eq. 1, the result is much messier, even with the attention
sparsity regularizer.
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Figure 2: Receptive fields for synthetic data. (Top-L) Ground truth bracketing; (Top-R) Continuous
receptive field of sparsity regularized discrete model r(i, L) for rows i; (Bot-L) Attention weighted
receptive field of soft transformer; (Bot-R) Attention weighted sparsity regularized receptive field of
soft transformer.

Model WMT IWSLT
Vaswani et al. (2017) (base model) 27.3 -

TRANSFORMER 27.3 28.7
SINGLE STREAM DISCRETE TRANSFORMER 26.6 28.5
DISCRETE TRANSFORMER 27.1 28.0

Table 1: BLEU score on WMT English-German (En-De) and IWSLT14. We use WMT16 training
data and news2014 as our test set for WMT results.

7.2 MACHINE TRANSLATION

Table 1 shows the BLEU scores of the baselines and our model. Our baseline soft transformer per-
forms identically to the published results. The single-stream discrete transformer SINGLE-STREAM
DISCRETE TRANSFORMER performs slightly worse than the soft counterpart TRANSFORMER by
0.7 BLEU points on WMT. On the other hand, our two-stream model DISCRETE TRANSFORMER
achieves similar performance as soft baseline, showing that the soft syntax stream helps alleviate
model expressivity issues. The results are reversed on the much small IWSLT dataset, with the
single-stream model performing better and nearing the results of the soft model.

A benefit of the two-stream model is the separation of the syntactic routing control from the semantic
computation. We perform analysis to see how these two components of the model differ. First, we
look at a qualitative experiment and visualize the embeddings of the 10,000 most frequent words
in the vocabulary using t-SNE (the two streams use independent embeddings). Figure 3 shows the
projections for both aspects of the model. We can observe immediately that the embeddings from
the syntatic controller network cluster directly by part-of-speech (POS) tags while those from value
network do not seem to have a clear pattern. The qualitative nearest neighbors example in Table 3
further confirms that the syntatic controller embeddings cluster by POS tags whereas those from the
value network cluster by semantics.
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(a) (b)

Figure 3: t-SNE plot of (a) semantic embeddings and (b) syntactic controller embeddings of DIS-
CRETE TRANSFORMER trained on WMT. Datapoints are colored by POS tag assigned by a unigram
tagger trained on the WMT train corpus. Best viewed in color.

Model accuracy precision recall F1

Baseline - 72.58 82.14 77.07
TRANSFORMER 89.83 82.25 87.58 84.83
SINGLE STREAM DISCRETE TRANSFORMER 90.70 83.78 88.45 86.05
DISCRETE TRANSFORMER syntactic stream 91.80 85.39 89.51 87.40
DISCRETE TRANSFORMER semantic stream 83.17 73.07 81.28 76.96

Table 2: CoNLL-2000 Chunking. All models are trained with a linear projection over the final
encoder layer of fixed WMT model.

To quantify the difference in learned representations we consider utilizing the learned representa-
tions. We experiment with using different source encoders from the WMT model as pretrained
representations for performing a syntactic chunking task from the CoNLL-2000 dataset. Syntatic
chunking consists of dividing a text in syntactically correlated parts of words. For this task we use
the pretrained encoder to obtain some vector representation of the source sentence which is then
passed through a linear layer to project it to the space of chunk types. The encoder is frozen and
only the linear projection layer is trained. For words broken into multiple tokens using the BPE
tokenization, we use the vectors from first token.

Table 2 shows the results from different models. The baseline result was obtained by selecting
the chunk tag which was most frequently associated with the current part-of-speech tag. We see
that both models outperform a standard transformer, and that the syntactic stream of the discrete
transformer does the best. Interestingly the semantic stream, which does not have to determine word
relations, performs worse then even the baseline model.

Model Nearest Neighbors
TRANSFORMER somewhat, slight, little, easily, differently,

modest, bit, easy, briefly, rather
SINGLE STREAM DISCRETE TRANSFORMER somewhat, slight, briefly, little, bit, easily, mi-

nor, minimal, barely, partly
DISCRETE TRANSFORMER syntactic stream somewhat, twice, little, substantially, con-

stantly, almost, considerably, partly, easily,
largely

DISCRETE TRANSFORMER semantic stream somewhat, slight, minor, mild, light, little, eas-
ily, growth, significantly, Light

Table 3: Nearest neighbors of word “slightly” using internal representations from different modules.
Colors mark POS tags.
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8 CONCLUSION

This work presents the discrete transformer, a modification to the transformer to make discrete
attention decisions and to separate out dependencies from semantic state value. Experiments show
that despite the more structured decisions the model is able to maintain similar performance on
standard machine translation benchmarks. Analysis shows that the model separates out syntactic
properties and even learns precise decisions on clean data. This style of model opens up the potential
for many possible experiments in NLP. Because the model makes hard intermediary decisions the
semantic model can be shown to only depend on a subset of the data. This property could be used
to check for or remove bias from a model, for instance to ensure that production gendered pronoun
does not depend on spurious context. Similarly because the dependencies are predicted separately
additional priors or regularization could be used to enforce specific syntactic structure. Finally, this
method could be used to train pretrained models that allow for discrete intermediary structure.
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