
Published as a conference paper at ICLR 2020

META-LEARNING CURIOSITY ALGORITHMS

Ferran Alet∗, Martin F. Schneider∗, Tomás Lozano-Pérez & Leslie Pack Kaelbling
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{alet,martinfs,tlp,lpk}@mit.edu

ABSTRACT

We hypothesize that curiosity is a mechanism found by evolution that encourages
meaningful exploration early in an agent’s life in order to expose it to experiences
that enable it to obtain high rewards over the course of its lifetime. We formulate
the problem of generating curious behavior as one of meta-learning: an outer
loop will search over a space of curiosity mechanisms that dynamically adapt
the agent’s reward signal, and an inner loop will perform standard reinforcement
learning using the adapted reward signal. However, current meta-RL methods
based on transferring neural network weights have only generalized between very
similar tasks. To broaden the generalization, we instead propose to meta-learn
algorithms: pieces of code similar to those designed by humans in ML papers.
Our rich language of programs combines neural networks with other building
blocks such as buffers, nearest-neighbor modules and custom loss functions.
We demonstrate the effectiveness of the approach empirically, finding two novel
curiosity algorithms that perform on par or better than human-designed published
curiosity algorithms in domains as disparate as grid navigation with image inputs,
acrobot, lunar lander, ant and hopper.

1 INTRODUCTION

Figure 1: Our RL agent is augmented with a cu-
riosity module, obtained by meta-learning over a
complex space of programs, which computes a
pseudo-reward r̂ at every time step.

When a reinforcement-learning agent is learn-
ing to behave, it is critical that it both explores
its domain and exploits its rewards effectively.
One way to think of this problem is in terms
of curiosity or intrisic motivation: construct-
ing reward signals that augment or even replace
the extrinsic reward from the domain, which in-
duce the RL agent to explore their domain in a
way that results in effective longer-term learn-
ing and behavior (Pathak et al., 2017; Burda
et al., 2018; Oudeyer, 2018). The primary diffi-
culty with this approach is that researchers are
hand-designing these strategies: it is difficult
for humans to systematically consider the space
of strategies or to tailor strategies for the distri-
bution of environments an agent might be ex-
pected to face.

We take inspiration from the curious behavior
observed in young humans and other animals
and hypothesize that curiosity is a mechanism found by evolution that encourages meaningful ex-
ploration early in an agent’s life. This exploration exposes it to experiences that enable it to learn
to obtain high rewards over the course of its lifetime. We propose to formulate the problem of gen-
erating curious behavior as one of meta-learning: an outer loop, operating at “evolutionary” scale
will search over a space of algorithms for generating curious behavior by dynamically adapting the

∗Equal contribution.

1

Published as a conference paper at ICLR 2020

agent’s reward signal, and an inner loop will perform standard reinforcement learning using the
adapted reward signal. This process is illustrated in figure 1; note that the aggregate agent, outlined
in gray, has the standard interface of an RL agent. The inner RL algorithm is continually adapting to
its input stream of states and rewards, attempting to learn a policy that optimizes the discounted sum
of proxy rewards

∑
k≥0 γ

kr̂t+k. The outer “evolutionary” search is attempting to find a program

for the curiosity module, so as to optimize the agent’s lifetime return
∑T
t=0 rt, or another global

objective like the mean performance on the last few trials.

In this meta-learning setting, our objective is to find a curiosity module that works well given a
distribution of environments from which we can sample at meta-learning time. Meta-RL has been
widely explored recently, in some cases with a focus on reducing the amount of experience needed
by initializing the RL algorithm well (Finn et al., 2017; Clavera et al., 2019) and, in others, for
efficient exploration (Duan et al., 2016; Wang et al., 2017). The environment distributions in these
cases have still been relatively low-diversity, mostly limited to variations of the same task, such
as exploring different mazes or navigating terrains of different slopes. We would like to discover
curiosity mechanisms that can generalize across a much broader distribution of environments, even
those with different state and action spaces: from image-based games, to joint-based robotic control
tasks. To do that, we perform meta-learning in a rich, combinatorial, open-ended space of programs.

This paper makes three novel contributions.

We focus on a regime of meta-reinforcement-learning in which the possible environments the
agent might face are dramatically disparate and in which the agent’s lifetime is very long.
This is a substantially different setting than has been addressed in previous work on meta-RL and it
requires substantially different techniques for representation and search.

We propose to do meta-learning in a rich, combinatorial space of programs rather than
transferring neural network weights. The programs are represented in a domain-specific lan-
guage (DSL) which includes sophisticated building blocks including neural networks complete with
gradient-descent mechanisms, learned objective functions, ensembles, buffers, and other regressors.
This language is rich enough to represent many previously reported hand-designed exploration al-
gorithms. We believe that by performing meta-RL in such a rich space of mechanisms, we will be
able to discover highly general, fundamental curiosity-based exploration methods. This generality
means that a relatively computationally expensive meta-learning process can be amortized over the
lifetimes of many agents in a wide variety of environments.

We make the search over programs feasible with relatively modest amounts of computation.
It is a daunting search problem to find a good solution in a combinatorial space of programs, where
evaluating a single potential solution requires running an RL algorithm for up to millions of time
steps. We address this problem in multiple ways. By including environments of substantially dif-
ferent difficulty and character, we can evaluate candidate programs first on relatively simple and
short-horizon domains: if they don’t perform well in those domains, they are pruned early, which
saves a significant amount of computation time. In addition, we predict the performance of an al-
gorithm from its structure and operations, thus trying the most promising algorithms early in our
search. Finally, we also monitor the learning curve of agents and stop unpromising programs before
they reach all T environment steps.

We demonstrate the effectiveness of the approach empirically, finding curiosity strategies that per-
form on par or better than those in published literature. Interestingly, the top 2 algorithms, to the
best of our knowledge, had not been proposed before, despite making sense in hindsight. We con-
jecture the first one (shown in figure 3) is deceptively simple and that the complexity of the other
one (figure 10 in the appendix) makes it relatively implausible for humans to discover.

2 PROBLEM FORMULATION

2.1 META-LEARNING PROBLEM

Let us assume we have an agent equipped with an RL algorithm (such as DQN or PPO, with all
hyperparameters specified),A, which receives states and rewards from and outputs actions to an en-
vironment E , generating a stream of experienced transitions e(A; E)t = (st, at, rt, st+1). The agent
continually learns a policy π(t) : st → at, which will change in time as described by algorithm A;

2

Published as a conference paper at ICLR 2020

so π(t) = A(e1:t−1) and thus at ∼ A(e1:t−1)(st). Although this need not be the case, we can think
of A as an algorithm that tries to maximize the discounted reward

∑
i γ

irt+i, γ < 1 and that, at any
time-step t, always takes the greedy action that maximizes its estimated expected discounted reward.

To add exploration to this policy, we include a curiosity module C that has access to the stream of
state transitions et experienced by the agent and that, at every time-step t, outputs a proxy reward
r̂t. We connect this module so that the original RL agent receives these modified rewards, thus
observing e(A, C; E)t = (st, at, r̂t = C(e1:t−1), st+1), without having access to the original rt.
Now, even though the inner RL algorithm acts in a purely exploitative manner with respect to r̂, it
may efficiently explore in the outer environment.

Our overall goal is to design a curiosity module C that induces the agent to maximize
∑T
t=0 rt, for

some number of total time-steps T or some other global goal, like final episode performance. In an
episodic problem, T will span many episodes. More formally, given a single environment E , RL
algorithm A, and curiosity module C, we can see the triplet (environment, curiosity module, agent)
as a dynamical system that induces state transitions for the environment, and learning updates for
the curiosity module and the agent. Our objective is to find C that maximizes the expected original
reward obtained by the composite system in the environment. Note that the expectation is over two
different distributions at different time scales: there is an “outer” expectation over environments E ,
and in “inner” expectation over the rewards received by the composite system in that environment,
so our final objective is:

max
C

[
EE

[
Ert∼e(A,C;E)

[
T∑
t=0

rt

]]]
.

2.2 PROGRAMS FOR CURIOSITY

In science and computing, mathematical language has been very successful in describing varied
phenomena and powerful algorithms with short descriptions. As Valiant points out: “the power
[of mathematics and algorithms] comes from the implied generality, that knowledge of one equation
alone will allow one to make accurate predictions about a host of situations not even conceived when
the equation was first written down” (Valiant, 2013). Therefore, in order to obtain curiosity modules
that can generalize over a very broad range of tasks and that are sophisticated enough to provide
exploration guidance over very long horizons, we describe them in terms of general programs in a
domain-specific language. Algorithms in this language will map a history of (st, st+1, at, rt) tuples
into a proxy reward r̂t.

Inspired by human-designed systems that compute and use intrinsic rewards, and to simplify the
search, we decompose the curiosity module into two components: the first, I , outputs an intrin-
sic reward value it based on the current experienced transition (st, at, st+1) (and past transitions
(s1:t−1, a1:t−1) indirectly through its memory); the second, χ, takes the current time-step t, the
actual reward rt, and the intrinsic reward it (and, if it chooses to store them, their histories) and
combines them to yield the proxy reward r̂t. To ease generalization across different timescales, in
practice, before feeding t into χ we normalize it by the total length of the agent’s lifetime, T .

Both programs consist of a directed acyclic graph (DAG) of modules with polymorphically typed
inputs and outputs. As shown in figure 2, there are four classes of modules:

• Input modules (shown in blue), drawn from the set {st, at, st+1} for the I component and
from the set {it, rt} for the χ component. They have no inputs, and their outputs have the
type corresponding to the types of states and actions in whatever domain they are applied
to, or the reals numbers for rewards.

• Buffer and parameter modules (shown in gray) of two kinds: FIFO queues that provide
as output a finite list of the k most recent inputs, and neural network weights initialized at
random at the start of the program and which may (pink border) or may not (black border)
get updated via back-propagation depending on the computation graph.

• Functional modules (shown in white), which compute output values given the inputs from
their parent modules.

3

Published as a conference paper at ICLR 2020

Figure 2: Example diagrams of published algorithms covered by our language (larger figures in the
appendix). The green box represents the output of the intrinsic curiosity function, the pink box is
the loss to be minimized. Pink arcs represent paths and networks along which gradients flow back
from the minimizer to update parameters.

• Update modules (shown in pink), which are functional modules (such as k-Nearest-
Neighbor) that either add variables to buffers or modules which add real-valued outputs
to a global loss that will provide error signals for gradient descent.

A single node in the DAG is designated as the output node (shown in green): the output of this node
is considered to be the output of the entire program, but it need not be a leaf node of the DAG.

On each call to a program (corresponding to one time-step of the system) the current input values
and parameter values are propagated through the functional modules, and the output node’s output
is given to the RL algorithm. Before the call terminates, the FIFO buffers are updated and the
adjustable parameters are updated via gradient descent using the Adam optimizer (Kingma & Ba,
2014). Most operations are differentiable and thus able to propagate gradients backwards. Some
operations are not differentiable, including buffers (to avoid backpropagating through time) and
”Detach” whose purpose is stopping the gradient from flowing back. In practice, we have multiple
copies of the same agent running at the same time, with both a shared policy and shared curiosity
module. Thus, we execute multiple reward predictions on a batch and then update on a batch.

Programs representing several published designs for curiosity modules that perform internal gra-
dient descent, including inverse features (Pathak et al., 2017), random network distillation (RND)
(Burda et al., 2018), and ensemble predictive variance (Pathak et al., 2019), are shown in figure 2
(bigger versions can be found in appendix A.3). We can also represent algorithms similar to novelty
search (Lehman & Stanley, 2008) and EX2 (Fu et al., 2017), which include buffers and nearest
neighbor regression modules. Details on the data types and module library are given in appendix A.

A crucial, and possibly somewhat counter-intuitive, aspect of these programs is their use of neural
network weight updates via gradient descent as a form of memory. In the parameter update step, all
adjustable parameters are decremented by the gradient of the sum of the outputs of the loss modules,
with respect to the parameters. This type of update allows the program to, for example, learn to make
some types of predictions, online, and use the quality of those predictions in a state to modulate the
proxy reward for visiting that state (as is done, for example, in RND).

Key to our program search are polymorphic data types: the inputs and outputs to each module are
typed, but the instantiation of some types, and thus of some operations, depends on the environment.
We have four types: reals R, state space of the given environment S, action space of the given en-
vironment A and feature space F, used for intermediate computations and always set to R32 in our
current implementation. For example, a neural network module going from S to F will be instanti-
ated as a convolutional neural network if S is an image and as a fully connected neural network of the

4

Published as a conference paper at ICLR 2020

appropriate dimension if S is a vector. Similarly, if we are measuring an error in action space A we
use mean-squared error for continuous action spaces and negative log-likelihood for discrete action
spaces. This facility means that the same curiosity program can be applied, independent of whether
states are represented as images or vectors, or whether the actions are discrete or continuous, or the
dimensionality of either.

This type of abstraction enables our meta-learning approach to discover curiosity modules that gen-
eralize radically, applying not just to new tasks, but to tasks with substantially different input and
output spaces than the tasks they were trained on.

To clarify the semantics of these programs, we walk through the operation of the RND program in
figure 2. Its only input is st+1, which might be an image or an input vector, which is processed
by two NNs with parameters Θ1 and Θ2, respectively. The structure of the NNs (and, hence, the
dimensions of the Θi) depends on the type of st+1: if st+1 is an image, then they are CNNs,
otherwise a fully connected networks. Each NN outputs a 32-dimensional vector; the L2 distance
between these vectors is the output of the program on this iteration, and is also the input to a loss
module. So, given an input st+1, the output intrinsic reward is large if the two NNs generate different
outputs and small otherwise. After each forward pass, the weights in Θ2 are updated to minimize the
loss while Θ1 remains constant, which causes the trainable NN to mimic the output of the randomly
initialized NN. As the program’s ability to predict the output of the randomized NN on an input
improves, the intrinsic reward for visiting that state decreases, driving the agent to visit new states.

To limit the search space and prioritize short, meaningful programs we limit the total number of
modules of the computation graph to 7. Our language is expressive enough to describe many (but far
from all) curiosity mechanisms in the existing literature, as well as many other potential alternatives,
but the expressiveness leads to a very large search space. Additionally, removing or adding a single
operation can drastically change the behavior of a program, making the objective function non-
smooth and, therefore, the space hard to search. In the next section we explore strategies for speeding
up the search over tens of thousands of programs.

3 IMPROVING THE EFFICIENCY OF OUR SEARCH

We wish to find curiosity programs that work effectively in a wide range of environments, from
simple to complex. However, evaluating tens of thousands of programs in the most expensive envi-
ronments would consume decades of GPU computation. Therefore, we designed multiple strategies
for quickly discarding less promising programs and focusing computation on a few promising pro-
grams. In doing so, we take inspiration from efforts in the AutoML community (Hutter et al., 2018).

We divide these pruning efforts into three categories: simple tests that are independent of running the
program in any environment, “filtering” by ruling out some programs based on poor performance
in simple environments, and “meta-meta-RL”: learning to predict which curiosity programs will
produce good RL agents based on syntactic features.

3.1 PRUNING INVALID ALGORITHMS WITHOUT RUNNING THEM

Many programs are obviously bad curiosity programs. We have developed two heuristics to imme-
diately prune these programs without an expensive evaluation.

• Checking that programs are not duplicates. Since our language is highly expressive, there
are many non-obvious ways of getting equivalent programs. To find duplicates, we de-
signed a randomized test where we identically seed two programs, feed them both identical
fake environment data for tens of steps and check whether their outputs are identical.

• Checking that the loss functions cannot be minimized independently of the input data.
Many programs optimize some loss depending on neural network regressors. If we treat
inputs as uncontrollable variables and networks as having the ability to become any pos-
sible function, then for every variable, we can determine whether neural networks can be
optimized to minimize it, independently of the input data. For example, if our loss function
is |NNθ(s)|2 the neural network can learn to make it 0 by disregarding s and optimizing
the weights θ to 0. We discard any program that has this property.

5

Published as a conference paper at ICLR 2020

3.2 PRUNING ALGORITHMS IN CHEAP ENVIRONMENTS

Our ultimate goal is to find algorithms that perform well on many different environments, both
simple and complex. We make two key observations. First, there may be only tens of reasonable
programs that perform well on all environments but hundreds of thousands of programs that per-
form poorly. Second, there are some environments that are solvable in a few hundred steps while
others require tens of millions. Therefore, a key idea in our search is to try many programs in cheap
environments and only a few promising candidates in the most expensive environments. This was
inspired by the effective use of sequential halving (Karnin et al., 2013) in hyper-parameter optimiza-
tion (Jamieson & Talwalkar, 2016).

By pruning programs aggressively, we may be losing multiple programs that perform well on com-
plex environments. However, by definition, these programs will tend to be less general and robust
than those that succeed in all environments. Moreover, we seek generalization not only for its own
sake, but also to ease the search since, even if we only cared about the most expensive environment,
performing the complete search only in this environment would be impractical.

3.3 PREDICTING ALGORITHM PERFORMANCE

Perhaps surprisingly, we find that we can predict program performance directly from program struc-
ture. Our search process bootstraps an initial training set of (program structure, program perfor-
mance) pairs, then uses this training set to select the most promising next programs to evaluate.
We encode each program’s structure with features representing how many times each operation is
used, thus having as many features as number of operations in our vocabulary. We use a k-nearest-
neighbor regressor, with k = 10. We then try the most promising programs and update the regressor
with their results. Finally, we add an ε-greedy exploration policy to make sure we explore all the
search space. Even though the correlation between predictions and actual values is only moderately
high (0.54 on a holdout test), this is enough to discover most of the top programs searching only half
of the program space, which is our ultimate goal. Results are shown in appendix C.

We can also prune algorithms during the training process of the RL agent. In particular, at any
point during the meta-search, we use the top K current best programs as benchmarks for all T time-
steps. Then, during the training of a new candidate program we compare its current performance at
time t with the performance at time t of the top K programs and stop the run if its performance is
significantly lower. If the program is not pruned and reaches the final time-step T with one of the
top K performances, it becomes part of the benchmark for the future programs.

4 EXPERIMENTS

Our RL agent uses PPO (Schulman et al., 2017) based on the implementation by Kostrikov
(2018) in PyTorch (Paszke et al., 2017). Our code (https://github.com/mfranzs/
meta-learning-curiosity-algorithms) can take in any OpenAI gym environ-
ment (Brockman et al., 2016) with a specification of the desired exploration horizon T .

We evaluate each curiosity algorithm for multiple trials, using a seed dependent on the trial but
independent of the algorithm, which leads to the PPO weights and curiosity data-structures being
initialized identically on the same trials for all algorithms. As is common in PPO, we run multiple
rollouts (5, except for MuJoCo which only has 1), with independent experiences but shared policy
and curiosity modules. Curiosity predictions and updates are batched across these rollouts, but not
across time. PPO policy updates are batched both across rollouts and multiple timesteps.

4.1 FIRST SEARCH PHASE IN SIMPLE ENVIRONMENT

We start by searching for a good intrinsic curiosity program I in a purely exploratory environment,
designed by Chevalier-Boisvert et al. (2018), which is an image-based grid world where agents
navigate in an image of a 2D room either by moving forward in the grid or rotating left or right.
We optimize the total number of distinct cells visited across the agent’s lifetime. This allows us
to evaluate intrinsic reward programs in a fast and simple environment, without worrying about
combining it with external reward.

6

https://github.com/mfranzs/meta-learning-curiosity-algorithms
https://github.com/mfranzs/meta-learning-curiosity-algorithms

Published as a conference paper at ICLR 2020

To bias towards simple, interpretable algorithms and keep the search space manageable, we search
for programs with at most 7 operations. We first discard duplicate and invalid programs, as described
in section 3.1, resulting in about 52,000 programs. We then randomly split the programs across 4
machines, each with 8 Nvidia Tesla K80 GPUs for 10 hours; thus a total of 13 GPU days.

Each machine finds the highest-scoring 625 programs in its section of the search space and prunes
programs whose partial learning curve is statistically significantly lower than the current top 625
programs. To do so, after every episode of every trial, we check whether meanprogram(step) ≤
meantop625(step) − 2stdtop625 − stdprogram.Thus, we account for both inter-program variabil-
ity among the top 625 programs and intra-program variability among multiple trials of the same
program.

Figure 3: Fast Action-Space Transition(FAST):
top-performing intrinsic curiosity algorithm dis-
covered in our phase 1 search.

We use a 10-nearest-neighbor regressor to pre-
dict program performance and choose the next
program to evaluate with an ε-greedy strategy,
choosing the best predicted program 90% of the
time and a random program 10% of the time.
By doing this, we try the most promising pro-
grams early in our search. This is important for
two reasons: first, we only try 26,000 programs,
half of the whole search space, which we esti-
mated from earlier results (shown in figure 8
in the appendix) would be enough to get 88%
of the top 1% of programs. Second, the earlier
we run our best programs, the higher the bar
for later programs, thus allowing us to prune
them earlier, further saving computation time.
Searching through this space took a total of 13
GPU days. As shown in figure 9 in the ap-
pendix, we find that most programs perform rel-
atively poorly, with a long tail of programs that
are statistically significantly better, comprising
roughly 0.5% of the whole program space.

The highest scoring program (a few other programs have lower average performance but are statisti-
cally equivalent) is surprisingly simple and meaningful, comprised of only 5 operations, even though
the limit was 7. This program, which we call FAST (Fast Action-Space Transition), is shown in fig-
ure 3; it trains a single neural network (a CNN or MLP depending on the type of state) to predict
the action from st+1 and then compares its predictions based on st+1 with its predictions based on
st, generating high intrinsic reward when the difference is large. The action prediction loss module
either computes a softmax followed by NLL loss or appends zeros to the action to match dimensions
and applies MSE loss, depending on the type of the action space. Note that this is not the same as
rewarding taking a different action in the previous time-step. The network predicting the action is
learning to imitate the policy learned by the internal RL agent, because the curiosity module does
not have direct access to the RL agent’s internal state.

Of the top 16 programs, 13 are variants of FAST, including versions that predict the action from
st instead of st+1. The other 3 are variants of a more complex program that is hard to understand
at first glance, but we finally determined to be using ideas similar to cycle-consistency in the GAN
literature Zhu et al. (2017) (we thus name it Cycle-consistency intrinsic motivation); the diagram
and explanation are in figure 10 in the appendix. Interestingly, to the best of our knowledge neither
algorithm had been proposed before: we conjecture the former was too simple for humans to believe
it would be effective and the latter too hard for humans to design, as it was already very hard to
understand in hindsight.

4.2 TRANSFERRING TO NEW ENVIRONMENTS

Our reward combiner was developed in lunar lander (the simplest environment with meaningful
extrinsic reward) based on the best program among a preliminary set of 16,000 programs (which re-
sembled Random Network Distillation; its computation graph is shown in appendix E). Among a set

7

Published as a conference paper at ICLR 2020

Figure 4: Correlation between program performance in gridworld and in harder environments (lunar
lander on the left, acrobot on the right), using the top 2,000 programs in gridworld. Performance is
evaluated using mean reward across all learning episodes, averaged over trials (two trials for acrobot
/ lunar lander and five for gridworld). The high number of algorithms performing around -300 in the
middle of the right plot is an artifact of averaging the performance of two seeds and the mean per-
formance in Acrobot having two peaks. Almost all intrinsic curiosity programs that had statistically
significant performance for grid world also do well on the other two environments. In green, the
performance of three published works; in increasing gridworld performance: disagreement (Pathak
et al., 2019), inverse features (Pathak et al., 2017) and random distillation (Burda et al., 2018).

of 2,500 candidates (with 5 or fewer operations) the best reward combiner discovered by our search
was r̂t = (1+it−t/T)·it+t/T ·rt

1+it
. Notice that for 0 < it � 1 (usually the case) this is approximately

r̂t ≈ i2t + (1 − t/T)it + (t/T)rt, which is a down-scaled version of intrinsic reward plus a linear
interpolation that ranges from all intrinsic reward at t = 0 to all extrinsic reward at t = T . In future
work, we hope to co-adapt the search for intrinsic reward programs and combiners as well as find
multiple reward combiners.

Given the fixed reward combiner and the list of 2,000 selected programs found in the image-based
grid world, we evaluate the programs on both lunar lander and acrobot, in their discrete action space
versions. Notice that both environments have much longer horizons than the image-based grid world
(37,500 and 50,000 vs 2,500) and they have vector-based, rather than image-based, inputs. The
results in figure 4 show good correlation between performance on grid world and on each of the
new environments. Especially interesting is that, for both environments, when intrinsic reward in
grid world is above 400 (the lowest score that is statistically significantly good), performance on the
other two environments is also good in more than 90% of cases.

Finally, we evaluate on two MuJoCo environments (Todorov et al., 2012): hopper and ant. These
environments have more than an order of magnitude longer exploration horizon than acrobot and
lunar lander, exploring for 500K time-steps, as well as continuous action-spaces instead of discrete.
We then compare the best 16 programs on grid world (most of which also did well on lunar lander
and acrobot) to four weak baselines (constant 0,-1,1 intrinsic reward and Gaussian noise reward)
and three published algorithms expressible in our language (shown in figure 2). We run two trials
for each algorithm and pool all results in each category to get a confidence interval for the mean of
that category. All trials used the reward combiner found on lunar lander. For both environments we
find that the performance of our top programs is statistically equivalent to published work and sig-
nificantly better than the weak baselines, confirming that we meta-learned good curiosity programs.

Note that we meta-trained our intrinsic curiosity programs only on one environment (GridWorld) and
showed they generalized well to other very different environments: they perform better than pub-
lished works in this meta-train task and one meta-test task (Acrobot) and on par in the other 3 tasks
meta-test tasks. Adding more meta-training tasks would be as simple as standardising the perfor-

8

Published as a conference paper at ICLR 2020

Class Ant Hopper
Baseline algorithms [-95.3, -39.9] [318.5, 525.0]

Meta-learned algorithms [+67.5, +80.0] [589.2, 650.6]
Published algorithms [+67.4, +98.8] [627.7, 692.6]

Table 1: Meta-learned algorithms perform significantly better than constant rewards and statistically
equivalently to published algorithms found by human researchers (see 2). The table shows the con-
fidence interval (one standard deviation) for the mean performance (across trials, across algorithms)
for each algorithm category. Performance is defined as mean episode reward for all episodes.

mance within each task (to make results comparable) and then selecting the programs with best mean
performance. We chose to only meta-train on a single, simple, task because it (surprisingly!) already
gave great results, highlighting the broad generalization of meta-learning program representations.

5 RELATED WORK

In some regards our work is similar to neural architecture search (NAS) (Stanley & Miikkulainen,
2002; Zoph & Le, 2016; Elsken et al., 2018; Pham et al., 2018) or hyperparameter optimization for
deep networks (Mendoza et al., 2016), which aim at finding the best neural network architecture
and hyper-parameters for a particular task. However, in contrast to most (but not all, see Zoph et al.
(2018)) NAS work, we want to generalize to many environments instead of just one. Moreover,
we search over programs, which include non-neural operations and data structures, rather than just
neural-network architectures, and decide what loss functions to use for training. Our work also re-
sembles work in the AutoML community (Hutter et al., 2018) that searches in a space of programs,
for example in the case of SAT solving (KhudaBukhsh et al., 2009) or auto-sklearn (Feurer et al.,
2015) and concurrent work on learning loss functions to replace cross-entropy for training a fixed
architecture on MNIST and CIFAR (Gonzalez & Miikkulainen, 2019; 2020). Although we took
inspiration from ideas in that community (Jamieson & Talwalkar, 2016; Li et al., 2016), our algo-
rithms specify both how to compute their outputs and their own optimization objectives in order to
work well in synchrony with an expensive deep RL algorithm.

There has been work on meta-learning with genetic programming (Schmidhuber, 1987), searching
over mathematical operations within neural networks (Ramachandran et al., 2017; Gaier & Ha,
2019), searching over programs to solve games (Wilson et al., 2018; Kelly & Heywood, 2017; Silver
et al., 2019) and to optimize neural networks (Bengio et al., 1995; Bello et al., 2017), and neural
networks that learn programs (Reed & De Freitas, 2015; Pierrot et al., 2019). Our work uses neural
networks as basic operations within larger algorithms. Finally, modular meta-learning (Alet et al.,
2018; 2019) trains the weights of small neural modules and transfers to new tasks by searching for
a good composition of modules; as such, it can be seen as a (restricted) dual of our approach.

There has been much interesting work in designing intrinsic curiosity algorithms. We take
inspiration from many of them to design our domain-specific language. In particular, we rely on
the idea of using neural network training as an implicit memory, which scales well to millions
of time-steps, as well as buffers and nearest-neighbour regressors. As we showed in figure 2 we
can represent several prominent curiosity algorithms. We can also generate meaningful algorithms
similar to novelty search (Lehman & Stanley, 2008) and EX2 (Fu et al., 2017); which include
buffers and nearest neighbours. However, there are many exploration algorithm classes that we do
not cover, such as those focusing on generating goals (Srivastava et al., 2013; Kulkarni et al., 2016;
Florensa et al., 2018), learning progress (Oudeyer et al., 2007; Schmidhuber, 2008; Azar et al.,
2019), generating diverse skills (Eysenbach et al., 2018), stochastic neural networks (Florensa et al.,
2017; Fortunato et al., 2017), count-based exploration (Tang et al., 2017) or object-based curiosity
measures (Forestier & Oudeyer, 2016). Finally, part of our motivation stems from Taı̈ga et al. (2019)
showing that some bonus-based curiosity algorithms have trouble generalising to new environments.

There have been research efforts on meta-learning exploration policies: Duan et al. (2016); Wang
et al. (2017) learn an LSTM that explores an environment for one episode, retains its hidden state
and is spawned in a second episode in the same environment; by training the network to maximize
the reward in the second episode alone it learns to explore efficiently in the first episode. Stadie et al.
(2018) improves their exploration and that of Finn et al. (2017) by considering the importance of

9

Published as a conference paper at ICLR 2020

sampling in RL policies. Gupta et al. (2018) combine gradient-based meta-learning with a learned
latent exploration space in which they add structured noise for meaningful exploration. Closer to our
formulation, Zheng et al. (2018) parametrize an intrinsic reward function which influences policy-
gradient updates in a differentiable manner, allowing them to backpropagate through a single step of
the policy-gradient update to optimize the intrinsic reward function for a single task. In contrast to all
three of these methods, we search over algorithms, which will allows us to generalize more broadly
and to consider the effect of exploration on up to 105 − 106 time-steps instead of the 102 − 103 of
previous work. Finally, Chiang et al. (2019); Faust et al. (2019) have a setting similar to ours where
they modify reward functions over the entire agent’s lifetime, but instead of searching over intrinsic
curiosity algorithms they tune the parameters of a hand-designed reward function.

Related work on meta-learning (Schmidhuber, 1987; Thrun & Pratt, 1998; Clune, 2019) and efforts
to increase its generalization can be found in appendix B. Closest to our work, evolved policy gra-
dients (EPG, Houthooft et al. (2018)) use evolutionary strategies to meta-learn a neural network
that acts as a loss function and is used to train a policy network. EPG generalizes by meta-training
with target locations east of the start location and meta-testing with target locations to the west. In
contrast, we showed that by meta-learning programs, we can generalize between radically differ-
ent environments, not just goal variations of a single environment. Concurrent to our work, Kirsch
et al. (2019) also show generalization capabilities between environments similar to ours (lunar lan-
der, hopper and half-cheetah). Their approach transfers a parametric representation, for which it is
unclear how to adapt the learned neural losses to an unseen environment with a different observation
space. Their approach thus does not encode states into the loss function, which is critical for efficient
exploration. In contrast, our algorithms can leverage polymorphic data types that adapt the neural
networks to the environment they are running in, adapting both the size and the type of network
(CNN vs MLP) running in each environment.

6 CONCLUSIONS

In this work, we proposed to meta-learn algorithms and show that by transferring programs we
can generalize between tasks much more varied than previously possible in meta-RL, even between
those with different input or output spaces. In many settings, however, the input and output space
remain the same as we change tasks. This opens the possibility of getting the best of both worlds
by meta-learning weights along with structure, thus simultaneously transferring domain-specific
knowledge in the weights and higher-level algorithmic knowledge in the architecture. In addition,
we note that the approach of meta-learning programs instead of network weights may have further
applications beyond finding curiosity algorithms, such as meta-learning optimization algorithms or
even meta-learning meta-learning algorithms. Our relatively modest compute (2 GPU-weeks) and a
simple search method restricted us to a medium-sized search space, but we expect that future work
could search over significantly bigger spaces. It thus may be possible to automatically search for new
machine learning algorithms from more fundamental building blocks for a wide variety of problems.

ACKNOWLEDGMENTS

We thank Kelsey Allen, Peter Karkus, Kevin Smith, Josh Tenenbaum and the rest of the Honda-
CMM MIT team for their insightful feedback. We thank Chris Lu for his idea on what the algorithm
in figure 10 is computing. We also want to thank Bernadette Bucher, Chelsea Finn, Abhishek Gupta,
Deepak Pathak, Lerrel Pinto, Oleh Rybkin, Karl Schmeckpeper and Joaquin Vanschoren for valuable
conversations. Finally, we also want to thank Maria Bauza and Tej Chajed for their feedback on early
drafts and Clement Gehring for his help setting up the experiments.

We gratefully acknowledge support from NSF grants 1523767 and 1723381, AFOSR grant FA9550-
17-1-0165, ONR grant N00014-18-1-2847, the Honda Research Institute, SUTD Temasek Labora-
tories and the MIT Quest for Intelligence. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material do not necessarily reflect the views of our sponsors.

10

Published as a conference paper at ICLR 2020

REFERENCES

Ferran Alet, Tomas Lozano-Perez, and Leslie P. Kaelbling. Modular meta-learning. In Proceedings
of The 2nd Conference on Robot Learning, pp. 856–868, 2018.

Ferran Alet, Erica Weng, Tomas Lozano-Perez, and Leslie Kaelbling. Neural relational infer-
ence with fast modular meta-learning. In Advances in Neural Information Processing Systems
(NeurIPS) 32. 2019.

Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo Avila Pires, Jean-Bastian Grill, Florent Altché,
and Rémi Munos. World discovery models. arXiv preprint arXiv:1902.07685, 2019.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 459–468. JMLR. org, 2017.

Samy Bengio, Yoshua Bengio, and Jocelyn Cloutier. On the search for new learning rules for anns.
Neural Processing Letters, 2(4):26–30, 1995.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis. Learning navigation
behaviors end-to-end with autorl. IEEE Robotics and Automation Letters, 4(2):2007–2014, 2019.

Ignasi Clavera, Anusha Nagabandi, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Learning to adapt: Meta-learning for model-based control. In International Conference on
Learning Representations, 2019.

Jeff Clune. Ai-gas: Ai-generating algorithms, an alternate paradigm for producing general artificial
intelligence. arXiv preprint arXiv:1905.10985, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. arXiv
preprint arXiv:1808.05377, 2018.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Aleksandra Faust, Anthony Francis, and Dar Mehta. Evolving rewards to automate reinforcement
learning. arXiv preprint arXiv:1905.07628, 2019.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. In C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems 28,
pp. 2962–2970. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
5872-efficient-and-robust-automated-machine-learning.pdf.

Chelsea Finn. Learning to Learn with Gradients. PhD thesis, EECS Department, University
of California, Berkeley, Aug 2018. URL http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2018/EECS-2018-105.html.

11

https://github.com/maximecb/gym-minigrid
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-105.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-105.html

Published as a conference paper at ICLR 2020

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400, 2017.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical rein-
forcement learning. arXiv preprint arXiv:1704.03012, 2017.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1515–1528, Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/florensa18a.html.

Sébastien Forestier and Pierre-Yves Oudeyer. Modular active curiosity-driven discovery of tool
use. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
3965–3972. IEEE, 2016.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

Justin Fu, John Co-Reyes, and Sergey Levine. Ex2: Exploration with exemplar models for deep
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 2577–2587,
2017.

Adam Gaier and David Ha. Weight agnostic neural networks. arXiv preprint arXiv:1906.04358,
2019.

Santiago Gonzalez and Risto Miikkulainen. Improved training speed, accuracy, and data utilization
through loss function optimization. arXiv preprint arXiv:1905.11528, 2019.

Santiago Gonzalez and Risto Miikkulainen. Evolving loss functions with multivariate taylor poly-
nomial parameterizations, 2020.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In Advances in Neural Information
Processing Systems, pp. 5302–5311, 2018.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAI Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. In Advances in Neural Information Processing Systems,
pp. 5400–5409, 2018.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (eds.). Automated Machine Learning: Meth-
ods, Systems, Challenges. Springer, 2018. In press, available at http://automl.org/book.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Artificial Intelligence and Statistics, pp. 240–248, 2016.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In International Conference on Machine Learning, pp. 1238–1246, 2013.

Stephen Kelly and Malcolm I Heywood. Multi-task learning in atari video games with emergent tan-
gled program graphs. In Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 195–202. ACM, 2017.

Ashiqur R KhudaBukhsh, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Satenstein: Auto-
matically building local search sat solvers from components. In Twenty-First International Joint
Conference on Artificial Intelligence, 2009.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving generalization in meta
reinforcement learning using learned objectives. arXiv preprint arXiv:1910.04098, 2019.

12

http://proceedings.mlr.press/v80/florensa18a.html

Published as a conference paper at ICLR 2020

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Advances in
neural information processing systems, pp. 3675–3683, 2016.

Joel Lehman and Kenneth O Stanley. Exploiting open-endedness to solve problems through the
search for novelty. In ALIFE, pp. 329–336, 2008.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. arXiv preprint
arXiv:1603.06560, 2016.

Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. To-
wards automatically-tuned neural networks. In Workshop on Automatic Machine Learning, pp.
58–65, 2016.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A
new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Pierre-Yves Oudeyer. Computational theories of curiosity-driven learning. arXiv preprint
arXiv:1802.10546, 2018.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Adam Paszke, Sam Gross, and Adam Lerer. Automatic differentiation in PyTorch. In International
Conference on Learning Representations, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
arXiv preprint arXiv:1906.04161, 2019.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Thomas Pierrot, Guillaume Ligner, Scott Reed, Olivier Sigaud, Nicolas Perrin, Alexandre Laterre,
David Kas, Karim Beguir, and Nando de Freitas. Learning compositional neural programs with
recursive tree search and planning. arXiv preprint arXiv:1905.12941, 2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279, 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jürgen Schmidhuber. Driven by compression progress: A simple principle explains essential aspects
of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science,
music, jokes. In Workshop on anticipatory behavior in adaptive learning systems, pp. 48–76.
Springer, 2008.

13

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

Published as a conference paper at ICLR 2020

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tom Silver, Kelsey R Allen, Alex K Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-shot
bayesian imitation learning with logic over programs. arXiv preprint arXiv:1904.06317, 2019.

Rupesh Kumar Srivastava, Bas R Steunebrink, and Jürgen Schmidhuber. First experiments with
powerplay. Neural Networks, 41:130–136, 2013.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some considerations on learning to explore via meta-reinforcement learning. arXiv
preprint arXiv:1803.01118, 2018.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary computation, 10(2):99–127, 2002.

Adrien Ali Taı̈ga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare.
Benchmarking bonus-based exploration methods on the arcade learning environment. arXiv
preprint arXiv:1908.02388, 2019.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in neural information processing systems, pp. 2753–
2762, 2017.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Leslie Valiant. Probably Approximately Correct: NatureÕs Algorithms for Learning and Prospering
in a Complex World. Basic Books (AZ), 2013.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Richard Lewis, Janarthanan Rajendran, Junhyuk Oh,
Hado van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as auxiliary
tasks. arXiv preprint arXiv:1909.04607, 2019.

JX Wang, Z Kurth-Nelson, D Tirumala, H Soyer, JZ Leibo, R Munos, C Blundell, D Kumaran, and
M Botivnick. Learning to reinforcement learn. arxiv 1611.05763, 2017.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Dennis G Wilson, Sylvain Cussat-Blanc, Hervé Luga, and Julian F Miller. Evolving simple programs
for playing atari games. In Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 229–236. ACM, 2018.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. In
Advances in neural information processing systems, pp. 2396–2407, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Sergey Levine, and
Chelsea Finn. Meta-world: A benchmark and evaluation for multi-task and meta-reinforcement
learning, 2019. URL https://github.com/rlworkgroup/metaworld.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In Advances in Neural Information Processing Systems, pp. 4644–4654, 2018.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

14

https://github.com/rlworkgroup/metaworld

Published as a conference paper at ICLR 2020

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

15

Published as a conference paper at ICLR 2020

A DETAILS OF OUR DOMAIN-SPECIFIC LANGUAGE FOR CURIOSITY
ALGORITHMS

We have the following types. Note that S and A get defined differently for every environment.

• R: real numbers such as rt or the dot-product between two vectors.
• R+: numbers guaranteed to be positive, such as the distance between two vectors. The

only difference to our program search between R and R+ is in pruning programs that
can optimize objectives without looking at the data. For R+ we check whether they can
optimize down to 0, for R we check whether they can optimize to arbitrarily negative
values.
• state space S: the environment state, such as a matrix of pixels or a vector with robot joint

values. The particular form of this type is adapted to each environment.
• action space A: either a 1-hot description of the action or the action itself. The particular

form of this type is adapted to each environment.
• feature-space F = R32: a space mostly useful to work with neural network embeddings.

For simplicity, we only have a single feature space.
• List[X]: for each type we may also have a list of elements of that type. All operations

that take a particular type as input can also be applied to lists of elements of that type by
mapping the function to every element in the list. Lists also support extra operations such
as average or variance.

A.1 CURIOSITY OPERATIONS

Operation Input type(s) State Output type
Add R, R R
RunningNorm R R R
VariableAsBuffer X List[X] List[X]
NearestNeighborRegressor F, F List[F] F
SubtractOneTenth R R
NormalDistribution R
Subtract R, R R
Sqrt(Abs(x)) R R+

NN F,F→ F F, F ΘF,F→F F
NN F,F→ A F, F ΘF,F→A A
NN F→ A F ΘF→A A
NN A→ F A ΘA→F F
(C)NN S ΘS→F F
(C)NN, Detach S ΘS→F F
(C)NNEnsemble S 5xΘS→F List[F]
NN Ensemble F→ F F 5xΘF→F List[F]
NN Ensemble F,F→ F F, F 5xΘF,F→F List[F]
NN Ensemble F,A→ F F, A 5xΘA,F→F List[F]
MinimizeValue R Adam
L2Norm X R+

L2Distance X, X R
ActionSpaceLoss X, A R+

DotProduct X, X R
Add X, X X
Detach X X
Mean List[R] R
Variance List[X] R+

Mean List[X] X
Mapped L2 Norm List[X] List[R]
Average Distance List[X], X R
Minus List[X], X List[X]

16

Published as a conference paper at ICLR 2020

Note that X stands for the option of being F or A. NearestNeighborRegressor takes a query and a
target, automatically creates a buffer of the target (thus keeps a list as a state) and answers based on
the buffer. RunningNorm keeps track of the variance of the input and normalizes by that variance.

A.2 REWARD COMBINER OPERATIONS

Operation Input type(s) State Output type
Constant {0.01,0.1,0.5,1} R
NormalDistribution R
Add R, R R
Max R, R R
Min R, R R
WeightedNormalizedSum R, R, R, R R
RunningNorm R R R
VariableAsBuffer R List[R] List[R]
Subtract R, R R
Multiply R, R R
Sqrt(Abs(x)) R R+

Mean List[R] R

Note that WeightedNormalizedSum(a, b, c, d) = ab+cd
|a|+|c| . RunningNorm keeps track of the vari-

ance of the input and normalizes by that variance.

A.3 TWO OTHER PUBLISHED ALGORITHMS COVERED BY OUR DSL

Figure 5: Curiosity by predictive error on inverse features by Pathak et al. (2017). In pink, paths and
networks where gradients flow back from the minimizer.

17

Published as a conference paper at ICLR 2020

Figure 6: Curiosity by ensemble predictive variance Pathak et al. (2019). In pink, paths and net-
works where gradients flow back from the minimizer.

B RELATED WORK ON META-RL AND GENERALIZATION

Most work on meta-RL has focused on learning transferable feature representations or parameter
values for quickly adapting to new tasks (Finn et al., 2017; Finn, 2018; Clavera et al., 2019) or im-
proving performance on a single task (Xu et al., 2018; Veeriah et al., 2019). However, the range of
variability between tasks is typically limited to variations of the same goal (such as moving at dif-
ferent speeds or to different locations) or generalizing to different environment variations (such as
different mazes or different terrain slopes). There have been some attempts to broaden the spectrum
of generalization, showing transfer between Atari games thanks to modularity (Fernando et al., 2017;
Rusu et al., 2016) or proper pretraining (Parisotto et al., 2015). However, as noted by Nichol et al.
(2018), Atari games are too different to get big gains with current feature-transfer methods; they
instead suggest using different levels of the game Sonic to benchmark generalization. Moreover, Yu
et al. (2019) recently proposed a benchmark of many tasks. Wang et al. (2019) automatically gen-
erate different terrains for a bipedal walker and transfer policies between terrains, showing that this
is more effective than learning a policy on hard terrains from scratch; similar to our suggestion in
section 3.2. In contrast to these methods, we aim at generalization between completely different
environments, even between environments that do not share the same state and action spaces.

18

Published as a conference paper at ICLR 2020

C PREDICTING ALGORITHM PERFORMANCE

Figure 7: Predicting algorithm performance from the structure of the program alone. Comparison
between predicted and actual performance on a test set; showing a correlation of 0.54. In black, the
identity line.

Figure 8: Predicting algorithm performance allows us to find the best programs faster. We investigate
the number of the top 1% of programs found vs. the number of programs evaluated, and observe
that the optimized search (in blue) finds 88% of the best programs after only evaluating 50% of the
programs (highlighted in green). The naive search order would have only found 50% of the best
programs at that point.

19

Published as a conference paper at ICLR 2020

D PERFORMANCE ON GRID WORLD

Figure 9: In black, mean performance across 5 trials for all 26,000 programs evaluated (out of their
finished trials). In green mean plus one standard deviation for the mean estimate and in red one
minus one standard deviation for the mean estimate. On the right, you can see program means form
roughly a gaussian distribution of very big noise (thus probably not significant) with a very small
(between 0.5% and 1% of programs) long tail of programs with statistically significantly good
performance (their red dots are much higher than almost all green dots), composed of algorithms
leading to good exploration.

20

Published as a conference paper at ICLR 2020

E INTERESTING PROGRAMS FOUND BY OUR SEARCH

Figure 10: Cycle-Consistency Intrinsic Motivation algorithm, found by our search (3 of the top 16
programs on grid world are variants of this program). The purple Predict Target From Query boxes
feed the query to a neural network, return the prediction as output and add the prediction loss to the
optimization, back-propagating to the network and the query, but not the target. Notice that θ1 is not
getting trained because no loss back-propagates there; thus producing a random feature embedding
sf (t) from s(t). The algorithm combines several concepts seen in the literature, such as an untrained
network like RND Burda et al. (2018) and predicting another state in feature space like Pathak et al.
(2017; 2019), but also includes weight sharing between both predictions, which makes the algorithm
hard to interpret at first sight, see below for an in-depth explanation.

One can give meaning to the role of all 3 neural networks by considering how they contribute to
minimizing the loss. To do so, let us name the networks: θ{1} (as labeled in the figure) as rθ1
(for random embedding), θ{2} as bθ2 (for backwards) and θ{3} as frθ3 (for forward and random
embedding) and look at the algorithm in equation form:

it = ‖bθ2 (frθ3(st))− bθ2 (frθ3 (st+1)) ‖
θ1 is kept at its random initialization

θ2 := θ2 − η
∂

∂θ2

(
‖bθ2 (frθ3(st))− rθ1(st)‖+

‖bθ2 (frθ3(st+1))− frθ3(st)‖
)

θ3 := θ3 − η
∂

∂θ3

(
‖bθ2 (frθ3(st))− rθ1(st)‖

)
(1)

We can see that rθ1 will indeed be a random embedding because the network is randomly initialized
and is not trained. Then, we observe that the second term in the loss for θ2, which does not involve
θ3 and thus θ2 has to minimize alone, is ‖bθ2 (frθ3(st+1)) − frθ3(st)‖. In this term, bθ2 receives
a transformation of st+1 and has to make it very similar to the same transformation applied to st;
therefore, this term is similar to cycle-consistency found in some other parts of machine learning Zhu
et al. (2017) and bθ2 must act like a backward model. Finally, looking at the minimization of θ3
receives the original st and has to output a vector such that the backward model will bring it close to

21

Published as a conference paper at ICLR 2020

the random embedding of st. Therefore θ3 must learn a forward model composed with the random
embedding of θ1. Finally, we see that the algorithm outputs ‖bθ2 (frθ3(st)) − bθ2 (frθ3 (st+1)) ‖,
going forward and backward for both st+1 and st and comparing the difference. In summary, this
distance combines errors in the cycle-consistency of predictions (which will be higher in unvisited
parts of the state) with distance in the random embedding space between s(t) and s(t + 1), i.e.
moving to a very different state.

Figure 11: Top variant in preliminary search on grid world; variant on random network distillation
using an ensemble of trained networks instead of a single one.

22

	Introduction
	Problem formulation
	Meta-learning problem
	Programs for curiosity

	Improving the efficiency of our search
	Pruning invalid algorithms without running them
	Pruning algorithms in cheap environments
	Predicting algorithm performance

	Experiments
	First search phase in simple environment
	Transferring to new environments

	Related work
	Conclusions
	Details of our domain-specific language for curiosity algorithms
	Curiosity operations
	Reward combiner operations
	Two other published algorithms covered by our DSL

	Related work on meta-RL and generalization
	Predicting algorithm performance
	Performance on grid world
	Interesting programs found by our search

