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ABSTRACT

We propose a new model for making generalizable and diverse retrosynthetic re-
action predictions. Given a target compound, the task is to predict the likely
chemical reactants to produce the target. This generative task can be framed
as a sequence-to-sequence problem by using the SMILES representations of the
molecules. Building on top of the popular Transformer architecture, we propose
two novel pre-training methods that construct relevant auxiliary tasks (plausible
reactions) for our problem. Furthermore, we incorporate a discrete latent variable
model into the architecture to encourage the model to produce a diverse set of
alternative predictions. On the 50k subset of reaction examples from the United
States patent literature (USPTO-50k) benchmark dataset, our model greatly im-
proves performance over the baseline, while also generating predictions that are
more diverse.

1 INTRODUCTION

This paper proposes a novel approach for one-step retrosynthesis. This task is crucial for material
and drug manufacturing (Corey & Wipke, 1969; Corey, 1991) and aims to predict which reactants
are needed to generate a given target molecule as the main product. For instance, Figure 1 demon-
strates that the input molecule “[N-]=[N+]=NCc1ccc(SCCl)cc1”, expressed here as a SMILES string
(Weininger, 1988), can be generated using reactants “CSc1ccc(CN=[N+]=[N-])cc1” and “ClCCl”.
For decades, this task has been solved using template-based approaches (Gelernter et al., 1990;
Satoh & Funatsu, 1999). Templates encode transformation rules as regular expressions operating
on SMILES strings and are typically extracted directly from the available training reactions. The
primary limitation of such templates is coverage, i.e., it is possible that none of the templates applies
to a test molecule. In order to better generalize to newer or broader chemical spaces, recently devel-
oped template-free approaches cast the problem as a sequence-to-sequence prediction task. These
approaches were first explored by Liu et al. (2017) using LSTM models; the current state-of-the-art
performance on this task uses Transformer models (Lin et al., 2019; Karpov et al., 2019).

Out-of-the-box Transformers nevertheless do not effectively generalize to rare reactions. For in-
stance, model accuracy drops by 25% on reactions with 10 or fewer representative instances in the

Figure 1: An example prediction task: on the left is the input target SMILES, and on the right are
the output reactants SMILES. The input is a single molecule, while the output is a set of molecules
separated by a period (“.”).
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training set.1 Another key issue is diversity. Manufacturing processes involve a number of addi-
tional criteria — such as green chemistry (having low detrimental effects on the environment). It
is therefore helpful to generate a diverse collection of alternative ways of synthesizing the given
target molecule. However, predicted reactions are unlikely to encompass multiple reaction classes
(see Figure 2) without additional guidance. This is because the training data only provides a single
reactant set for each input target, even if this is not the only valid reaction to synthesize the target.

Figure 2: For the input target compound shown on the left, three possible reactant predictions are
shown on the right. Prediction 1 suggestions a heterocycle formation reaction, while Predictions 2
and 3 both suggest substitution reactions. The only difference between the latter two is the halide
functional group (Cl vs Br) highlighted in red. They share similar chemical properties and thus
provide no additional insights for chemists.

We extend molecular Transformers to address both of these challenges. First, we propose a novel
pre-training approach to drive molecular representations to better retain alternative reaction possibil-
ities. Our approach is reminiscent of successful pre-training schemes in natural language processing
(NLP) applications (Devlin et al., 2018). However, rather than using conventional token masking
methods, we adopt chemically-relevant auxiliary tasks. Each training instance presents a single way
to decompose a target molecule into its reactants. Here, we add alternative proxy decompositions
for each target molecule by either 1) randomly removing bond types that can possibly break during
reactions, or 2) transforming the target based on templates. While neither of these two auxiliary
tasks are guaranteed to construct valid chemical reactions, they are closely related to the task of
interest. Indeed, representations trained in this manner provide useful initializations for the actual
retrosynthesis problem.

To improve the diversity of predicted reactions, we incorporate latent variables into the generation
process. Specifically, we merge the Transformer architecture with a discrete mixture over reactions.
The role of the latent variable is to encode distinct modes that can be related to underlying reaction
classes. Even though the training data only presents one reaction for each target molecule, our model
learns to associate each reaction with a latent class, and in the process covers multiple reaction
classes across the training set. At test time, a diverse collection of reactions is then obtained by
collecting together predictions resulting from conditioning on each latent class. Analogous mixture
models have shown promise in generating diverse predictions in natural language translation tasks
(He et al., 2018; Shen et al., 2019). We demonstrate similar gains in the chemical context.

We evaluate our model on the benchmark USPTO-50k dataset, and compare it against state-of-
the-art template-free baselines using the Transformer model. We focus our evaluation on top-10
accuracy, because there are many equally valuable reaction transformations for each input target,
though only one is presented in the data. Compared to the baseline, we achieve better performance
overall, with over 13% increase in top-10 accuracy for our best model. When we create a split of
the data based on different reaction templates (a task that any template-based model would fail on),
we similarly observe a performance increase for our model. Additionally, we demonstrate that our
model outputs exhibit significant diversity through both quantitative and human evaluations.

2 RELATED WORK

Template-based Models Traditional methods for retrosynthetic reaction prediction use template-
based models. Templates, or rules, denote the exact atom and bond changes for a chemical reaction.

1See Appendix A for details on how this dataset is constructed.
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Coley et al. (2018) applies these templates for a given target compound based on similar reactions
in the dataset. Going one step further, Segler & Waller (2017) learns the associations between
molecules and templates through a neural network. Baylon et al. (2019) uses a hierarchical network
to first predict the reaction group and then the correct template for that group. However, to have the
flexibility to generalize beyond extracted rules, we explore template-free generative models.

Molecule Generation There are two different approaches to generative tasks for molecules, demon-
strated through graph and SMILES representations. The graph-generation problem has been ex-
plored in Li et al. (2018) as a node-by-node generation algorithm, but this model does not guarantee
the validity of the output chemical graph. Jin et al. (2018a;b) improves upon this method using a
junction-tree encoder-decoder that forces the outputs to be constrained in the valid chemical space;
however, these models require complex, structured decoders. We focus on the generative task of
SMILES string representations of the molecules, which has been explored in Kusner et al. (2017)
and Gómez-Bombarelli et al. (2018).

Pre-training Pre-training methods have been shown to vastly improve the performance of Trans-
former models in NLP tasks without additional data supervision. Devlin et al. (2018) use a masked
language modeling objective to help their model learn effective representations for downstream
tasks. Similar pre-training methods on molecules have been explored by Hu et al. (2019), where
they mask out atoms in molecular graphs. Meanwhile, our work does not use a masked objective,
but instead creates pre-training tasks that are relevant to the retrosynthesis prediction problem.

3 BACKGROUND

Given an input target molecule, the task of retrosynthetic reaction prediction is to output likely
reactants that can form the target product. Formally, we express a molecule as a text string via its
SMILES representation, and cast our task into a sequence-to-sequence (seq2seq) prediction problem
(example shown in Figure 1). For this task, the input target is always a single molecule, while the
output predictions are usually a set of more than one molecule concatenated by separators “.”.

To provide more intuition for this generative task, we describe some properties of SMILES strings.
Each SMILES string is 1-D encoding of a 2-D molecular graph. If the predicted SMILES does not
adhere to the SMILES grammar, then a valid molecular graph cannot be reconstructed. Moreover,
each molecule has many equivalent SMILES representations, as a single instance of its SMILES is
just a graph traversal starting at some arbitrary node. Therefore, two very different SMILES string
can encode the same molecule (see Appendix B), and the model needs to be robust to the given
input. One method, proposed by Schwaller et al. (2019), augments the input data with different
SMILES strings of the same input target molecule.

For our model architecture, we apply a Transformer model for the seq2seq task, which has an
encoder-decoder structure (Vaswani et al., 2017; Schwaller et al., 2019). The encoder maps an
input sequence of tokens (from the SMILES string) to a sequence of continuous representations,
which are then fed to the decoder to generate an output sequence of tokens one element at a time,
auto-regressively. Once the model is trained, a beam search procedure is used at inference time to
find likely output sequences.

The main building block of the Transformer architecture lies in its global self-attention layers, which
are well-suited for predictions of the latent graph structure of SMILES strings. For example, two
tokens that are far apart in the SMILES string could be close together topologically in the cor-
responding molecular graph. The global connectivity of the Transformer model allows it to better
leverage this information. Additionally, since SMILES follow a rigid grammar requiring long range-
dependencies, these dependencies can be more easily learned through global attention layers (see
Appendix B).

4 APPROACH

Despite the flexible architecture of Transformer models, we recognize that there are ways to improve
model generalization. Additionally, there is no inductive bias for proposing diverse outputs. We
propose two techniques to enhance the base molecular Transformer model, which we describe now.
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4.1 PRE-TRAINING

In the data, each input target molecule is associated with a single reaction transformation — though
there are many equally good chemical reactions. Therefore, for each input target, we construct
several new prediction examples that are chemically meaningful, and pre-train the model on these
auxiliary examples. We do so without requiring additionally data, or data supervision. The two
variants of our method are described in detail below, with examples shown in Figure 3.

Figure 3: Input target molecule (1) with two automatically generated pre-training targets formed
by breaking the bond highlighted in red. Examples (2) and (3) are generated from the random and
template-based methods respectively. The only difference is that the template-based pre-training
example (3) adds an additional function group to the molecule (blue).

Random pre-training For each input target molecule, we generate new examples by selecting a
random bond to break. The types of bonds that we consider are acyclic single bonds, because these
are the bonds most commonly broken in chemical reactions. As we break an acyclic bond, the
input molecule is necessarily broken up into two output molecules, each being a subgraph of the
input molecule. Although the examples generated by this method do not cover the entire space of
chemical reactions (for instance some reactions do not break any bonds at all), these examples are
easy to generate and cover a diverse range of transformations.

Template-based pre-training Instead of randomly breaking bonds, we can also use the templates
extracted from the training data to create reaction examples. An example of a template is shown
in Figure 4: each template matches a specific pattern in the input molecule, and transforms that
pattern according to the template specifications. When the matched pattern is a single acyclic bond,
this method will generate similar outputs as the random pre-training method, except that templates
usually add additional pieces (functional groups) to the output example.

Figure 4: An example of a template, where the exact bond changes are described in red. The “C-N”
bond (left) is broken and a “Br” atom is attached to the broken “C” atom (right).

As shown in Figure 3, both examples are derived from the same bond broken in the input target
molecule, but for the template-based example, an additional functional group was added, matching
a more realistic reaction context. On average, for a random input molecule, there are 10 different
possible examples that can be extracted from the random pre-training method, while there are over
200 different possible examples that can be extracted using the template-based pre-training method.
However, many of these 200 examples represent similar chemical transformations, only differing in
the type of functional group added.

More broadly speaking, we can say that the template pre-training method generates more chemically
valid reactions compared to the random pre-training method. However, the advantage of the random
pre-training method is that it can break bonds that are not represented within the templates, thereby
perhaps conferring a higher ability to generalize. As routine, the model is pre-trained on these
automatically constructed auxiliary tasks, and then used as initialization to be fine-tuned on the
actual retrosynthesis data.
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4.2 MIXTURE MODEL

Next, we tackle the problem of generating diverse predictions. As mentioned earlier, the retrosyn-
thesis problem is a one-to-many mapping since a target molecule can be formed from different types
of reactions. We would like the model to produce a diverse set of predictions so that chemists
can choose the most feasible and economical one in practice. However, hypotheses generated by
a vanilla seq2seq model with beam search typically exemplifies low diversity with only minor dif-
ferences in the suffix, see Figure 8 (Vijayakumar et al., 2016). To address this, we use a mixture
seq2seq model that has shown sucess in generating diverse machine translations to generate diverse
retrosynthesis reaction predictions (He et al., 2018; Shen et al., 2019).

Figure 5: An example beam search; often times, the outputs of a beam search will be very similar to
each other, here only differing in a single atom for the top 3 predictions.

Specifically, given a target SMILES string x and reactants SMILES string y, a mixture model in-
troduces a multinomial latent variable z ∈ {1, · · · ,K} to capture different reaction types, and
decomposes the marginal likelihood as:

p(y|x; θ) =
K∑

z=1

p(y, z|x; θ) =
K∑

z=1

p(z|x; θ)p(y|z, x; θ) (1)

Here, the prior p(z|x; θ) and likelihood p(y|z, x; θ) parameterized by θ are functions to be learned.

We use a uniform prior p(z|x; θ) = 1/K, which is easy to implement and works well in prac-
tice (Shen et al., 2019). For p(y|z, x; θ), we share the encoder-decoder network among mixture
components, and feed the embedding of z as an input to the decoder so that y is conditioned on it.
The increase in the parameters of our model is negligible over the baseline model.

We train the mixture model with the online hard-EM algorithm. Taking a mini-batch of
training examples {(x(i), y(i))}mi=1, we enumerate all K values of z and compute their loss,
− log p(y(i)|z, x(i); θ). Then, for each (x(i), y(i)), we select the value of z that yields the minimum
loss: z(i) = argminz − log p(y(i)|z, x(i); θ), and back-propagate through it, so only one compo-
nent receives gradients per example. An important detail for successfully training a mixture model
is that dropout is turned off in the forward passes for latent variable selection, and turned back on at
back-propagation time for gradient regularization. Otherwise even a small amount of dropout noise
will corrupt the optimal value of z, making the selection random and the different latent components
will fail to diversify (Shen et al., 2019).

The hard selection of the latent variable forces different components to specialize on different subsets
of the data. As we shall later see in the experimental results, our mixture model can learn to represent
different reaction types in the training data and show improved diversity over the baseline.

5 EXPERIMENTAL SETUP

5.1 DATA

The benchmark dataset we use is a subset of the open source patent database of chemical reactions
(Lowe, 2012). Specifically, we use the curated 50k subset (USPTO-50k) from Liu et al. (2017),
including the same data splits. Each example reaction in this dataset is labeled with one of ten
reaction classes, which describes its transformation type, but we do not use this information in our
experiments, similar to Karpov et al. (2019). Since we are only interested in the retrosynthesis
prediction problem, the examples are processed to remove any reagent molecules (molecules that do
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not contribute atoms to the reaction). The reactions are tokenized in the same manner as in Schwaller
et al. (2019), with each token being a meaningful subunit of the molecule (i.e., an atom or bond).

In addition, we create a separate split of the USPTO-50k data, in which the train and test sets are
split by reaction templates. Specifically, we split the data so that no example in the test set can be
solved correctly with any templates extracted from training data. We use the template extraction
code from Coley et al. (2017), which to the best of our knowledge, is the only publicly available
template extraction code.

5.2 EVALUATION METRICS

Accuracy The evaluation of retrosynthesis is challenging, because each input target has many valid
syntheses, but only one is given in the data. When the model output does not exactly match the single
solution in the data, the model is not necessarily wrong, but simply giving a plausible alternative.
Therefore, we focus on the top-10 accuracy for our evaluation, but present all results from our
experiments. We compute the accuracies by matching the canonical SMILES strings of molecule
sets. For the mixture model, we output the top 10 predictions for each latent class, and then combine
those results based on likelihoods to get top 10 predictions overall.

Diversity To measure diversity, we provide both quantitative and human evaluations. For the former,
we train a model to predict the reaction class given the input target molecule and the predicted
output. We use a typical message-passing graph convolution network (Jin et al., 2017) to embed
both the input and output molecules (using weight-sharing) and compute the reaction embedding as
a difference of the two embeddings. This predictor is trained on the 10 reaction class labels in the
USPTO-50k dataset, and achieves 99% accuracy on the test set, so we can be fairly confident in its
ability to predict the reaction class in-domain.

5.3 BASELINES

Our main baseline is the SMILES transformer (Base), adapted from Schwaller et al. (2019). We
run the same model as other recent works for this task (Lin et al., 2019; Karpov et al., 2019),
and we build on top of the Transformer implementation from OpenNMT (Klein et al., 2017). We
run ablation experiments for pre-training and different mixture models to show the impact of each
approach. Random pre-training is referred to as Pre-train (R), while template-based pre-training
is referred to as Pre-train (T). For each example, we construct up to 10 new auxiliary examples,
and pre-train the model on these examples. Additionally, following Schwaller et al. (2019), we also
augment the training data with variations of the input SMILES string, referred to as Aug. That is,
for each training example, we add an extra example using a different input SMILES string, which
is trained to predict the same output reactants. This helps the model learn representations robust to
the permutation of the input SMILES string. In addition to our experiments, we include a template-
based approach from Coley et al. (2018), and a template-free approach from Zheng et al. (2019) that
adds a syntax predictor on top of the transformer model.

6 RESULTS

Accuracy The accuracy results of our model is shown in Table 1. We observe that both pre-training
tasks improve over the baseline, and more so when combined with data augmentation. This shows
that our pre-training tasks help the model learn the chemical reaction representational space, and are
useful for the retrosynthesis prediction problem. However, interestingly, there seem to be marginal
differences between the two pre-training methods. We attribute this to the fact that both pre-training
methods usually generate very similar sets of examples. Previously shown in Figure 3, one of the
main differences of template-based pre-training is just that it adds additional functional groups. But
since these generated examples are not always chemically valid, having this extra information may
not prove to be very valuable. We do note, however, that constructing additional decompositions of
the input targets does actually matter for the pre-training task. We had also experimented with pre-
training methods that only used variations of the input SMILES strings as pre-training output targets
(because each molecule has many different SMILES representations). However, these methods did
not result in the same performance gains, because these pre-training targets do not contain much
useful information for the actual task.
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Model Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

Template (Coley et al., 2017) 37.3 - 54.7 - 63.3 74.1
SCROP (Zheng et al., 2019) 43.7 - 60.0 - 65.2 68.7

L
at

en
tN

=
1 Base 42.0 52.8 57.0 59.9 61.9 65.7

Aug 44.0 55.3 60.1 63.0 65.1 69.0
Pre-train (R) 43.3 54.6 59.7 62.4 64.6 68.7
Pre-train (T) 43.5 55.6 61.5 64.8 67.4 71.3

Pre-train (R) + Aug (44.8) 57.1 62.6 65.7 67.7 71.1
Pre-train (T) + Aug 44.5 56.9 62.7 65.6 67.7 71.7

L
at

en
tN

=
2 Base 42.1 54.4 60.0 63.1 64.9 70.3

Aug 43.1 56.6 62.2 65.9 68.1 73.3
Pre-train (R) 42.5 56.1 61.8 65.4 67.7 72.9
Pre-train (T) 42.7 56.0 62.3 66.0 68.0 74.2

Pre-train (R) + Aug 43.6 (57.7) 63.7 67.3 69.6 75.2
Pre-train (T) + Aug 42.6 57.0 64.0 68.6 71.3 76.6

L
at

en
tN

=
5 Base 39.1 55.4 62.5 66.5 69.1 74.5

Aug 39.7 56.9 64.1 68.1 71.1 77.0
Pre-train (R) 39.7 55.8 63.5 67.6 70.1 76.0
Pre-train (T) 39.9 54.6 62.9 68.2 71.2 77.7

Pre-train (R) + Aug 40.2 56.7 64.9 69.6 72.4 78.4
Pre-train (T) + Aug 40.5 56.8 (65.1) (70.1) (72.8) (79.4)

Table 1: Accuracy metrics on the USPTO-50K dataset without reaction labels. The variations we
test are data augmentation, pre-training and number of latent classes. The highest accuracy model
for each different latent model is bolded, and the highest accuracy model overall is parenthesized.

Our original motivation for using a mixture model was to improve diversity, but we observe that it
also leads to an increase in performance. We try N = {1, 2, 5} for the number of discrete latent
classes, and we see that more latent classes generally leads to higher accuracies. The top-1 accu-
racy does decrease slightly as the number of latent classes increases, but we observe much higher
accuracies at top-10 (increase of 7-8%). Importantly, we note that our method of combining outputs
from different latent classes is not perfect, as the likelihoods from different latent classes are not
totally comparable. That is likely the cause of the decrease in top-1 accuracy; yet as we mentioned
in Section 5.2, top-10 accuracies are significantly more meaningful for our problem.

Top-1 Top-2 Top-3 Top-4 Top-5 Top-10
Base Model 4.3 8.7 11.9 14.7 16.6 20.6

Best Mixture Model 5.5 9.2 12.6 15.4 17.6 26.6

Table 2: Prediction accuracies when tested on our template split of the USPTO dataset, for which
any template-based model would get 0% accuracy on the test set. We see that our template-free
methods can still generalize to this test set.

Next, we show our results on a different split of the data, which is more challenging to generalize.
Using the dataset split on templates described in Section 5.1, we explore the performance of our best
mixture model with pre-training compared to the baseline with no pre-training. As mentioned earlier,
template-free models confer advantages over template-based models, as template-based models lack
the ability to generalize outside of extracted rules. For this dataset, any template-based model would
necessarily achieve 0% accuracy based on construction. Table 2 compares the performance of the
different models and we see that, although the task is challenging, we can attain substantial accuracy
of 26.6% at top-10 compared to 20.6% of the baseline. Even on this difficult task, we show that our
model offers generalizability on the test set.
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Unique Reactions
Base Model 2.66

Mixture Model 3.32

Human Diversity
Base Model 21

Mixture Model 43
Neither 36

Table 3: The left table shows the comparison of number of unique reactions predicted by the base
model vs. the mixture model (holding other factors constant). The right table shows human eval-
uation metrics, in which a human was asked to rate whether the outputs of the base model or the
mixture model was more diverse, or neither.

Figure 6: Heat map plotting the frequency that each latent class generates a specific reaction class.
Here, we use a mixture model with 5 latent classes, and there are 10 reaction classes of interest for
this data set. The reaction classes are determined by a pre-trained model described in Section 5.2

Diversity We now look at evaluations of diversity for our model. Using the reaction class model
described in Section 5.2, we predict the reaction class for every output of our models. Then, we
compute the average number of unique reaction classes, holding all other factors constant besides
varying the number of latent classes (results shown in Table 3). The number of unique reaction
classes is 3.32 for the mixture model compared to the 2.66 for the base model, suggesting that the
mixture model predicts a more diverse cast of outputs.

The diversity of the predictions can also be examined from an interpretability standpoint for the
latent classes of the mixture model. Using the reaction class model, we take the 10 top predictions
from each latent class, and count the number of occurrences for each reaction class. Normalizing
across reaction classes, we can see from Figure 6 that each latent class learns to predict a different
distribution of reaction classes.

We also supplement our diversity results with human evaluation. To make the problem tractable for
a human chemist, we randomly select 100 different reactions from the test set and present the top 5
predicted outputs from both the base and mixture model, where the the task is to determine diversity
based on number of different types of reactions. The human chemist is asked to choose which of
the two output sets is more diverse, or neither if the two sets do not differ in diversity (see Appendix
C). For this task, the human chemist chose the mixture model more than twice as often as the base
model (43 times vs 21), see Table 3. Although not perfect, these results exemplify that our model
does generate more diverse outputs than the baseline.

7 CONCLUSION

We explored the problem of making one-step retrosynthesis reaction predictions, dealing with the
issues of generalizability and making diverse predictions. Through pre-training and use of mixture
models, we show that our model beats state-of-the-art methods in terms of accuracy and generates
more diverse predictions. Even on a challenging task, for which any template-based models would
fail, our model still is able to generalize to the test set.
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A RARE REACTIONS

To compute a subset of the data with only rare reactions, we extracted all the templates from the
entire USPTO-50k dataset, and selected the templates that occurs at most 10 times. The reactions
in the test set that have these templates constitute the rare reaction subset, which is around 400
examples. The results for this rare reaction subset can be found in Table 4. From this table, we can
see that the top-1 accuracy for the baseline model is only 18.6% which is roughly 25% drop from
the 42% in Table 1. We also mention that our new models improve over this baseline, showing more
generalizability.

Top-1 Top-2 Top-3 Top-4 Top-5 Top-10
Base Model 18.6 23.9 26.1 26.4 28.9 31.9

Pre-trained Model 19.8 26.4 29.9 33.4 35.4 37.7
Mixture Model 16.3 24.1 28.6 30.7 32.9 39.9

Table 4: Prediction accuracies on the rare reaction test subset.

B SMILES REPRESENTATIONS

Each molecule has many different SMILES representation, because each different SMILES string
is just a different graph traversal over the molecule (see Figure 7). Although there is often some
canonical SMILES string which is consistent, it is still completely arbitrary.

(a) SMILES: Fc1cc2cncnc2cn1 (b) SMILES: c1ncc2cc(F)ncc2n1

Figure 7: A single molecule has many different SMILES representations. On the left (a) is the
canonical SMILES string, and on the right (b) is another SMILES string representing in the same
molecule.

Additionally, because SMILES is a 1-D encoding of the 2-D molecular graph, two atoms that are
close in the graph may be far apart in the SMILES string, shown in Figure 8. To correctly decode a
SMILES string, the decoder has to be aware of long-range dependencies. For instance, numbers in
the SMILES string indicate the start and end of a cycle. The decoder has to close all cycles that it
starts, and at the right position, or else the output SMILES will be invalid.

Figure 8: The carbon atom (red) and the oxygen atom (blue) are neighbors on the molecular graph.
However, in the SMILES string, they are far apart.
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C HUMAN EVALUATION ON DIVERSITY

For human evaluation of diversity, we asked a senior (5+ years) PhD chemistry student to compare
the outputs of the base model versus the mixture model. The human is given the top 5 outputs of each
model and asked to rate which set is more diverse by comparing the number of reactions that differ in
reaction type or location of reaction on molecule. Reactions that used slightly different precursors
were considered identical, and therefore does not contribute to diversity (for example, protection
reactions with different protection groups are considered as one type). Lastly, the evaluation was
done with the correctness of the overall reaction in mind.
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