
Published as a conference paper at ICLR 2019

IMAGENET-TRAINED CNNS ARE BIASED TOWARDS
TEXTURE; INCREASING SHAPE BIAS IMPROVES
ACCURACY AND ROBUSTNESS

Robert Geirhos
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University of Tübingen & U. of Edinburgh
p.rubisch@sms.ed.ac.uk

Claudio Michaelis
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ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri
8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox
3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri
9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.
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1 INTRODUCTION

How are Convolutional Neural Networks (CNNs) able to reach impressive performance on complex
perceptual tasks such as object recognition (Krizhevsky et al., 2012) and semantic segmentation
(Long et al., 2015)? One widely accepted intuition is that CNNs combine low-level features (e.g.
edges) to increasingly complex shapes (such as wheels, car windows) until the object (e.g. car) can
be readily classified. As Kriegeskorte (2015) puts it, “the network acquires complex knowledge
about the kinds of shapes associated with each category. [...] High-level units appear to learn
representations of shapes occurring in natural images” (p. 429). This notion also appears in other
explanations, such as in LeCun et al. (2015): Intermediate CNN layers recognise “parts of familiar
objects, and subsequent layers [...] detect objects as combinations of these parts” (p. 436). We term
this explanation the shape hypothesis.

This hypothesis is supported by a number of empirical findings. Visualisation techniques like De-
convolutional Networks (Zeiler & Fergus, 2014) often highlight object parts in high-level CNN fea-
tures.1 Moreover, CNNs have been proposed as computational models of human shape perception
by Kubilius et al. (2016), who conducted an impressive number of experiments comparing human
and CNN shape representations and concluded that CNNs “implicitly learn representations of shape
that reflect human shape perception” (p. 15). Ritter et al. (2017) discovered that CNNs develop a
so-called “shape bias” just like children, i.e. that object shape is more important than colour for
object classification (although see Hosseini et al. (2018) for contrary evidence). Furthermore, CNNs
are currently the most predictive models for human ventral stream object recognition (e.g. Cadieu
et al., 2014; Yamins et al., 2014); and it is well-known that object shape is the single most impor-
tant cue for human object recognition (Landau et al., 1988), much more than other cues like size or
texture (which may explain the ease at which humans recognise line drawings or millennia-old cave
paintings).

On the other hand, some rather disconnected findings point to an important role of object textures
for CNN object recognition. CNNs can still classify texturised images perfectly well, even if the
global shape structure is completely destroyed (Gatys et al., 2017; Brendel & Bethge, 2019). Con-
versely, standard CNNs are bad at recognising object sketches where object shapes are preserved
yet all texture cues are missing (Ballester & de Araújo, 2016). Additionally, two studies suggest that
local information such as textures may actually be sufficient to “solve” ImageNet object recogni-
tion: Gatys et al. (2015) discovered that a linear classifier on top of a CNN’s texture representation
(Gram matrix) achieves hardly any classification performance loss compared to original network
performance. More recently, Brendel & Bethge (2019) demonstrated that CNNs with explicitly con-
strained receptive field sizes throughout all layers are able to reach surprisingly high accuracies on
ImageNet, even though this effectively limits a model to recognising small local patches rather than
integrating object parts for shape recognition. Taken together, it seems that local textures indeed
provide sufficient information about object classes—ImageNet object recognition could, in princi-
ple, be achieved through texture recognition alone. In the light of these findings, we believe that it
is time to consider a second explanation, which we term the texture hypothesis: in contrast to the
common assumption, object textures are more important than global object shapes for CNN object
recognition.

Resolving these two contradictory hypotheses is important both for the deep learning community
(to increase our understanding of neural network decisions) as well as for the human vision and
neuroscience communities (where CNNs are being used as computational models of human object
recognition and shape perception). In this work we aim to shed light on this debate with a num-
ber of carefully designed yet relatively straightforward experiments. Utilising style transfer (Gatys
et al., 2016), we created images with a texture-shape cue conflict such as the cat shape with elephant
texture depicted in Figure 1c. This enables us to quantify texture and shape biases in both humans
and CNNs. To this end, we perform nine comprehensive and careful psychophysical experiments
comparing humans against CNNs on exactly the same images, totalling 48,560 psychophysical tri-
als across 97 observers. These experiments provide behavioural evidence in favour of the texture
hypothesis: A cat with an elephant texture is an elephant to CNNs, and still a cat to humans. Beyond
quantifying existing biases, we subsequently present results for our two other main contributions:

1To avoid any confusion caused by different meanings of the term ‘feature’, we consistently use it to refer
to properties of CNNs (learned features) rather than to object properties (such as colour). When referring to
physical objects, we use the term ‘cue’ instead.
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Figure 2: Accuracies and example stimuli for �ve different experiments without cue con�ict.

changing biases, and discovering emergent bene�ts of changed biases. We show that the texture bias
in standard CNNs can be overcome and changed towards a shape bias if trained on a suitable data
set. Remarkably, networks with a higher shape bias are inherently more robust to many different
image distortions (for some even reaching or surpassing human performance,despite never being
trained on any of them) and reach higher performance on classi�cation and object recognition tasks.

2 METHODS

In this section we outline the core elements of paradigm and procedure. Extensive details to facilitate
replication are provided in the Appendix. Data, code and materials are available from this repository:
https://github.com/rgeirhos/texture-vs-shape

2.1 PSYCHOPHYSICAL EXPERIMENTS

All psychophysical experiments were conducted in a well-controlled psychophysical lab setting and
follow the paradigm of Geirhos et al. (2018), which allows for direct comparisons between human
and CNN classi�cation performance on exactly the same images. Brie�y, in each trial participants
were presented a �xation square for 300 ms, followed by a 300 ms presentation of the stimulus
image. After the stimulus image we presented a full-contrast pink noise mask (1/f spectral shape)
for 200 ms to minimise feedback processing in the human visual system and to thereby make the
comparison to feedforward CNNs as fair as possible. Subsequently, participants had to choose one
of 16 entry-level categories by clicking on a response screen shown for 1500 ms. On this screen,
icons of all 16 categories were arranged in a4 � 4 grid. Those categories wereairplane , bear ,
bicycle , bird , boat , bottle , car , cat , chair , clock , dog , elephant , keyboard ,
knife , oven andtruck . Those are the so-called “16-class-ImageNet” categories introduced in
Geirhos et al. (2018).

The same images were fed to four CNNs pre-trained on standard ImageNet, namely AlexNet
(Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015), VGG-16 (Simonyan & Zisserman,
2015) and ResNet-50 (He et al., 2015). The 1,000 ImageNet class predictions were mapped to the
16 categories using the WordNet hierarchy (Miller, 1995)—e.g. ImageNet categorytabby cat
would be mapped tocat . In total, the results presented in this study are based on 48,560 psy-
chophysical trials and 97 participants.

2.2 DATA SETS (PSYCHOPHYSICS)

In order to assess texture and shape biases, we conducted six major experiments along with three
control experiments, which are described in the Appendix. The �rst �ve experiments (samples
visualised in Figure 2) are simple object recognition tasks with the only difference being the image
features available to the participant:

Original 160 natural colour images of objects (10 per category) with white background.

3

https://github.com/rgeirhos/texture-vs-shape



	Introduction
	Methods
	Psychophysical experiments
	data sets (Psychophysics)
	Stylized-ImageNet

	Results
	Texture vs shape bias in humans and ImageNet-trained CNNs
	Overcoming the texture bias of CNNs
	Robustness and accuracy of shape-based representations

	Discussion
	Conclusion
	Appendix
	Reproducibility & Access to Code / Models / Data
	Procedure
	Apparatus
	Participants
	CNN models & training details
	Image manipulations and image database
	Stylized-ImageNet (SIN)
	Results: cue conflict control experiments (different instructions)
	Results: filled silhouette experiment
	Image rights & attribution


