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Abstract

We present a comprehensive study of multilayer neural networks with binary
activation, relying on the PAC-Bayesian theory. Our contributions are twofold:
(i) we develop an end-to-end framework to train a binary activated deep neural
network, (ii) we provide nonvacuous PAC-Bayesian generalization bounds for
binary activated deep neural networks. Our results are obtained by minimizing the
expected loss of an architecture-dependent aggregation of binary activated deep
neural networks. Our analysis inherently overcomes the fact that binary activation
function is non-differentiable. The performance of our approach is assessed on a
thorough numerical experiment protocol on real-life datasets.

1 Introduction

The remarkable practical successes of deep learning make the need for better theoretical understanding
all the more pressing. The PAC-Bayesian theory has recently emerged as a fruitful framework to
analyze generalization abilities of deep neural network. Inspired by precursor work of Langford and
Caruana [2001], nonvacuous risk bounds for multilayer architectures have been obtained by Dziugaite
and Roy [2017], Zhou et al. [2019]. Although informative, these results do not explicitly take into
account the network architecture (number of layers, neurons per layer, type of activation function). A
notable exception is the work of Neyshabur et al. [2018] which provides a PAC-Bayesian analysis
relying on the network architecture and the choice of ReLU activation function. The latter bound
arguably gives insights on the generalization mechanism of neural networks (namely in terms of the
spectral norms of the learned weight matrices), but their validity hold for some margin assumptions,
and they are likely to be numerically vacuous.

We focus our study on deep neural networks with a sign activation function. We call such networks
binary activated multilayer (BAM) networks. This specialization leads to nonvacuous generalization
bounds which hold under the sole assumption that training samples are iid. We provide a PAC-
Bayesian bound holding on the generalization error of a continuous aggregation of BAM networks.
This leads to an original approach to train BAM networks, named PBGNet. The building block of
PBGNet arises from the specialization of PAC-Bayesian bounds to linear classifiers [Germain et al.,
2009], that we adapt to deep neural networks. The term binary neural networks has been coined by
Bengio [2009], and further studied in Hubara et al. [2016, 2017], Soudry et al. [2014]: it refers to
neural networks for which both the activation functions and the weights are binarized (in contrast
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with BAM networks). These architectures are motivated by the desire to reduce the computation and
memory footprints of neural networks.

Our theory-driven approach is validated on real life datasets, showing competitive accuracy with
tanh-activated multilayer networks, and providing nonvacuous generalization bounds.

Organisation of the paper. We formalize our framework and notation in Section 2, along with
a presentation of the PAC-Bayes framework and its specialization to linear classifiers. Section 3
illustrates the key ideas we develop in the present paper, on the simple case of a two-layers neural
network. This is then generalized to deep neural networks in Section 4. We present our main
theoretical result in Section 5: a PAC-Bayesian generalization bound for binary activated deep neural
networks, and the associated learning algorithm. Section 6 presents the numerical experiment protocol
and results. The paper closes with avenues for future work in Section 7.

2 Framework and notation

We stand in the supervised binary classification setting: given a real input vector1 x ∈ Rd0 , one wants
to predict a label y ∈ {−1, 1}. Let us consider a neural network of L fully connected layers with a
(binary) sign activation function: sgn(a) = 1 if a > 0 and sgn(a) = −1 otherwise.2 We let dk denote
the number of neurons of the kth layer, for k ∈ {1, . . . , L}; d0 is the input data point dimension,
and D :=

∑L
k=1 dk−1dk is the total number of parameters. The output of the (deterministic) BAM

network on an input data point x ∈ Rd0 is given by

fθ(x) = sgn
(
WLsgn

(
WL−1sgn

(
. . . sgn

(
W1x

))))
, (1)

where Wk ∈ Rdk×dk−1 denotes the weight matrices. The network is thus parametrized by
θ= vec

(
{Wk}Lk=1

)
∈RD. The ith line of matrix Wk will be denoted wi

k. For binary classification,
the BAM network final layer WL∈R1×dL−1 has one line (dL=1), that is a vector wL∈RdL−1 , and
fθ : Rd0→{−1, 1}. We study the classification accuracy under the linear loss `(y′, y) := 1

2 (1− yy′).

2.1 Elements from the PAC-Bayesian theory

The Probably Approximately Correct (PAC) framework [introduced by Valiant, 1984] holds under the
frequentist assumption that data is sampled in an iid fashion from a data distribution D over the input-
output space. The learning algorithm observes a finite training sample S = {(xi, yi)}ni=1 ∼ D⊗n
and outputs a predictor f : Rd0 → {−1, 1}. We define LD(f) as the generalization loss on the data
generating distribution D, and L̂S(f) as the empirical error on the training set, given by

LD(f) = E
(x,y)∼D

`(f(x), y) , and L̂S(f) =
1

n

n∑
i=1

`(f(xi), yi) .

PAC-Bayes considers the expected loss of an aggregation of predictors: considering a distri-
bution Q (called the posterior) over a family of binary classifiers F , one obtains PAC upper
bounds on Ef∼Q LD(f). Under the linear loss, this is equivalent to the loss of the predictor
FQ(x) := Ef∼Q f(x), performing a Q-aggregation of all classifiers in F . In other words, we may
upper bound with an arbitrarily high probability the generalization loss LD(FQ), by its empirical
counterpart L̂S(FQ) and a complexity term, the Kullback-Leibler divergence between Q and a
reference measure P (called the prior distribution) chosen independently of the training set S, given
by KL(Q‖P ) :=

∫
ln Q(θ)

P (θ)Q(dθ). Since the seminal works of Shawe-Taylor and Williamson [1997],
McAllester [1999, 2003] and Catoni [2003, 2004, 2007], the celebrated PAC-Bayesian theorem has
been declined in many forms [see Guedj, 2019, for a survey]. The following Theorems 1 and 2 will
be useful in the sequel.

1Bold uppercase letters denote matrices, bold lowercase letters denote vectors.
2We consider the activation function as an element-wise operator when applied to vectors or matrices.
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Theorem 1 (Seeger [2002]). Given a prior P on F , with probability at least 1− δ over S ∼ D⊗n,

for all Q on F : kl
(
L̂S(FQ)

∥∥LD(FQ)
)
≤ KL(Q‖P ) + ln 2

√
n
δ

n
, (2)

where kl(q‖p) := q ln q
p + (1 − q) ln 1−q

1−p is the Kullblack-Leibler divergence between Bernoulli
distributions with probability of success p and q, respectively.
Theorem 2 (Catoni [2007]). Given P on F and C > 0, with probability at least 1−δ over S ∼ D⊗n,

for all Q on F : LD(FQ) ≤ 1

1− e−C
(

1− exp

(
−C L̂S(FQ)− KL(Q‖P ) + ln 1

δ

n

))
. (3)

From Theorems 1 and 2, we obtain PAC-Bayesian bounds on the linear loss of the Q-aggregated
predictor FQ. The obtained bounds can be turned into bounds on the zero-one loss with an extra 2
multiplicative factor (using the elementary inequality 1[y′ 6= y] ≤ 2`(y′, y)).

2.2 Elementary building block: PAC-Bayesian learning of linear classifiers

The PAC-Bayesian specialization to linear classifiers has been proposed by Langford and Shawe-
Taylor [2002], and used for providing tight generalization bounds and a model selection criteria
[further studied by Ambroladze et al., 2006, Langford, 2005, Parrado-Hernández et al., 2012].
This paved the way to the PAC-Bayesian bound minimization algorithm of Germain et al. [2009],
that learns a linear classifier fw(x) := sgn(w · x), with w ∈ Rd. The strategy is to consider a
Gaussian posterior Qw := N (w, Id) and a Gaussian prior Pw0

:= N (w0, Id) over the space of all
linear predictors Fd := {fv|v ∈ Rd} (where Id denotes the d × d identity matrix). The posterior
is used to define a linear predictor fw and the prior may have been learned on previously seen
data; a common uninformative prior being the null vector w0 = 0. With such parametrization,
KL(Qw‖Pw0) = 1

2‖w −w0‖2. Moreover, the Qw-aggregated output can be written in terms of the
Gauss error function erf(·). In Germain et al. [2009], the erf function is introduced as a loss function
to be optimized. Here we interpret it as the predictor output, to be in phase with our neural network
approach. Likewise, we study the linear loss of an aggregated predictor instead of the Gibbs risk of a
stochastic classifier. We obtain (explicit calculations are provided in Appendix A.1 for completeness)

Fw(x) := E
v∼Qw

fv(x) = erf
(

w·x√
d‖x‖

)
, with erf(x) := 2√

π

∫ x
0
e−t

2

dt . (4)

Given a training set S ∼ D⊗n, Germain et al. [2009] propose to minimize a PAC-Bayes upper
bound on LD(Fw) by gradient descent on w. This approach is appealing as the bounds are valid
uniformly for all Qw (see Equations 2 and 3). In other words, the algorithm provides both a learned
predictor and a generalization guarantee that is rigorously valid (under the iid assumption) even when
the optimization procedure did not find the global minimum of the cost function (either because
it converges to a local minimum, or early stopping is used). Germain et al. [2009] investigate the
optimization of several versions of Theorems 1 and 2. The minimization of Theorem 1 generally leads
to tighter bound values, but empirical studies show lowest accuracy as the procedure conservatively
prevents overfitting. The best empirical results are obtained by minimizing Theorem 2 for a fixed
hyperparameter C, selected by cross-validation. Minimizing Equation (3) amounts to minimizing

C n L̂S(Fw) + KL(Qw‖Pw0) = C
1

2

n∑
i=1

erf

(
−yi

w · xi√
d‖xi‖

)
+

1

2
‖w −w0‖2 . (5)

In their discussion, Germain et al. [2009] observe that the objective in Equation (5) is similar to
the one optimized by the soft-margin Support Vector Machines [Cortes and Vapnik, 1995], by
roughly interpreting the hinge loss max(0, 1−yy′) as a convex surrogate of the probit loss erf(−yy′).
Likewise, Langford and Shawe-Taylor [2002] present this parameterization of the PAC-Bayes theorem
as a margin bound. In the following, we develop an original approach to neural networks based on a
slightly different observation: the predictor output given by Equation (4) is reminiscent of the tanh
activation used in classical neural networks (see Figure 3 in the appendix for a visual comparison).
Therefore, as the linear perceptron is viewed as the building block of modern multilayer neural
networks, the PAC-Bayesian specialization to binary classifiers is the cornerstone of our theoretical
and algorithmic framework for BAM networks.
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3 The simple case of a one hidden layer network

Let us first consider a network with one hidden layer of size d1. Hence, this network is parameterized
by weights θ = vec({W1,w2}), with W1 ∈ Rd1×d0 and w2 ∈ Rd1 . Given an input x ∈ Rd0 , the
output of the network is

fθ(x) = sgn
(
w2 · sgn(W1x)

)
. (6)

Following Section 2, we consider an isotropic Gaussian posterior distribution centered in θ, denoted
Qθ = N (θ, ID), over the family of all networks FD = {fθ̃ | θ̃ ∈ RD}. Thus, the prediction
of the Qθ-aggregate predictor is given by Fθ(x) = Eθ̃∼Qθ fθ̃(x). Note that Dziugaite and Roy
[2017], Langford and Caruana [2001] also consider Gaussian distributions over neural networks
parameters. However, as their analysis is not specific to a particular activation function—experiments
are performed with typical activation functions (sigmoid, ReLU)—the prediction relies on sampling
the parameters according to the posterior. An originality of our approach is that, by studying the sign
activation function, we can calculate the exact form of Fθ(x), as detailed below.

3.1 Deterministic network

Prediction. To compute the value of Fθ(x), we first need to decompose the probability of each
θ̃=vec({V1,v2})∼Qθ as Qθ(θ̃)=Q1(V1)Q2(v2), with Q1=N (W1, Id0d1) and Q2=N (w2, Id0).

Fθ(x) =

∫
Rd1×d0

Q1(V1)

∫
Rd1

Q2(v2)sgn(v2 · sgn(V1x))dv2dV1

=

∫
Rd1×d0

Q1(V1) erf
(

w2·sgn(V1x)√
2‖sgn(V1x)‖

)
dV1 (7)

=
∑

s∈{−1,1}d1

erf
(

w2·s√
2d1

)∫
Rd1×d0
1[s = sgn(V1x)]Q1(V1) dV1 (8)

=
∑

s∈{−1,1}d1

erf
(

w2·s√
2d1

)
Ψs (x,W1) , (9)

where, from Q1(V1) =
∏d1
i=1Q

i
1(vi1) with Qi1 := N (wi

1, Id0), we obtain

Ψs (x,W1) :=

d1∏
i=1

∫
Rd0

1[si x · vi1 > 0]Qi1(vi1) dvi1 =

d1∏
i=1

[
1

2
+
si
2

erf

(
wi

1 · x√
2 ‖x‖

)]
︸ ︷︷ ︸

ψsi (x,w
i
1)

. (10)

Line (7) states that the output neuron is a linear predictor over the hidden layer’s activation values
s = sgn(V1x); based on Equation (4), the integral on v2 becomes erf

(
w2 · s/(

√
2‖s‖)

)
. As a

function of s, the latter expression is piecewise constant. Thus, Line (8) discretizes the integral on V1

as a sum of the 2d1 different values of s = (si)
d1
i=1, si ∈ {−1, 1}. Note that ‖s‖2 = d1.

Finally, one can compute the exact output of Fθ(x), provided one accepts to compute a sum combi-
natorial in the number of hidden neurons (Equation 9). We show in forthcoming Section 3.2 that it is
possible to circumvent this computational burden and approximate Fθ(x) by a sampling procedure.

Derivatives. Following contemporary approaches in deep neural networks [Goodfellow et al., 2016],
we minimize the empirical loss L̂S(Fθ) by stochastic gradient descent (SGD). This requires to
compute the partial derivative of the cost function according to the parameters θ:

∂L̂S(Fθ)

∂θ
=

1

n

n∑
i=1

∂`(Fθ(xi), yi)

∂θ
=

1

n

n∑
i=1

∂Fθ(xi)

∂θ
`′(Fθ(xi), yi) , (11)

with the derivative of the linear loss `′(Fθ(xi), yi) = − 1
2y.
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s = (−1,−1,−1) s = (−1,−1, 1) s = (−1, 1,−1) s = (−1, 1, 1) Deterministic Network Fθ

s = (1,−1,−1) s = (1,−1, 1) s = (1, 1,−1) s = (1, 1, 1) BAM Network fθ
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Figure 1: Illustration of the proposed method for a one hidden layer network of size d1=3, interpreted
as a majority vote over 8 binary representations s ∈ {−1, 1}3. For each s, a plot shows the values
of Fw2(s)Ψs(x,W1). The sum of these values gives the deterministic network output Fθ(x) (see
Eq. 9). We also plot the BAM network output fθ(x) for the same parameters θ (see Eq. 6).

The partial derivatives of the prediction function (Equation 9) according to the hidden layer parameters
wk

1 ∈ {w1
1, . . . ,w

d1
1 } and the output neuron parameters w2 are

∂

∂wk
1

Fθ(x) =
x

2
3
2 ‖x‖

erf ′
(

wk
1 · x√
2 ‖x‖

) ∑
s∈{−1,1}d1

sk erf

(
w2 · s√

2d1

)[
Ψs(x,W1)

ψsk(x,wk
1)

]
, (12)

∂

∂w2
Fθ(x) =

1√
2d1

∑
s∈{−1,1}d1

s erf ′
(
w2 · s√

2d1

)
Ψs(x,W1) , with erf ′(x) := 2√

π
e−x

2

. (13)

Note that this is an exact computation. A salient fact is that even though we work on non-differentiable
BAM networks, we get a structure trainable by (stochastic) gradient descent by aggregating networks.

Majority vote of learned representations. Note that Ψs (Equation 10) defines a distribution on s.
Indeed,

∑
s Ψs(x,W1)=1, as Ψs(x,W1) + Ψs̄(x,W1) = 2−d1 for every s̄=−s. Thus, by Equa-

tion (9) we can interpret Fθ akin to a majority vote predictor, which performs a convex combination
of a linear predictor outputs Fw2

(s) := erf(w2 · s/
√

2d1). The vote aggregates the predictions on
the 2d1 possible binary representations. Thus, the algorithm does not learn the representations per se,
but rather the weights Ψs(x,W1) associated to every s given an input x, as illustrated by Figure 1.

3.2 Stochastic approximation

Since Ψs (Equation 10) defines a distribution, we can interpret the function value as the probability
of mapping input x into the hidden representation s given the parameters W1. Using a different
formalism, we could write Pr(s|x,W1) = Ψs(x,W1). This viewpoint suggests a sampling scheme
to approximate both the predictor output (Equation 9) and the partial derivatives (Equations 12
and 13), that can be framed as a variant of the REINFORCE algorithm [Williams, 1992] (see the
discussion below): We avoid computing the 2d1 terms by resorting to a Monte Carlo approximation
of the sum. Given an input x and a sampling size T , the procedure goes as follows.

Prediction. We generate T random binary vectors Z={st}Tt=1 according to the Ψs(x,W1)-
distribution. This can be done by uniformly sampling zti∈[0, 1], and setting sti=sgn(ψ1(x,wi

1)−zti).

A stochastic approximation of Fθ(x) is given by F̂θ(Z) := 1
T

∑T
t=1 erf

(
w2·st√

2d1

)
.

Derivatives. Note that for a given sample {st}Tt=1, the approximate derivatives according to w2

(Equation 15 below) can be computed numerically by the automatic differentiation mechanism of
deep learning frameworks while evaluating F̂θ(Z) [e.g., Paszke et al., 2017]. However, we need the
following Equation (14) to approximate the gradient according to W1 because ∂F̂θ(Z)/∂wk

1 = 0.
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Figure 2: Illustration of the BAM to tree architecture map on a three layers network.

∂

∂wk
1

Fθ(x) ≈ x

T 2
3
2 ‖x‖

erf ′
(

wk
1 · x√
2 ‖x‖

) T∑
t=1

stk
ψstk(x,wk

1)
erf

(
w2 · st√

2d1

)
; (14)

∂

∂w2
Fθ(x) ≈ 1

T
√

2d1

T∑
t=1

st erf ′
(
w2 · st√

2d1

)
=

∂

∂w2
F̂θ(Z) . (15)

Similar approaches to stochastic networks. Random activation functions are commonly used in
generative neural networks, and tools have been developed to train these by gradient descent (see
Goodfellow et al. [2016, Section 20.9] for a review). Contrary to these approaches, our analysis
differs as the stochastic operations are introduced to estimate a deterministic objective. That being
said, Equation (14) can be interpreted as a variant of REINFORCE algorithm [Williams, 1992]
to apply the back-propagation method along with discrete activation functions. Interestingly, the
formulation we obtain through our PAC-Bayes objective is similar to a commonly used REINFORCE
variant [e.g., Bengio et al., 2013, Yin and Zhou, 2019], where the activation function is given by a
Bernoulli variable with probability of success σ(a), where a is the neuron input, and σ is the sigma is
the sigmoid function. The latter can be interpreted as a surrogate of our ψsi(x,w

i
1).

4 Generalization to multilayer networks

In the following, we extend the strategy introduced in Section 3 to BAM architectures with an arbitrary
number of layers L ∈ N∗ (Equation 1). An apparently straightforward approach to achieve this
generalization would have been to consider a Gaussian posterior distributionN (θ, ID) over the BAM
family {fθ̃|θ̃ ∈ RD}. However, doing so leads to a deterministic network relying on undesirable
sums of 2D elements. Instead, we define a mapping fθ 7→ gζ(θ) which transforms the BAM network
into a computation tree. An illustration of this mapping is given by Figure 4.

BAM to tree architecture map. Given a BAM network fθ of L layers with sizes d0, d1, . . . , dL
(reminder: dL=1), we obtain a computation tree by decoupling the neurons (i.e., the computation
graph nodes): the tree leaves contain

∏L
k=1 dk copies of each of the d0 BAM input neurons, and the

tree root node corresponds to the single BAM output neuron. Each input-output path of the original
BAM network becomes a path of length L from one leaf to the tree root. Each tree edge has its
own parameter (a real-valued scalar); the total number of edges/parameters is D† :=

∑L−1
k=0 d

†
k, with

d†k :=
∏L
i=k di. We define a set of tree parameters η recursively according to the tree structure. From

level k to k+1, the tree has d†k edges. That is, each node at level k+1 has its own parameters subtree
ηk+1 := {ηki }dki=0, where each ηki is either a weight vector containing the input edges parameters (by
convention, ηk0 ∈ Rdk−1 ) or a parameter set (thus, ηk1 , . . . , η

k
dk−1

are themselves parameter subtrees).
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Hence, the deepest elements of the recursive parameters set η are weight vectors η1 ∈ Rd0 . Let us
now define the output tree gη(x) := gL(x, η) on an input x ∈ Rd0 as a recursive function:

g1(x, {w}) = sgn (w · x) ,

gk+1(x, {w, ηk1 , . . . , ηkdk}︸ ︷︷ ︸
ηk

) = sgn
(
w · (gk(x, η1), . . . , gk(x, ηdk))︸ ︷︷ ︸

gk(x,ηk)

)
for k = 1, . . . , L−1 .

BAM to tree parameters map. Given BAM parameters θ, we denote θ1:k := vec
(
{Wk}ki=1

)
.

The mapping from θ into the corresponding (recursive) tree parameters set is ζ(θ) =
{wL, ζ1(θ1:L−1), . . . , ζdL−1

(θ1:L−1)}, such that ζi(θ1:k) = {wi
k, ζ1(θ1:k−1), . . . , ζdk−1

(θ1:k−1)},
and ζi(θ1:1) = {wi

1}. Note that the parameters tree obtained by the transformation ζ(θ) is highly
redundant, as each weight vector wi

k (the ith line of the Wk matrix from θ) is replicated d†k+1 times.
This construction is such that fθ(x) = gζ(θ)(x) for all x ∈ Rd0 .

Deterministic network. With a slight abuse of notation, we let η̃ ∼ Qη := N (η, ID†) denote a
parameter tree of the same structure as η, where every weight is sampled iid from a normal distribution.
We denote Gθ(x) := Eη̃∼Qζ(θ) gη̃(x), and we compute the output value of this predictor recursively.
In the following, we denote G(j)

θ1:k+1
(x) the function returning the jth neuron value of the layer k+1.

Hence, the output of this network is Gθ(x) = G(1)

θ1:L
(x). As such,

G
(j)
θ1:1

(x) =

∫
Rd0

Qwj1
(v)sgn(v · x)dv = erf

(
wj1·x√
2‖x‖

)
,

G
(j)
θ1:k+1

(x) =
∑

s∈{−1,1}dk

erf

(
wjk+1·s√

2dk

)
Ψk

s (x, θ), with Ψk
s (x, θ) =

dk∏
i=1

(
1

2
+

1

2
si ×G(i)

θ1:k
(x)

)
. (16)

The complete mathematical calculations leading to the above results are provided in Appendix A.2.
The computation tree structure and the parameter mapping ζ(θ) are crucial to obtain the recursive
expression of Equation (16). However, note that this abstract mathematical structure is never manipu-
lated explicitly. Instead, it allows computing each hidden layer vector (G(j)

θ1:k
(x))dkj=1 sequentially; a

summation of 2dk terms is required for each layer k = 1, . . . , L−1.

Stochastic approximation. Following the Section 3.2 sampling procedure trick for the one hidden
layer network, we propose to perform a stochastic approximation of the network prediction output,
by a Monte Carlo sampling for each layer. Likewise, we recover exact and approximate derivatives in
a layer-by-layer scheme. The related equations are given in Appendix A.3.

5 PBGNet: PAC-Bayesian SGD learning of binary activated networks

We design an algorithm to learn the parameters θ ∈ RD of the predictor Gθ by minimizing a
PAC-Bayesian upper bound on the generalization loss LD(Gθ). We name our algorithm PBGNet
(PAC-Bayesian Binary Gradient Network), as it is a generalization of the PBGD (PAC-Bayesian
Gradient Descent) learning algorithm for linear classifiers [Germain et al., 2009] to deep binary
activated neural networks.

Kullback-Leibler regularization. The computation of a PAC-Bayesian bound value relies on two
key elements: the empirical loss on the training set and the Kullback-Leibler divergence between
the prior and the posterior. Sections 3 and 4 present exact computation and approximation schemes
for the empirical loss L̂S(Gθ) (which is equal to L̂S(Fθ) when L=2). Equation (17) introduces the
KL-divergence associated to the parameter maps of Section 4. We use the shortcut notation K(θ, µ)
to refer to the divergence between two multivariate Gaussians of D† dimensions, corresponding to
learned parameters θ = vec

(
{Wk}Lk=1

)
and prior parameters µ = vec

(
{Uk}Lk=1

)
.

K(θ, µ) := KL
(
Qζ(θ)

∥∥Pζ(µ)

)
=

1

2

(
‖wL − uL‖2 +

L−1∑
i=1

d†k+1

∥∥Wi −Ui

∥∥2

F

)
, (17)

where the factors d†k+1 =
∏L
i=k+1 di are due to the redundancy introduced by transformation ζ(·).

This has the effect of penalizing more the weights on the first layers. It might have a considerable
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influence on the bound value for very deep networks. On the other hand, we observe that this is
consistent with the fine-tuning practice performed when training deep neural networks for a transfer
learning task: prior parameters are learned on a first dataset, and the posterior weights are learned by
adjusting the last layer weights on a second dataset [see Bengio, 2009, Yosinski et al., 2014].

Bound minimization. PBGNet minimizes the bound of Theorem 1 (rephrased as Equation 18).
However, this is done indirectly by minimizing a variation on Theorem 2 and used in a deep learning
context by Zhou et al. [2019] (Equation 19). Theorem 3 links both results (proof in Appendix A.4).
Theorem 3. Given prior parameters µ ∈ RD, with probability at least 1 − δ over S ∼ D⊗n, we
have for all θ on RD :

LD(Gθ) ≤ sup
0≤p≤1

{
p : kl(L̂S(Gθ)‖p) ≤

1

n
[K(θ, µ) + ln 2

√
n
δ ]

}
(18)

= inf
C>0

{
1

1−e−C

(
1− exp

(
−C L̂S(Gθ)−

1

n
[K(θ, µ) + ln 2

√
n
δ ]

))}
. (19)

We use stochastic gradient descent (SGD) as the optimization procedure to minimize Equation (19)
with respect to θ and C. It optimizes the same trade-off as in Equation (5), but choosing the C value
which minimizes the bound.3 The originality of our SGD approach is that not only do we induce
gradient randomness by selecting mini-batches among the training set S, we also approximate the
loss gradient by sampling T elements for the combinatorial sum at each layer. Our experiments show
that, for some learning problems, reducing the sample size of the Monte Carlo approximation can be
beneficial to the stochastic gradient descent. Thus the sample size value T has an influence on the
cost function space exploration during the training procedure (see Figure 7 in the appendix). Hence,
we consider T as a PBGNet hyperparameter.

6 Numerical experiments

Experiments were conducted on six binary classification datasets, described in Appendix B.

Learning algorithms. In order to get insights on the trade-offs promoted by the PAC-Bayes bound
minimization, we compared PBGNet to variants focusing on empirical loss minimization. We train the
models using multiple network architectures (depth and layer size) and hyperparameter choices. The
objective is to evaluate the efficiency of our PAC-Bayesian framework both as a learning algorithm
design tool and a model selection criterion. For all methods, the network parameters are trained using
the Adam optimizer [Kingma and Ba, 2015]. Early stopping is used to interrupt the training when the
cost function value is not improved for 20 consecutive epochs. Network architectures explored range
from 1 to 3 hidden layers (L) and a hidden size h ∈ {10, 50, 100} (di = h for 1 ≤ i < L). Unless
otherwise specified, the same randomly initialized parameters are used as a prior in the bound and as
a starting point for SGD optimization [as in Dziugaite and Roy, 2017]. Also, for all models except
MLP, we select the binary activation sampling size T in a range going from 10 to 10000. More details
about the experimental setting are given in Appendix B.
MLP. We compare to a standard network with tanh activation, as this activation resembles the erf
function of PBGNet. We optimize the linear loss as the cost function and use 20% of training data
as validation for hyperparameters selection. A weight decay parameter ρ is selected between 0 and
10−4. Using weight decay corresponds to adding an L2 regularizer ρ2‖θ‖2 to the cost function, but
contrary to the regularizer of Equation (17) promoted by PBGNet, this regularization is uniform for
all layers.

PBGNet`. This variant minimizes the empirical loss L̂(Gθ), with an L2 regularization term. The
corresponding weight decay, as well as other hyperparameters, are selected using a validation set,
exactly as the MLP does. The bound expression is not involved in the learning process and is
computed on the model selected by the validation set technique.

PBGNet`-bnd. Again, the empirical loss L̂(Gθ) with an L2 regularization term is minimized. However,
only the weight decay hyperparameter is selected on the validation set the other ones are selected
by the bound. This method is motivated by an empirical observation: our PAC-Bayesian bound is a
great model selection tool for most hyperparameters, except the weight decay term.

3We also note that our training objective can be seen as a generalized Bayesian inference one [Knoblauch
et al., 2019], where the tradeoff between the loss and the KL divergence is given by the PAC-Bayes bound.
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Table 1: Experiment results for the considered models on the binary classification datasets: error rates
on the train and test sets (ES and ET ), and generalization bounds on the linear loss LD (Bnd). The
PAC-Bayesian bounds hold with probability 0.95. Bound values for PBGNet` are trivial, excepted
Adult with a bound value of 0.606, and are thus not reported. A visual representation of this table is
presented in the appendix (Figure 5).

Dataset
MLP PBGNet` PBGNet`-bnd PBGNet PBGNetpre

ES ET ES ET ES ET Bnd ES ET Bnd ES ET Bnd

ads 0.021 0.035 0.018 0.030 0.028 0.047 0.763 0.131 0.168 0.203 0.033 0.033 0.056
adult 0.137 0.152 0.133 0.149 0.147 0.155 0.281 0.154 0.163 0.214 0.149 0.154 0.162
mnist17 0.002 0.004 0.003 0.004 0.004 0.006 0.096 0.005 0.007 0.040 0.004 0.004 0.009
mnist49 0.004 0.013 0.003 0.018 0.029 0.035 0.311 0.035 0.040 0.139 0.016 0.017 0.027
mnist56 0.004 0.013 0.003 0.011 0.022 0.024 0.171 0.022 0.025 0.089 0.009 0.009 0.017
mnistLH 0.006 0.018 0.004 0.019 0.046 0.051 0.310 0.049 0.052 0.160 0.026 0.027 0.033

PBGNet. As described in Section 5, the generalization bound is directly optimized as the cost
function during the learning procedure and used solely for hyperparameters selection: no validation
set is needed and all training data S are exploited for learning.
PBGNetpre. We also explore the possibility of using a part of the training data as a pre-training step.
To do so, we split the training set into two halves. First, we minimize the empirical loss for a fixed
number of 20 epochs on the first 50% of the training set. Then, we use the learned parameters as
initialization and prior for PBGNet and learn on the second 50% of the training set.

Analysis. Results are summarized in Table 1, which highlights the strengths and weaknesses of the
models. Both MLP and PBGNet` obtain competitive error scores but lack generalization guarantees.
By introducing the bound value in the model selection process, even with the linear loss as the cost
function, PBGNet`-bnd yields non-vacuous generalization bound values although with an increase in
error scores. Using the bound expression for the cost function in PBGNet improves bound values
while keeping similar performances. The Ads dataset is a remarkable exception where the small
amount of training examples seems to radically constrain the network in the learning process as it
hinders the KL divergence growth in the bound expression. With an informative prior from pre-
training, PBGNetpre is able to recover competitive error scores while offering tight generalization
guarantees. All selected hyperparameters are presented in the appendix (Table 4).

A notable observation is the impact of the bound exploitation for model selection on the train-test
error gap. Indeed, PBGNet`-bnd, PBGNet and PBGNetpre display test errors closer to their train errors,
as compared to MLP and PBGNet`. This behavior is more noticeable as the dataset size grows and
suggests potential robustness to overfitting when the bound is involved in the learning process.

7 Conclusion and perspectives

We made theoretical and algorithmic contributions towards a better understanding of generalization
abilities of binary activated multilayer networks, using PAC-Bayes. Note that the computational
complexity of a learning epoch of PBGNet is higher than the cost induced in binary neural networks
[Bengio, 2009, Hubara et al., 2016, 2017, Soudry et al., 2014]. Indeed, we focus on the optimization
of the generalization guarantee more than computational complexity. Although we also propose a
sampling scheme that considerably reduces the learning time required by our method, achieving a
nontrivial tradeoff.

We intend to investigate how we could leverage the bound to learn suitable priors for PBGNet. Or
equivalently, finding (from the bound point of view) the best network architecture. We also plan to
extend our analysis to multiclass and multilabel prediction, and convolutional networks. We believe
that this line of work is part of a necessary effort to give rise to a better understanding of the behavior
of deep neural networks.
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