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Scaling Characteristics of Sequential Multitask Learning:
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Abstract
We explore the behavior of a standard convo-
lutional neural net in a setting that introduces
classification tasks sequentially and requires the
net to master new tasks while preserving mas-
tery of previously learned tasks. This setting cor-
responds to that which human learners face as
they acquire domain expertise, for example, as an
individual reads a textbook chapter-by-chapter.
Through simulations involving sequences of 10
related tasks, we find reason for optimism that
nets will scale well as they advance from having
a single skill to becoming domain experts. We
observed two key phenomena. First, forward fa-
cilitation—the accelerated learning of task n+1
having learned n previous tasks—grows with
n. Second, backward interference—the forget-
ting of the n previous tasks when learning task
n + 1—diminishes with n. Forward facilitation
is the goal of research on metalearning, and re-
duced backward interference is the goal of re-
search on ameliorating catastrophic forgetting.
We find that both of these goals are attained sim-
ply through broader exposure to a domain.

In a standard supervised learning setting, neural networks
are trained to perform a single task, such as classification,
defined in terms of a discriminative distribution p(y |x,D)
for labels y conditioned on input x given a data set D. Al-
though such models are useful in engineering applications,
they do not reflect the breadth of human intelligence, which
depends on the capability to perform arbitrary tasks in a
context-dependent manner. Multitask learning (Caruana,
1997) is concerned with performing any one of n tasks,
usually by having multiple heads on a neural network to
produce outputs appropriate for each task, cast formally in
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terms of the distribution p(yi |x,D1, . . . ,Dn), where the
subscript denotes a task index and i ∈ {1, . . . , n} is an
arbitrary task. When related, multiple tasks can provide a
useful inductive bias to extract shared structure (Caruana,
1993), and as a regularization method to guide toward so-
lutions helpful on a variety of problems (Ruder, 2017).

Multitask learning is typically framed in terms of simulta-
neous training on all tasks, but humans and artificial agents
operating in naturalistic settings more typically tackle tasks
sequentially and need to maintain mastery of previously
learned tasks as they acquire a new one. Consider students
reading a calculus text in which each chapter presents a
different method. Early on, engaging with a chapter and
its associated exercises will lead to forgetting of the ma-
terial they had previously mastered. However, as more
knowledge is acquired, students learn to effectively scaf-
fold knowledge and eventually are able to leverage prior
experience to integrate the new material with the old. As
the final chapters are studied, students have built a strong
conceptual framework which facilitates the integration of
new material with little disruption of the old. In this ar-
ticle, we study the machine-learning analog of our hypo-
thetical students. The punch line of the article is that a
generic neural network trained sequentially to acquire and
maintain mastery of multiple tasks behaves similarly to hu-
man learners, exhibiting faster acquisition of new knowl-
edge and less disruption of previously acquired knowledge
with diverse domain experience.

1. Sequential multitask learning
Early research investigating sequential training observed
catastrophic forgetting (McCloskey & Cohen, 1989), char-
acterized by a dramatic drop in task 1 performance fol-
lowing training on task 2, i.e., the accuracy of the model
p(y1 |x,D1 → D2) is significantly lower than accuracy of
the model p(y1 |x,D1), where the arrow denotes training
sequence. Parisi et al. (2019) review efforts to quantify and
reduce catastrophic forgetting, including specialized mech-
anisms that aim to facilitate sequential learning.

A second line of research exploring sequential training
is the active topic of metalearning, or learning to learn
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(Schmidhuber, 1987; Bengio et al., 1991; Thrun, 1996).
Metalearning assesses facilitation that arises on task n from
having previously learned tasks 1, 2, . . . , n− 1. Success in
metalearning is measured by a reduction in training-trials-
to-criterion or an increase in model accuracy given finite
training for the n’th task, p(yn|x,D1 → . . . → Dn), rel-
ative to the first task, p(y1 |x,D1). Some metalearning
approaches, such as MAML (Finn et al., 2017) or SNAIL
(Mishra et al., 2018) offer mechanisms to encourage trans-
fer between tasks, while other approaches employ recur-
rence to modify the learning procedure itself (Andrychow-
icz et al., 2016; Wang et al., 2017).

Catastrophic forgetting and metalearning have a comple-
mentary relationship. Whereas catastrophic forgetting re-
flects backward interference of a new task on previously
learned tasks, metalearning reflects forward facilitation of
previously learned tasks on a new task.1 Whereas catas-
trophic forgetting has focused on the first task learned, met-
alearning has focused on the last task learned. We thus view
these two topics as endpoints of a continuum. Surprisingly,
we are not aware of any work that systematically examines
these two topics in conjunction with one another.

To unify the topics, this article examines the continuum
from the first task to the n’th. We devised a setting in which
we train a model on a sequence of related tasks and inves-
tigate the consequences of introducing each new task i. We
measure how many training trials are required to learn the
i’th task while maintaining performance on tasks 1 . . . i−1.
Simultaneously, we measure how performance drops on
tasks 1 . . . i − 1 after introducing task i and how many
trials are required to retrain tasks 1 . . . i − 1. We believe
that examining scaling behavior—performance as a func-
tion of i—is critical to assessing the efficacy of sequential
multitask learning. Scaling behavior has been mostly over-
looked in recent deep-learning research, which is odd con-
sidering its central role in computational complexity the-
ory, and therefore, in assessing whether existing algorithms
offer any home for extend to human-scale intelligence.

2. Methodology
The tasks we train are defined over images consisting of
multiple synthetic shapes having different colors and tex-
tures (Figure 1). The tasks involve yes/no responses to
questions about whether an image contains certain objects
or properties, such as “is there a red object?” or “is there
a spherical object?” We generate a series consisting of 10
episodes; in each episode, a new task is introduced (more

1In the psychology literature, backward interference is re-
ferred to as retroactive interference (Osgood, 1948; Postman,
1961). In the machine learning literature, the more general terms
backward and forward transfer are sometimes used (Lopez-Paz &
Ranzato, 2017).

Figure 1: Example training images

details to follow on the tasks). A model is trained de novo
on episode 1, and then continues training for the remaining
episodes. In episode i, training involves a mix of examples
drawn from tasks 1–i until an accuracy criterion of 95% is
attained on a hold-out set for all tasks. To balance training
on the newest task (task i in episode i) and retraining on
previous tasks, we adapt the methodology of Nguyen et al.
(2018): half the training set consists of examples from the
newest task, and the other half consists of an equal number
of examples from each of the previous tasks 1 through i−1.
In episode 1, only the single task is trained. Each epoch of
training consists of one pass through each of the training
images. These images can be assigned to arbitrary tasks.
In each epoch, we roughly balance the number of yes and
no target responses for each task. We turn now from this
overview to details of the images, tasks, and architecture.

Image generation. We leverage the CLEVR (Johnson et al.,
2017) image generation codebase to produce 160 × 120
pixel color images each with 4 or 5 objects that varied along
three dimensions: shape, color, and texture. To balance the
dimensions, we introduced additional features in each di-
mension to ensure 10 feature values per dimension. We
synthesized 45,000 images for a training set, roughly bal-
ancing the count of each feature across images. An addi-
tional 5,000 images were generated for a hold-out set. Each
image could used for any task. Each epoch of training in-
volved one pass through all images, with a random assign-
ment of images to task each epoch to satisfy the constraint
on the distribution of tasks.

Tasks. For each replication of our simulation, we select one
of the three dimensions and randomize the order of the ten
within-dimension tasks. To reduce sensitivity of the results
to order, we performed replications using a Latin square de-
sign (Bailey, 2008, ch. 9), guaranteeing that within a block
of ten replications, each task will appear in each ordinal po-
sition exactly once. We constructed six such Latin square
blocks for each of the three dimensions, resulting in 180 to-
tal simulation replications. Because we observed no mean-
ingful differences across task dimensions (see Appendix),
the results we report below collapse across dimension.

Architecture. We report experiments using a basic vi-
sion architecture with four convolutional layers followed
by four fully connected layers. The convolutional layers—
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Figure 2: (a) Hold-out set accuracy as a function of training trials (log scale) for a newly introduced task. Colored lines indicate task
ordinal position (cyan = introduced in episode 1; magenta = introduced in episode 10). In all panels, the shaded region represents ±1
standard error of the mean. (b) Hold-out accuracy of the task introduced in episode 1 by number of times it is retrained (black = 1 time,
copper = 10 times). (c) Number of trials required to reach the accuracy criterion (log scale) as a function of the number of times a given
task is trained (also log scale). As in (a), the colors indicate task ordinal position (the episode in which a task is introduced). (d) Similar
to (c) but graphed as a function of episode number with the line colors indicating—as in (b)—the number of times a task is retrained.
(e) Hold-out accuracy attained after a fixed amount of training (22.5k trials) of a given task, graphed as a function of number of times a
given task is trained. As in (a), the colors indicate the episode in which a task is introduced. (f) Similar to (e) but graphed as a function
of episode number with the line colors indicating—as in (b)—the number of times a task is retrained.

with 16, 32, 48, and 64 filters successively—each have 3x3
kernels with stride 1 and padding 1, followed by ReLU
nonlinearities, batch normalization, and 2x2 max pooling.
The fully-connected layers have 512 units in each, also
with ReLU nonlinearities. Note that our model is generic
and is not specialized for metalearning or for preventing
catastrophic forgetting. Instead of having one output head
for each task, task is specified as a component of the in-
put. Similar to Sort-of-CLEVR (Santoro et al., 2017), task
is coded as a one-hot input vector. Task representation is
concatenated to the output of the last convolutional layer
before passing it to the first fully-connected layer.

3. Results
Figure 2a depicts hold-out accuracy for a newly introduced
task as a function of the number of training trials. Curve
colors indicate the task’s ordinal position in the series of
episodes, with cyan being the first and magenta being the
tenth. Not surprisingly, task accuracy improves monotoni-
cally over training trials. But notably, metalearning is evi-
denced because the accuracy of task i+ 1 is strictly higher
than the accuracy of task i for i > 2. Figure 2b shows
the accuracy of the task introduced in the first episode (y1)

as it is retrained each episode.2 Not surprisingly, task ac-
curacy improves monotonically with the number of times
trained, indicating a relearning savings. But notably, the
catastrophic forgetting present in early episodes vanishes
by the tenth episode.

To analyze our simulations more systematically, we re-
mind the reader that the simulation sequence presents fifty-
five opportunities to assess learning: the task introduced
in episode 1 (i.e., ordinal position 1) is trained ten times,
the task introduced in episode 2 is trained nine times, and
so forth, until the task introduced in episode 10, which is
trained only once. Figures 2c,d provide two views on the
amount of training to reach an accuracy criterion of 95%—
the dashed line in Figures 2a,b. The data are plotted either
as a function of the number of times a task is retrained (Fig-
ure 2c) or as a function of the episode number (Figure 2d),
with the curves color coded as in Figures 2a,b. The roughly
log-log linear curves offer evidence of power-law decrease
in the retraining effort required to reach criterion. (We dis-
cuss the exception points shortly.) Backward interference
diminishes both as a function of the number of times a task
is relearned (Figure 2c) and the amount of domain experi-

2The misalignment of the first point is due to the fact that the
accuracy is assessed at the end of a training epoch, and each suc-
cessive episode has fewer trials of task y1 per epoch.
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ence, as indexed by the episode number (Figure 2d). Fig-
ures 2e,f show an alternative view of backward interference
by plotting accuracy after a fixed amount of retraining. The
conditions that require the least number of trials to crite-
rion (Figures 2c,d) also achieve the highest accuracy after
a small amount of training (Figures 2e,f).

To examine forward facilitation, we focus on the newest
task introduced, the highlighted curve in Figures 2d,f.
Starting at the third episode, we observe forward facilita-
tion, evidenced by both a reduced number of examples re-
quired to learn the new task, as well as higher accuracy af-
ter a fixed amount of training. Similar forward facilitation
occurs not just for the newest tasks, but even for relearning
older tasks, as reflected in the black-to-copper curves.

Figure 2 reveals an anomaly in the second episode. No
forward facilitation is observed for the new task—as indi-
cated by the rise in the highlighted curve in Figure 2d—and
strong backward interference is observed for the old task—
as indicated by the crossover of the cyan curve in Figures
2c,e. This finding suggests that to understand properties of
neural nets, we must look beyond training on just two tasks,
which is often the focus of research in transfer learning and
catastrophic forgetting.

4. Discussion
We explored the behavior of a standard convolutional neu-
ral net for classification tasks in a setting that introduces
tasks sequentially and requires the net to master new tasks
while preserving mastery of previously learned tasks. This
setting corresponds to that which human learners face as
they become experts in a domain, for example, as they read
a textbook chapter by chapter. Our network exhibits six
interesting properties:

1. Forward facilitation is observed once the net has ac-
quired sufficient expertise in the domain, as evidenced
by requiring less training to learn new tasks as a func-
tion of the number of related tasks learned (see high-
lighted black curve in Figures 2d,f).

2. Backward interference is reduced as a function of the
number of related tasks previously learned (compare
magenta-to-cyan curves in Figures 2c,e for a given po-
sition on the abscissa).

3. Forward facilitation occurs and backward interference
is reduced only after two or more tasks have been
learned. This pattern can be seen by the nonmonotonic-
ities in the highlighted curves of Figures 2d,f and in the
crossover of curves in Figures 2c,e.

4. Backward interference is also reduced as a function of
the number of times a task is relearned, controlling for
the total number of tasks learned. This phenomenon
is demonstrated by the ordering of the black-to-copper
curves in Figures 2d,f for a given position along the

abscissa. This reduction in backward interference has
long been identified in human learning, where it is
known as the saving effect (Ebbinghaus, 1908/1973).

5. Training performance improves according to a power
function of the number of tasks learned, controlling for
experience on a task (the slope of the curves in Fig-
ure 2d), and also according to a power function of the
amount of training a given task has received, control-
ling for number of tasks learned (the slope of the curves
in Figure 2c). Power-law learning is a robust character-
istic of human skill acquisition, observed on a range
of behavioral measures (Newell & Rosenbloom, 1980;
Donner & Hardy, 2015).

6. Catastrophic forgetting is evidenced primarily for task
1 when task 2 is learned—the canonical case studied
in the literature. However, the model becomes more
robust as it acquires sufficient domain experience, and
eventually the relearning effort becomes negligible (see
copper curves in Figures 2b,d,f). The anomalous be-
havior of task 2 is noteworthy, yielding a transition be-
havior that is perhaps analogous to the “zero one infin-
ity” rule coined by Willem van der Poel.

We are able to identify these interesting phenomena be-
cause our simulations examined scaling behavior and not
just effects of one task on a second—the typical case for
studying catastrophic forgetting—or the effects of many
tasks on a subsequent task—the typical case for metalearn-
ing and few-shot learning. Studying the entire continuum
from the first task to the n’th is quite revealing.

We found strong evidence for improved learning perfor-
mance with broader domain expertise, and further investi-
gation is merited. We are beginning investigations that ex-
amine how similar tasks must be to facilitate one another:
how does scaling behavior change when the tasks dimen-
sions switch across successive episodes (e.g., from color to
shape to texture)? Our preliminary results suggest that the
domain knowledge acquired is quite general and extends
to other dimensions of the images. We are also examin-
ing the scaling properties of metalearning methods that are
explicitly designed to facilitate transfer. The results pre-
sented in this article can serve as a baseline to measure the
magnitude of facilitation that the specialized methods of-
fer. A holy grail of sorts would be to identify methods that
demonstrate backward facilitation, where training on later
tasks improves performance on earlier tasks, and compo-
sitional generalization (Fodor & Pylyshyn, 1988; Fodor &
Lepore, 2002; Lake & Baroni, 2018; Loula et al., 2018),
where learning the interrelationship among earlier tasks al-
lows new tasks to be performed on the first trial. Humans
demonstrate the former under rare conditions (Ausubel
et al., 1957; Jacoby et al., 2015); the latter is common in
human behavior, as when individuals are able to perform a
task immediately from instruction.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Title Suppressed Due to Excessive Size

References
Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,

Pfau, D., Schaul, T., Shillingford, B., and de Freitas,
N. Learning to learn by gradient descent by gradient
descent. Advances in Neural Information Processing
Systems 29, pp. 3981—-3989, jun 2016. URL http:
//arxiv.org/abs/1606.04474.

Ausubel, D. P., Robbins, L. C., and Blake, Elias, J.
Retroactive inhibition and facilitation in the learning
of school materials. Journal of Educational Psychol-
ogy, 48(6):334–343, 1957. ISSN 0022-0663. doi:
10.1037/h0043524. URL http://content.apa.
org/journals/edu/48/6/334.

Bailey, R. Design of comparative experiments. Cam-
bridge University Press, 1st edition, 2008. ISBN
9780511611483.

Bengio, Y., Bengio, S., and Cloutier, J. Learning a synap-
tic learning rule. In Seattle International Joint Con-
ference on Neural Networks, volume ii, pp. 969. IEEE,
1991. ISBN 0-7803-0164-1. doi: 10.1109/IJCNN.1991.
155621. URL http://ieeexplore.ieee.org/
document/155621/.

Caruana, R. Multitask learning: A knowledge-based source
of inductive bias. In Proceedings of the Tenth Inter-
national Conference on Machine Learning, pp. 41–48.
Morgan Kaufmann, 1993.

Caruana, R. Multitask Learning. Machine Learning, 28:
41–75, 1997.

Donner, Y. and Hardy, J. L. Piecewise power
laws in individual learning curves. Psychonomic
Bulletin & Review, 22(5):1308–1319, oct 2015.
ISSN 1069-9384. doi: 10.3758/s13423-015-0811-x.
URL http://link.springer.com/10.3758/
s13423-015-0811-x.

Ebbinghaus, H. Psychology: An elementary textbook. Arno
Press, 1908/1973.

Finn, C., Abbeel, P., and Levine, S. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. Pro-
ceedings of the 34th International Conference on Ma-
chine Learning,, 70, 2017. URL https://arxiv.
org/pdf/1703.03400.pdf.

Fodor, J. A. and Lepore, E. Compositionality Papers. Ox-
ford University Press UK, 2002.

Fodor, J. A. and Pylyshyn, Z. W. Connectionism and cog-
nitive architecture: a critical analysis. Cognition, 28
(1-2):3–71, mar 1988. ISSN 0010-0277. URL http:
//www.ncbi.nlm.nih.gov/pubmed/2450716.

Jacoby, L. L., Wahlheim, C. N., and Kelley, C. M.
Memory consequences of looking back to notice
change: Retroactive and proactive facilitation. Jour-
nal of Experimental Psychology: Learning, Mem-
ory, and Cognition, 41(5):1282–1297, sep 2015.
ISSN 1939-1285. doi: 10.1037/xlm0000123. URL
http://www.ncbi.nlm.nih.gov/pubmed/
26010827http://doi.apa.org/getdoi.
cfm?doi=10.1037/xlm0000123.

Johnson, J., Fei-Fei, L., Hariharan, B., Zitnick, C. L., Van
Der Maaten, L., and Girshick, R. CLEVR: A Diagnos-
tic Dataset for Compositional Language and Elementary
Visual Reasoning. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. ISBN 1612.06890v1. URL
https://arxiv.org/pdf/1612.06890.pdf.

Lake, B. and Baroni, M. Generalization without sys-
tematicity: On the compositional skills of sequence-to-
sequence recurrent networks. In Dy, J. and Krause,
A. (eds.), Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 2873–
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