
Automatic Differentiation:
Inverse Accumulation Mode

Jeffrey Mark Siskind
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907-2035

qobi@purdue.edu

Abstract

We show that, under certain circumstances, it is possible to automatically compute
Jacobian-inverse-vector and Jacobian-inverse-transpose-vector products about as
efficiently as Jacobian-vector and Jacobian-transpose-vector products. The key
insight is to notice that the Jacobian corresponding to the use of one primitive
arithmetic operator is of a form whose sparsity is invariant to inversion. This
technique has the potential to allow the efficient direct calculation of Newton
steps.

Automatic Differentiation (AD) is the mechanical transformation of computer programs to calculate
derivatives of interest, with useful complexity guarantees. The two most important “modes” of AD
are forward and reverse, which access the Jacobian (the matrix of derivatives of each output of the
computation with respect to each input) by multiplication, or transpose-multiplication, with a vector.
Here we consider first-order numeric computations, where inputs and outputs are vectors of reals.
Given the primal computation y = f(x) with f : Rm → Rn and therefore x : Rm and y : Rn, we
use Jf(x) : Rn×m for the Jacobian of f at x, whose (i, j)

th element is ∂fi(x)/∂xj . Forward and
Reverse AD compute ý = Jf(x) x́ and x̀ = J>f(x) ỳ respectively. Our objective here is to find an
efficient way to solve for the starred vectors in each of

x̀ = J>f(x) ỳ
∗ ý = Jf(x) x́

∗ (1)

If this can be done efficiently, it would allow efficient Newton steps (where f is a gradient calculation,
say) and other sorts of second-order optimization. For this to be well posed it is necessary for Jf(x)

to be invertible, so n = m.

Let us review Forward and Reverse AD. Since we are evaluating f at a point x, we consider control
flow resolved and represent the computation as a data flow graph: a DAG whose edges hold reals
and whose vertices represent numeric basis functions. There are n edges entering from the inputs
x1, . . . , xn, and n exiting to y1, . . . , yn. If we topologically sort the data flow graph, and cut it before
and after each vertex, we see that the computation proceeds through a sequence of T + 1 machine
states, x0, . . . ,xT , where the initial and final states are the input and output of the computation,
x0 = x and y = xT . We can denote the transition function from one machine state to the next by
xt = ft(xt−1) and the Jacobian of ft at xt−1 by Jt, keeping in mind that ft involves applying a
single numeric basis function to some elements of xt−1 and putting the result in some elements
of xt, copying the other elements unchanged. Since f = fT ◦ fT−1 ◦ · · · ◦ f2 ◦ f1, the Jacobian
matrix is a product, Jf(x) = JT JT−1 · · ·J2 J1, and Forward and Reverse AD amount to appropriate
associativity

ý = JT (JT−1 · · · (J2(J1 x́)) · · ·) x̀ = J>1 (J>2 · · · (J>T−1(J>T ỳ)) · · ·) (2)

Preprint. Under review.

Solving (1) in the form of (2) while assuming each Jt is invertible is the basic idea of Forward Inverse
Accumulation and Reverse Inverse Accumulation:

ỳ∗ = J−>T (J−>T−1 · · · (J
−>
2 (J−>1 x̀)) · · ·) x́∗ = J−11 (J−12 · · · (J

−1
T−1(J−1T ý)) · · ·) (3)

These will be practical if the matrix-vector products J−1t ý and J−>t x̀ can be calculated efficiently.
Assuming the computation of f is constant-width, so xt : Rn, and invertible, then each ft must write
its result to a slot where one of the inputs to the invoked basis function was stored, yielding Jacobians
of the form (for unary and binary basis functions g and h)

Rt

↓
1

. . .
1

Rt → a
1

. . .
1

a =
∂g(xt−1[Rt])

∂xt−1[Rt]

Rt St

↓ ↓
1

. . .
1

Rt → a b
1

. . .
1

a =
∂h(xt−1[Rt],xt−1[St])

∂xt−1[Rt]

b =
∂h(xt−1[Rt],xt−1[St])

∂xt−1[St]

(4)

We now note that these can be trivially inverted! If we consider only variables involved in the basis
function being invoked, and reorder them so the output values are first, a basis function with k inputs
and a scalar output results in

Jt =

(
a b1 · · · bk−1

0 I

)
J−1t =

(
1
a − b1

a · · · − bk−1
a

0 I

)
(5a)

We can generalize from scalar to l outputs, giving the form

Jt =

(
A B
0 I

)
J−1t =

(
A−1 −A−1B
0 I

)
(5b)

where A : l × l and B : l × (k − l). Note: Jt is not structurally symmetric, and J−1t has the same
structural sparsity as Jt. Although the amount of arithmetic is the same as for conventional Forward
and Reverse modes, these are transposed, so Forward Inverse Mode writes to the derivative-related
quantities associated with all involved variables of each basis function invocation, while Reverse
Inverse Mode writes only to the quantities associated with slots written to in the primal computation
of each basis function. Figure 1 illustrates all four AD modes on a simple program.

In addition to tuning our implementation and seeking interesting constant-width computations to
which this might be fruitfully applied, our current work focuses on relaxing the constant-width
assumption both locally (by allowing and chunking “lumps” in the primal flow graph) and globally
(by using pseudoinverses in place of inverses for computations whose width only grows or shrinks
but not both.)

The idea of direct calculation of the solution a linear system involving the Jacobian was introduced
by Griewank (1990), and elaborated by Dixon (1991), Utke (1996), and Hossain (1998, Chapter 4),
using a framework in which the multiple Jt matrices here are replaced by a single much larger matrix.
Because it is not compositional, that framework seems less amenable to efficient implementation.

This motivates inclusion of four new programming-language primitives to perform each of the four
AD modes:

forward reverse

noninverted
−→
J f x x́

4
= Jf(x) x́

−→
Jf x ỳ

4
= J>f(x) ỳ

inverted −→
J

f x x̀
4
= J−>f(x) x̀ −→

J

f x ý
4
= J−1f(x) ý

which obey a variety of algebraic invariants:

(
−→
Jf x ỳ) · x́ = ỳ · (

−→
J f x x́)

−→
J f x ◦ −→
J

f x = id −→
J

f x ◦
−→
Jf x = id

x̀ · (−→
J

f x ý) = (−→
J

f x x̀) · ý
−→
Jf x ◦ −→

J
f x = id −→

J

f x ◦
−→
J f x = id

(6)

2

x1 x2 x3

p

q

y1 y2 y3

(a) Primal Flow Graph

x́1 x́2 x́3

ź1

ý1 ý2 ý3

ź2

∂p(x1,x2)
∂x2

∂q(z1,x3)
∂x3

∂p(x1,x2)
∂x1

∂q(z1,x3)
∂z1

(b)
−→
J : Forward AD

x̀1 x̀2 x̀3

z̀1

ỳ1 ỳ2 ỳ3

z̀2

∂p(x1,x2)
∂x2

∂q(z1,x3)
∂x3

∂p(x1,x2)
∂x1

∂q(z1,x3)
∂z1

(c)
−→
J: Reverse AD

input: x1, x2, x3

z1 ← p(x1, x2)

z2 ← q(z1, x3)

output: z1, x2, z2

(d) Primal Code

x̀1 x̀2 x̀3

z̀1

ỳ∗
1

ỳ∗
2

ỳ∗
3

z̀2

−∂p(x1,x2)
∂x2

∂p(x1,x2)
∂x1

1
∂p(x1,x2)

∂x1

−∂q(z1,x3)
∂z1

∂q(z1,x3)
∂x3

1
∂q(z1,x3)

∂x3

(e) −→
J : Forward Inverse AD

x́∗
1

x́∗
2

x́∗
3

ź1

ý1 ý2 ý3

ź2

−∂p(x1,x2)
∂x2

∂p(x1,x2)
∂x1

1
∂p(x1,x2)

∂x1

−∂q(z1,x3)
∂z1

∂q(z1,x3)
∂x3

1
∂q(z1,x3)

∂x3

(f) −→
J: Reverse Inverse AD

Figure 1: Illustration of all four AD modes for the straight-line code in (d). This corresponds to the
data flow graph (a). The intent is that there are three registers, r1, r2, and r3, illustrated by the three
columns in (a) from left to right. These are initialized with x1, x2, and x3 respectively. Since r1 is
not used after the first line of code, it is overwritten with z1. Since r3 is not used after the second
line of code, it is overwritten with z2. Forward mode and reverse mode are shown in (b) and (c)
respectively. In these graphs, addition occurs whenever there is fan in to a vertex (the circled vertices)
and labels on edges denote multiplication by the indicated coefficient. Reverse mode is derived from
forward mode by edge reversal, which can change which vertices perform addition due to fan in.
Forward inverse mode and reverse inverse mode are shown in (e) and (f) respectively. These have the
same vertices as forward mode and reverse mode but different edges and edge labels, which changes
which vertices perform addition due to fan in. Again, forward inverse mode is derived from reverse
inverse mode by edge reversal.

Acknowledgments

This work is joint with Barak A. Pearlmutter, and was supported, in part, by US National Science
Foundation (NSF) grants 1522954-IIS and 1734938-IIS, and by a US Intelligence Advanced Research
Projects Activity (IARPA) grant via Department of Interior/Interior Business Center (DOI/IBC),
contract number D17PC00341.

References
Laurence C. W. Dixon. Use of automatic differentiation for calculating Hessians and Newton steps.

In Andreas Griewank and George F. Corliss, editors, Automatic Differentiation of Algorithms:
Theory, Implementation, and Application, pages 114–125. SIAM, Philadelphia, PA, 1991. ISBN

3

0–89871–284–X.

Andreas Griewank. Direct calculation of Newton steps without accumulating Jacobians. In Thomas F.
Coleman and Yuying Li, editors, Large-Scale Numerical Optimization, pages 115–137. SIAM,
Philadelphia, Penn., 1990.

A.K.M. Shahadat Hossain. On the Computation of Sparse Jacobian Matrices and Newton Steps. PhD
thesis, Department of Informatics, University of Bergen, 1998. Technical Report 146.

Jean Utke. Efficient Newton steps without Jacobians. In Martin Berz, Christian H. Bischof, George F.
Corliss, and Andreas Griewank, editors, Computational Differentiation: Techniques, Applications,
and Tools, pages 253–264. SIAM, Philadelphia, PA, 1996. ISBN 0–89871–385–4.

4

