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ABSTRACT

Since the emergence of Deep Neural Networks (DNNs) as a prominent technique
in the field of computer vision, the ImageNet classification challenge has played a
major role in advancing the state-of-the-art. While accuracy figures have steadily
increased, the resource utilisation of winning models has not been properly taken
into account. In this work, we present a comprehensive analysis of important met-
rics in practical applications: accuracy, memory footprint, parameters, operations
count, inference time and power consumption. Key findings are: (1) power con-
sumption is independent of batch size and architecture; (2) accuracy and inference
time are in a hyperbolic relationship; (3) energy constraint are an upper bound on
the maximum achievable accuracy and model complexity; (4) the number of oper-
ations is a reliable estimate of the inference time. We believe our analysis provides
a compelling set of information that helps design and engineer efficient DNNs.

1 INTRODUCTION

Since the breakthrough in 2012 ImageNet competition (Russakovsky et all 2015) achieved by
AlexNet (Krizhevsky ef al.| [2012) — the first entry that used a Deep Neural Network (DNN) —
several other DNNs with increasing complexity have been submitted to the challenge in order to
achieve better performance.

In the ImageNet classification challenge, the ultimate goal is to obtain the highest accuracy in a
multi-class classification problem framework, regardless of the actual inference time. We believe
that this has given rise to several problems. Firstly, it is now normal practice to run several trained
instances of a given model over multiple similar instances of each validation image. This practice,
also know as model averaging or ensemble of DNNs, dramatically increases the amount of com-
putation required at inference time to achieve the published accuracy. Secondly, model selection is
hindered by the fact that different submissions are evaluating their (ensemble of) models a different
number of times on the validation images, and therefore the reported accuracy is biased on the spe-
cific sampling technique (and ensemble size). Thirdly, there is currently no incentive in speeding up
inference time, which is a key element in practical applications of these models, and affects resource
utilisation, power-consumption, and latency.

This article aims to compare state-of-the-art DNN architectures, submitted for the ImageNet chal-
lenge over the last 4 years, in terms of computational requirements and accuracy. We compare these
architectures on multiple metrics related to resource utilisation in actual deployments: accuracy,
memory footprint, parameters, operations count, inference time and power consumption. The pur-
pose of this paper is to stress the importance of these figures, which are essential hard constraints
for the optimisation of these networks in practical deployments and applications.

2 METHODS

In order to compare the quality of different models, we collected and analysed the accuracy values
reported in the literature. We immediately found that different sampling techniques do not allow for
a direct comparison of resource utilisation. For example, central-crop (top-5 validation) errors of a
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Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.
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Figure 2: Topl vs. operations, size o parameters.
Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5x 10° to 155 x 10° params. Both
these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG—ldT] (Simonyan & Zisserman, 2014)) and GooglLeNet (Szegedy et al.,2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies{f] for all networks with a single
central-crop sampling technique (Zagoruykol 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al.l [2011]))
with cuDNN-v5 (Chetlur ef al.,[2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM®) A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszkel 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024 A 200 MHz digital oscilloscope with a
sampling period of 2s and 50kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al.,[2012)), batch normalised AlexNet (Zagoruykol |[2016), batch normalised Network
In Network (NIN) (Lin ez al.| 2013)), ENet (Paszke et al.l [2016) for ImageNet (Culurciello, [2016),
GoogleNet (Szegedy et al.l|2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et all [2015) and Inception-v4
(Szegedy et all 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al.| 2015) challenge.

! In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

% From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.
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Figure 3: Inference time vs. batch size. This Figure 4: Power vs. batch size. Net power consump-

chart show inference time across different batch sizes
with a logarithmic ordinate and logarithmic abscissa.
Missing data points are due to lack of enough system
memory required to process larger batches. A speed
up of 3 is achieved by AlexNet due to better optimi-
sation of its fully connected layers for larger batches.

tion (due only to the forward processing of several
DNNs) for different batch sizes. The idle power of
the TX1 board, with no HDMI screen connected, was
1.30 W on average. The max frequency component
of power supply current was 1.4 kHz, corresponding
to a Nyquist sampling frequency of 2.8 kHz.

3.1 ACCURACY

Figure [T| shows one-crop accuracies of the most relevant entries submitted to the ImageNet chal-
lenge, from the AlexNet (Krizhevsky ez al.l2012)), on the far left, to the best performing Inception-v4
(Szegedy et al.l[2016). The newest ResNet and Inception architectures surpass all other architectures
by a significant margin of at least 7%.

Figure [2] provides a different, but more informative view of the accuracy values, because it also
visualises computational cost and number of network’s parameters. The first thing that is very ap-
parent is that VGG, even though it is widely used in many applications, is by far the most expensive
architecture — both in terms of computational requirements and number of parameters. Its 16- and
19-layer implementations are in fact isolated from all other networks. The other architectures form a
steep straight line, that seems to start to flatten with the latest incarnations of Inception and ResNet.
This might suggest that models are reaching an inflection point on this data set. At this inflection
point, the costs — in terms of complexity — start to outweigh gains in accuracy. We will later show
that this trend is hyperbolic.

3.2 INFERENCE TIME

Figure [3] reports inference time per image on each architecture, as a function of image batch size
(from 1 to 64). We notice that VGG processes one image in a fifth of a second, making it a less likely
contender in real-time applications on an NVIDIA TX1. AlexNet shows a speed up of roughly 3 x
going from batch of 1 to 64 images, due to weak optimisation of its fully connected layers. It is a
very surprising finding, that will be further discussed in the next subsection.

3.3 POWER

Power measurements are complicated by the high frequency swings in current consumption, which
required high sampling current read-out to avoid aliasing. In this work, we used a 200 MHz digital
oscilloscope with a current probe, as reported in section 2] Other measuring instruments, such as
an AC power strip with 2 Hz sampling rate, or a GPIB controlled DC power supply with 12 Hz
sampling rate, did not provide enough bandwidth to properly conduct power measurements.

In figure ] we see that the power consumption is mostly independent with the batch size. Low power
values for AlexNet (batch of 1) and VGG (batch of 2) are associated to slower forward times per
image, as shown in figure[3]
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Figure 5: Memory vs. batch size. Maximum sys-
tem memory utilisation for batches of different sizes.
Memory usage shows a knee graph, due to the net-
work model memory static allocation and the variable
memory used by batch size.
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Figure 6: Memory vs. parameters count. De-
tailed view on static parameters allocation and cor-
responding memory utilisation. Minimum memory
of 200 MB, linear afterwards with slope 1.30.
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Figure 7: Operations vs. inference time, size o« parameters. Relationship between operations and inference
time, for batches of size 1 and 16 (biggest size for which all architectures can still run). Not surprisingly, we
notice a linear trend, and therefore operations count represent a good estimation of inference time. Furthermore,
we can notice an increase in the slope of the trend for larger batches, which correspond to shorter inference
time due to batch processing optimisation.

3.4 MEMORY

We analysed system memory consumption of the TX1 device, which uses shared memory for both
CPU and GPU. Figure [5] shows that the maximum system memory usage is initially constant and
then raises with the batch size. This is due the initial memory allocation of the network model —
which is the large static component — and the contribution of the memory required while processing
the batch, proportionally increasing with the number of images. In figure [6] we can also notice that
the initial allocation never drops below 200 MB, for network sized below 100 MB, and it is linear
afterwards, with respect to the parameters and a slope of 1.30.

3.5 OPERATIONS

Operations count is essential for establishing a rough estimate of inference time and hardware circuit
size, in case of custom implementation of neural network accelerators. In figure[/| for a batch of
16 images, there is a linear relationship between operations count and inference time per image.
Therefore, at design time, we can pose a constraint on the number of operation to keep processing
speed in a usable range for real-time applications or resource-limited deployments.
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Figure 8: Operations vs. power consumption, size o parameters. Independency of power and operations is
shown by a lack of directionality of the distributions shown in these scatter charts. Full resources utilisation
and lower inference time for AlexNet architecture is reached with larger batches.
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Figure 9: Accuracy vs. inferences per second, size o< operations. Non trivial linear upper bound is shown
in these scatter plots, illustrating the relationship between prediction accuracy and throughput of all examined
architectures. These are the first charts in which the area of the blobs is proportional to the amount of operations,
instead of the parameters count. We can notice that larger blobs are concentrated on the left side of the charts,
in correspondence of low throughput, i.e. longer inference times. Most of the architectures lay on the linear
interface between the grey and white areas. If a network falls in the shaded area, it means it achieves exceptional
accuracy or inference speed. The white area indicates a suboptimal region. E.g. both AlexNet architectures
improve processing speed as larger batches are adopted, gaining 80 Hz.

3.6 OPERATIONS AND POWER

In this section we analyse the relationship between power consumption and number of operations
required by a given model. Figure §]reports that there is no specific power footprint for different ar-
chitectures. When full resources utilisation is reached, generally with larger batch sizes, all networks
consume roughly an additional 11.8 W, with a standard deviation of 0.7 W. Idle power is 1.30 W.
This corresponds to the maximum system power at full utilisation. Therefore, if energy consumption
is one of our concerns, for example for battery-powered devices, one can simply choose the slowest
architecture which satisfies the application minimum requirements.

3.7 ACCURACY AND THROUGHPUT

We note that there is a non-trivial linear upper bound between accuracy and number of inferences
per unit time. Figure [J]illustrates that for a given frame rate, the maximum accuracy that can be
achieved is linearly proportional to the frame rate itself. All networks analysed here come from
several publications, and have been independently trained by other research groups. A linear fit of
the accuracy shows all architecture trade accuracy vs. speed. Moreover, chosen a specific inference
time, one can now come up with the theoretical accuracy upper bound when resources are fully



Under review as a conference paper at ICLR 2017

=
» o ® 1

Top-1 accuracy density [%/M-Params]

~

o |

A% A0 G\ S A8t A kP J
R aic P;e*\\\ P\\eﬂﬁ ﬁe"x
T qe®

PN IO\ S
$ev\'e\)‘\o“ s$e‘(>&‘-\o(‘ &e‘@e&e‘ ‘5«&00@\'6\\\ o
\(\C Cf

R o
Figure 10: Accuracy per parameter vs. network. Information density (accuracy per parameters) is an effi-
ciency metric that highlight that capacity of a specific architecture to better utilise its parametric space. Models
like VGG and AlexNet are clearly oversized, and do not take fully advantage of their potential learning abil-
ity. On the far right, ResNet-18, BN-NIN, GoogLeNet and ENet (marked by grey arrows) do a better job at
“squeezing” all their neurons to learn the given task, and are the winners of this section.

utilised, as seen in section [3.6] Since the power consumption is constant, we can even go one step
further, and obtain an upper bound in accuracy even for an energetic constraint, which could possibly
be an essential designing factor for a network that needs to run on an embedded system.

As the spoiler in section [3.1] gave already away, the linear nature of the accuracy vs. throughput
relationship translates into a hyperbolical one when the forward inference time is considered instead.
Then, given that the operations count is linear with the inference time, we get that the accuracy has
an hyperbolical dependency on the amount of computations that a network requires.

3.8 PARAMETERS UTILISATION

DNNs are known to be highly inefficient in utilising their full learning power (number of parameters
/ degrees of freedom). Prominent work (Han et al., 2015) exploits this flaw to reduce network
file size up to 50 %, using weights pruning, quantisation and variable-length symbol encoding. It is
worth noticing that, using more efficient architectures to begin with may produce even more compact
representations. In figure [I0] we clearly see that, although VGG has a better accuracy than AlexNet
(as shown by figure [I), its information density is worse. This means that the amount of degrees
of freedom introduced in the VGG architecture bring a lesser improvement in terms of accuracy.
Moreover, ENet (Paszke et al.| 2016) — which we have specifically designed to be highly efficient
and it has been adapted and retrained on ImageNet (Culurciello, [2016) for this work — achieves the
highest score, showing that 24 x less parameters are sufficient to provide state-of-the-art results.

4 CONCLUSIONS

In this paper we analysed multiple state-of-the-art deep neural networks submitted to the ImageNet
challenge, in terms of accuracy, memory footprint, parameters, operations count, inference time
and power consumption. Our goal is to provide insights into the design choices that can lead to
efficient neural networks for practical application, and optimisation of the often-limited resources in
actual deployments, which lead us to the creation of ENet — or Efficient-Network — for ImageNet.
We show that accuracy and inference time are in a hyperbolic relationship: a little increment in
accuracy costs a lot of computational time. We show that number of operations in a network model
can effectively estimate inference time. We show that an energy constraint will set a specific upper
bound on the maximum achievable accuracy and model complexity, in terms of operations counts.
Finally, we show that ENet is the best architecture in terms of parameters space utilisation, squeezing
up to 13x more information per parameter used respect to the reference model AlexNet, and 24 x
respect VGG-19.
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