
Under review as a conference paper at ICLR 2019

META-LEARNING WITH INDIVIDUALIZED FEATURE
SPACE FOR FEW-SHOT CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Meta-learning provides a promising learning framework to address few-shot clas-
sification tasks. In existing meta-learning methods, the meta-learner is designed
to learn about model optimization, parameter initialization, or similarity metric.
Differently, in this paper, we propose to learn how to create an individualized fea-
ture embedding specific to a given query image for better classifying, i.e., given a
query image, a specific feature embedding tailored for its characteristics is created
accordingly, leading to an individualized feature space in which the query image
can be more accurately classified. Specifically, we introduce a kernel generator as
meta-learner to learn to construct feature embedding for query images. The kernel
generator acquires meta-knowledge of generating adequate convolutional kernels
for different query images during training, which can generalize to unseen cate-
gories without fine-tuning. In two standard few-shot classification data sets, i.e.
Omniglot, and miniImageNet, our method shows highly competitive performance.

1 INTRODUCTION

A well-performing model for image classification is often equipped with a discriminative feature
space and a powerful classifier, which heavily rely on training with large quantities of labeled data,
especially for those high-capacity deep models. The scalability of most deep models to new tasks
with few samples is severely limited because of the dependence on big data. In contrast, humans
excel at recognizing objects and can rapidly learn to recognize a new class even with a single ex-
ample by utilizing prior knowledge Lake et al. (2011). The significant gap between human and
machine learning motivates the development of one/few-shot learning that aims at achieving better
generalization in the tasks with scarce labeled data.

The task of few-shot classification is to recognize previously unseen classes with very few labeled
examples. A straightforward approach is to fine-tune a pre-trained model on the new classes, as is
usually done in transfer learning Finn et al. (2017). But it becomes awkward in few-shot classifi-
cation, as it would cause severe over fitting when only a few training examples are available. Data
augmentation and regularization techniques can alleviate the over fitting problem Sung et al. (2018),
but they are still far from obtaining a satisfactory model in few-shot scenarios. One promising ap-
proach to address few-shot classification is meta-learning Thrun (1998); Hochreiter et al. (2001), in
which transferable knowledge is learned on a set of tasks. The idea is that by learning on task τ fol-
lowing a distribution p(τ), a meta-learner may figure out an effective learning strategy tailored for
the task distribution p(τ). Therefore, a meta-learner is able to quickly adapt to new tasks following
the same distribution p(τ) with only a few examples per class.

Meta-learner plays a crucial role in meta-learning. Generally, a meta-learner is a model designed
to acquire learning algorithms (meta-knowledge), which are used to further teach a learner so that
the learner can quickly adapt to new tasks. In existing meta-learning methods, the meta-learner is
designed as an optimizer Andrychowicz et al. (2016); Ravi & Larochelle (2017); Li & Malik (2017),
an initializer Finn et al. (2017); Li et al. (2017); Nichol et al. (2018), or as a kind of distance metric
Vinyals et al. (2016); Koch et al. (2015); Snell et al. (2017); Sung et al. (2018). A meta-learner
for optimization usually learns to predict gradients of parameters or learns SGD-like parameter
updating policy to make learners converge quickly. A meta-learner that learns to initialize model
parameters aims to initialize a learner so that it can adapt to new tasks with a small amount of data
in a few steps. In those metric-learning based methods, the meta-learner is often designed as a kind

1



Under review as a conference paper at ICLR 2019

Features of Sample Images Features of Query Images

(a) Common Feature Space (b) Individualized Feature Space (IFS)

IFS for Q1 IFS for Q2 IFS for Q3 IFS for Q4 IFS for Q5

Figure 1. Comparison of common feature space and individualized feature space. (a) The common feature
space. Feature distribution has to be discriminative enough so that all classes can be distinguished from each
other. (b) The individualized feature space. There is an individualized feature space tailored for each query
image (i.e. the image to be classified), where images are classified into two categories according to whether
they belong to the same class as the query image.

of non-parametric distance metric or deep distance metric implemented with a deep model, which
are expected to generalize to unseen classes after being trained on the training set.

Different from existing works, in this paper, we propose to learn how to create an individualized
feature embedding specific to a given query image for more accurately classifying during meta-
learning. To classify a query image, we need to compare it with labeled images of all classes. In
general, as different query images own different characteristics because of inter-class variations or
intra-class variations (e.g. category, pose, illumination, and some other factors), one tends to focus
on different aspects of those labeled images when comparing them to different query images. Thus,
the characteristics of query images influence the perception of labeled images. Inspired from this,
our meta-learner is designed to learn how to create feature embedding tailored for characteristics of
different query images, so that the query image can be more accurately classified.

The construction of individualized feature spaces naturally leads to formulation of binary classifi-
cation tasks. Most existing methods map all images into a common feature space. In such situa-
tion, to distinguish different classes from each other, images are expected to form multiple clusters
according to their class labels, leading to a multi-class classification task. By contrast, when an
individualized feature space is constructed specifically for a given query image in our method, one
only needs to distinguish the class which the query image belongs to from the rest of the classes,
without concerning whether the rest of the classes can be distinguished from each other. Therefore,
the goal of our meta-learner is to learn how to create individualized feature embedding tailored for
the query image that will minimize (or maximize) the distances between the query image and those
belonging to the same class (or different classes). Figure 1 illustrates the differences between the
multi-class classification task in a common feature space and the binary classification tasks in our
individualized feature spaces.

Specifically, the meta-learner in our proposed method is designed as a kernel generator to construct
the feature embedding for a specific query image. It generates distinct sets of convolutional kernels
as the characteristics of query images vary. By convolving features of images with those generated
kernels, they are mapped into the individualized feature space constructed with the corresponding
query image. During meta-training, the learning of the kernel generator is at higher level than that
of ordinary network modules. It acquires meta-knowledge of generating adequate convolutional
kernels for different query images, which can generalize to new classes without fine-tuning.

Overall, our contributions lie in three folds. First, we propose to learn how to create an individ-
ualized feature embedding tailored for a given query image. By considering the characteristics of
the query image in feature embedding, an individualized feature space is constructed to accurately
classify the query image. Second, we offer an effective implementation of the meta-learner as a
kernel generator, which learns to generate convolutional kernels based on the given query image.
Third, on two standard few-shot classification data sets, including Omniglot Lake et al. (2011), and
miniImageNet Vinyals et al. (2016), our method achieves competitive results.

2 RELATED WORK

Meta learning Meta-learning approaches Thrun (1998); Schmidhuber (1987); Naik & Mammone
(1992) involve training a meta-learner to acquire meta-knowledge, which generally can be trans-

2



Under review as a conference paper at ICLR 2019

ferred into new tasks with scarce data and within a few iterations Andrychowicz et al. (2016);
Schmidhuber et al. (1997).

Some works design the meta-learner as an optimizer that learns to update model parameters Bengio
et al. (1992); Schmidhuber (1992). Similar method has been applied to deep networks to compose
gradients of parameters for quick convergence of training Hochreiter et al. (2001); Andrychowicz
et al. (2016); Li & Malik (2017). Recently, Ravi & Larochelle (2017) proposes a meta-learner based
on LSTM Hochreiter & Schmidhuber (1997) to learn a SGD-like parameter updating policy which
is used to train another learner in the few-shot regime. It also learns a general initialization of the
learner network to accelerate its convergence.

Meta-learner learning how to initialize a learner is more general and generic in meta-learning.
Finn et al. (2017) proposes an algorithm, which is referred to as Model-Agnostic Meta-Learning
(MAML), learning how to initialize a learner so that the learner can adapt to new task with a small
amount of training data in just a few steps. MAML is compatible with any model trained with gra-
dient descent. Li et al. (2017) improves MAML with not only learning the learner initialization,
but also the learner update direction and learning rate. Nichol et al. (2018) analyzes the first-order
MAML, and points out it is simpler to implement than was widely recognized prior, forming a new
algorithm, called Reptile.

Metric-learning methods design the meta-learner as a kind of distance metric. Generally, those
approaches attempt to learn a common feature space where categories can distinguish from each
other based on the defined or learned distance metric, forming a multi-class classification task. Our
work is related to metric learning. The difference is that our meta-learner goals for learning how
to create an individualized feature space tailored for a given query image, where we only need to
distinguish class the query image belongs to from all other classes, forming a binary classification
task. More clear comparison can be seen in Figure 1. Koch et al. (2015) formulates the one-
shot classification task as the matching problem and train Siamese neural networks to calculate the
similarity between images in the support set and a query image. Vinyals et al. (2016) proposes
Matching Networks where a fully differentiable neural attention mechanism is applied into nearest
neighbor classifier to classify a query example with the support set. Prototypical Networks Snell
et al. (2017) learn the prototype feature vector for each class as the average of all feature vectors
extracted by images of the class in sample set, with which the distance between a query image and
a class can be computed. Instead of defining the non-parametric distance metric, Relation Network
Sung et al. (2018) learns to learn a deep distance metric by a sub-network.

Some other meta-learning approaches involve training a generic neural architecture. Santoro et al.
(2016) trains a memory-augmented LSTM for few-shot learning, where the learner is trained to
adapt to new tasks as the LSTM rolls out. Mishra et al. (2017) proposes a temporal convolutional
network that outputs the prediction for the test example based on the previous labeled examples it
has seen given as input a sequence of example-label pairs followed by an unlabeled example.

Parameter Prediction Our work is also related to parameter prediction. To accelerate the con-
vergence rate of model, Ha et al. (2017) proposes to generate the weights of main network via a
HyperNetwork with fewer learnable parameters, which can be viewed as a relaxed form of weight-
sharing across layers. The difference between HyperNetwork and our work is that, for a CNN, pa-
rameters of the main network are fixed after training in HyperNetwork, while kernels are generated
dynamically conditioned on input query images even when testing in our method. De Brabandere
et al. (2016) and Klein et al. (2015) apply input conditioned kernel to image prediction task, and the
dynamically-generated filters are mainly used to predict the movement of pixels between frames.
Han et al. (2018) proposes the contrastive convolutional kernels that is created based on the input
face pair to focus on the different features between the input face pair for better certifying whether
they belong to the same identity. Differently, our dynamic generated kernels corresponding to a
given query image are used to build a individualized feature space, where the query image can be
more accurately classified. Qiao et al. (2018) and Gidaris & Komodakis (2018) propose to learn
how to generate the classification weight vectors given the feature presentations of a few images of
a specific class to address the few-shot classification task. Different from them, our meta-learner
learns how to map examples into the individualized feature space corresponding to a given query
image. Our work is related to Bertinetto et al. (2016) the most. Bertinetto et al. (2016) proposes a
second network, called a Learnet, to predict the parameters of a pupil network from a exemplar. The

3



Under review as a conference paper at ICLR 2019

Base Feature Extractor

Query Image

Kernel Generator

Individualized
Features

!"

!#

Figure 2. Network architecture for a 5-way 1-shot classification task.

novelty of our work is still evident relative to Learnet. First, the mechanisms of generating kernels
are different. Learnet predicts kernels by directly reshaping the output of the last layer of Learnet
into the target shape, possibly conflicting with the receptive field. Differently, to preserve the spatial
information, our kernel generator creates distinct kernels focusing on different components of the
input image. Second, the structure design of the backbone of the two methods is different. Learnet
aims to dynamically generate the whole network, i.e., the backbone of each input is different from
each other, which is unnecessary and makes it hard to optimize. In contrast, as we believe that the
low-level features of different inputs are generic, the backbone in our method is shared by all inputs
and only the high-level features are dynamic.

3 INDIVIDUALIZED FEATURE SPACE

3.1 TASK DEFINITION

Generally, there are three sets of examples in a few-shot classification task: a training set, a support
set, and a testing set. The training set and the support set have disjoint label spaces with each other,
while the testing set shares the same label space with the support set. The few-shot classification
task is to classify examples in the testing set with a small support set, i.e. there are only one or a
few examples for each class. A C-way K-shot classification task means there are C classes with K
labeled examples for each class in the support set.

In this work, we follow the episode-based training strategy, and perform one-shot (K=1) and five-
shot (K=5) classification in our experiments. The episode-based training scheme is an effective
training scheme in meta-learning, which is widely used in Snell et al. (2017); Finn et al. (2017); Li
et al. (2017); Sung et al. (2018); Mishra et al. (2017). It simulates the support/test set split that is
used at testing phase to design the episode as a sample/query set split. The sample set consists of C
classes and K labeled samples per class, which are randomly selected from the training set, and the
query set consists of a fraction of the remainder of samples of the C classes.

3.2 FRAMEWORK

Suppose there is a sample set {(xij , yij)}i∈{1,..,C},j∈{1,...,K} and a query image q with label l,
where xij means the j-th image of the i-th class in the sample set, and yij is the label of image
xij . As is shown in Figure 2, the framework of our method mainly consists of two modules: a
base feature extractor and a kernel generator. The base feature extractor c, which is shared across
all images, consisting of several cascaded convolutional layers, extracts shared base features for all
input images.

4



Under review as a conference paper at ICLR 2019

Taking x as one image in the sample set, as well as Fx and Fq as feature maps of image x and q
respectively, c can be formulated as:

Fx = c(x), Fq = c(q) ∈ RhF×wF×cF (1)

where hF , wF and cF are the height, width, and number of channels of output feature maps respec-
tively. At this step, images are mapped from the raw image space to a common feature space.

To better distinguish the query image from other objects, the individualized feature space is created
based on the base feature space, where only characteristics that can best distinguish the query image
from other objects are focused. Specifically, a kernel generator G is introduced to generate indi-
vidualized kernels for different query images. The kernel generator G takes the feature maps Fq as
input, and outputs a set of individualized kernels Kq for the query image q, which can be generally
formulated as follow:

Kq = G(Fq) (2)

The set of individualized kernelsKq of image q can be used to create a query specific feature embed-
ding: fq : SCom −→ SInd

q , where the SCom and SInd
q means common feature space corresponding

to the base feature extractor and individualized feature space of q respectively. fq is constructed as
the form of convolution with Kq as convolutional kernels, that is:

fq(Fx) = Kq ∗ Fx
4
= F q

x , f
q(Fq) = Kq ∗ Fq

4
= F q

q (3)

here, * means the conventional convolution. Thus, fq is a dynamic feature embedding, and varied
with the query image.

An individualized feature space of image q is the range of function fq . In the individualized feature
space SInd

q , the distance between images in the sample set and image q can be defined as any
distance metric, such as cosine distance, Manhattan distance, and Euclidean distance. Based on the
distance metric we used, images in the sample set are expected to gather into two clusters: images
owning the same class label as q, and images with different labels from q.

3.3 KERNEL GENERATOR

Convolutional kernels generated via the kernel generator G should be able to obtain adequate in-
formation of the given query image to create expressive individualized feature space. Inspired by
Han et al. (2018), our kernel generator is designed as a hierarchical structure to obtain kernels with
multiple scales as feature maps in different layers usually own different receptive field. Specifi-
cally, there are T layers in kernel generator network, one sub-generator for each layer, forming T
sub-generators in total:

G = {g1, g2, · · · , gT }. (4)

Layer i(1 ≤ i ≤ T ) starts from feature maps Sq
i , which are usually obtained by operating the

convolution on the feature maps Si−1
q with S0

q = Fq .

On each layer, a sub-generator gi is constructed to generate a group of kernels in the same scale as
below:

Ki
q = {ki1q , ki2q , ..., kiNi

q }, (5)

where Ni is the number of kernels generated from gi. Each kernel kijq is expected to portray the
characteristics of a local component of image q, achieved by cropping a local patch:

Kij
q = gi(P

ij
q ), P ij

q = R(F i
q , cij , h, w), (6)

where R denotes the image crop operation and R(F i
q , cij , h, w) means cropping F i

q with the center
at cij , height of h, and width of w. In our experiments, gi consists only one fully connected layer.

The kernels from one sub-generator share similar receptive field but focus on different components.
Kernels from different sub-generators have different receptive fields paying attention to character-
istics in different scales. Altogether, a set of individualized kernels can be obtained as the union of
kernels from all the sub-generators as below:

Kq = {k11q , ..., k1N1
q , ..., kijq , ..., k

T1
q , ..., kTNT

q }. (7)

5



Under review as a conference paper at ICLR 2019

The learning of kernel generator is higher level than vanilla kernel, acquiring meta-knowledge of
generating adequate convolutional kernels for different query images during training, which can
generalize to unseen categories without fine-tuning.

3.4 LOSS FUNCTION

Given a query image q with label l in a query set of an episode, we hope features of images in the
sample set to be close to or far from the features of q in the individualized feature space according to
whether they have the same label with q. The possibility pql that label l is assigned to image q can be
calculated by a softmax function based on the defined distance metric. Following the cross entropy
loss, the loss function is formulated as follow:

L1 = − 1

N

∑
(q,l)

log(pql ) (8)

where N is the number of query images. Minimizing the above loss function can guarantee that
the true label l be assigned to the query images q. Moreover, individualized kernels are expected
to capture the intrinsic characteristics of a object, that is, individualized kernels of different images
with the same object should be the same even with different poses, illuminations, forming another
cross entropy loss:

L2 = − 1

N

∑
(q,l)

ellog(H(Kq)) (9)

where el is a one-hot vector with 1 in the l−th position, and H(Kq) aims to regress the possibility
distribution of kernels Kq to a one-hot code for classification. The network can be trained in an
end-to-end manner by jointly optimizing L1 and L2 with the gradient decent based optimization
algorithm.

4 EXPERIMENTS

4.1 SETTINGS

We implement our method with PyTorch. In all experiments, the parameters of our models are
randomly initialized, and Adam Kinga & Adam (2015) is used for optimization. Models are iterated
100k with learning rate 0.0005 during training. The batch size is set as 8. As for the kernel generator,
it consists of two sub-generators. The first sub-generator takes 6×6 feature maps as input, generating
36 kernels, and the second one takes 4×4 feature maps as input, generating 16 kernels. For aK-shot
task, we average the features of K images with the same label in the individualized feature space
tailored for a given query image, and then calculate the distance between the query image and the
mean features as is done in Snell et al. (2017).

As most few-shot learning models utilize four convolutional blocks for feature embedding module
Vinyals et al. (2016); Snell et al. (2017); Finn et al. (2017); Li et al. (2017); Sung et al. (2018), the
base feature extractor in our model is also designed as a convolution architecture with 4 modules,
where each module consists of a 3 × 3 convolution layer with 64 filters, followed by batch nor-
malization Ioffe & Szegedy (2015), a ReLU nonlinearity, and 3 × 3 max-pooling. The stride for
all convolution layers is 1. On Omniglot, step size in the first two max-pooling layers is 2, and in
the last two max-pooling layers is 1 to make sure the network outputs bigger feature map, while on
miniImageNet, all step size of max-pooling layers is 2 due to the increased image size. We refer
the network described above to as C4. Besides, as Mishra et al. (2017) uses the small version of the
ResNet He et al. (2016) to improve the accuracy, we also use a similar ResNet structure but with
less filters on miniImageNet, which is referred to as ResNet.

For all experiments, on a C-way K-shot experiment, the episode is formed with C classes, and each
class includes K sample images, and 6 and 15 query images for training and testing respectively.
Following Vinyals et al. (2016); Snell et al. (2017); Finn et al. (2017); Sung et al. (2018), on Om-
niglot, we compute few-shot classification accuracies by averaging over 1000 randomly generated
episodes from the testing set, while on miniImageNet and tieredImageNet, results are computed by
averaging over 600 randomly generated episodes from the testing set.

6



Under review as a conference paper at ICLR 2019

Table 1. Few-shot classification accuracies on Omniglot. ’-’: not reported.

Model Fine Tune
5-way accuracy(%) 20-way accuracy(%)
1-shot 5-shot 1-shot 5-shot

MANN Santoro et al. (2016) N 82.8 94.9 - -
Convolutional Siamese Nets Koch et al. (2015) N 96.7 98.4 88.0 96.5
Convolutional Siamese Nets Koch et al. (2015) Y 97.3 98.4 88.1 97.0

Matching Nets Vinyals et al. (2016) N 98.1 98.9 93.8 98.5
Matching Nets Vinyals et al. (2016) Y 97.9 98.7 93.5 98.7

Siamese Nets with Memory Hertwig et al. (2004) N 98.4 99.6 95.0 98.6
Neural Statistician Edwards & Storkey (2017) N 98.1 99.5 93.2 98.1

Meta Nets Munkhdalai & Yu (2017) N 99.0 - 97.0 -
Prototypical Nets Snell et al. (2017) N 98.8 99.7 96.0 98.9

MAML Finn et al. (2017) Y 98.7 99.9 95.8 98.9
Meta-SGD Li et al. (2017) Y 99.53 99.93 95.93 98.97

Relation Net Sung et al. (2018) N 99.6 99.8 97.6 99.1
SNAIL Mishra et al. (2017) Y 99.07 99.78 97.64 99.36

ours N 99.49 99.83 98.03 99.22

4.2 OMNIGLOT

Omniglot Lake et al. (2011) consists of 1623 characters collected from 50 different alphabets. Each
character contains 20 samples drawn by different people. Following Santoro et al. (2016); Finn
et al. (2017); Snell et al. (2017), we resize all images into 28×28, and augment new classes through
randomly rotating images by 90 degrees multiples times. We randomly choose 1200 classes for
meta-training and the remaining 423 classes for meta-testing, both with rotation augmentation.

Results on Omniglot is shown in Table 1. As can be seen, accuracies of most methods approach
100%, which means the performance differences between all methods are small. However, our
method still achieves about 0.4 % point promotion on 20-way 1-shot experiment, despiting that
some methods fine-tune on the support set Vinyals et al. (2016); Finn et al. (2017); Li et al. (2017);
Mishra et al. (2017).

4.3 miniIMAGENET

The miniImageNet dataset is a subset of the large ILSVRC-12 dataset Russakovsky et al. (2015),
consisting of 60000 image, with 600 images per class. In our experiments, the splits, introduced
by Vinyals et al. (2016), are used where data is divided into three disjoint subsets: 64 classes for
meta-training, 16 classes for meta-validation, and 20 classes for meta-testing. Following Santoro
et al. (2016); Vinyals et al. (2016); Finn et al. (2017); Snell et al. (2017); Qi et al. (2018), we resize
all images into 84× 84 for training and testing.

Influence of Number of Sub-generator The kernel generator is designed with a hierarchical
structure to integrate information from multiple scales. In our experiments, there are 2 layers in
the kernel generator, each layer for one sub-generator. Here, to investigate the influence of the
number of sub-generator, we compare the results of model with 1 sub-generator and model with 2
sub-generators. Experiments are performed on the setting of 5-way 1-shot and 5-way 5-shot with
the 4-layer network on miniImageNet. The accuracies of model with 2 sub-generators increase from
53.15% to 54.47% and from 67.95% to 68.27% on 5-way 1-shot and 5-way 5-shot respectively rel-
ative to model with only 1 sub-generator, which indicates the effectiveness of hierarchical structure
of the kernel generator.

Influence of Distance Metric we evaluate three different distance metrics in the individualized
feature space on miniImageNet, including cosine similarity, Manhattan distance and Euclidean dis-
tance. The results are shown in Table. 2. As can be seen, the distance metric has limited influence
on accuracies, and Euclidean distance performs slightly better on both setting of 5way-1shot and
5way-5shot.

7



Under review as a conference paper at ICLR 2019

Visualizating of Individualized features As shown in Figure 3, we visualize the feature maps of
the support set images in the individualized feature space corresponding to different query images.
The first row shows three images S1 to S3 from support set. In each row of next 2-4, the leftmost
image is the query image Qi used to generate kernels that map S1 to S3 into the feature space
tailored for Qi, and the rest images are the feature maps of S1 to S3 in Qi’s feature space. Clearly,
different aspects of a support set image are focused when mapped to distinct individualized feature
spaces of different query images, demonstrating the rationality of our individualized feature space.

Q1

Q2

Q3

S1 S2 S3

Figure 3. Illustration of feature maps in different individ-
ualized feature spaces.

Table 2. Comparion of different distance metrics
on miniImageNet for 5-way 1-shot and 5-way 5-
shot.

Distance Metric
5-way accuracy(%)
1-shot 5-shot

cosine 53.54 67.89
Manhattan 54.39 67.26
Euclidean 54.47 68.27

Table 3. Few-shot classification accuracies on miniImageNet. C4 and ResNet are described in section 4.1.

Model Fine Tune Networks
5-way accuracy(%)
1-shot 5-shot

Matching Nets Vinyals et al. (2016) Y C4 43.56 55.31
Meta-Learn LSTM Ravi & Larochelle (2017) Y C4 43.44 60.60

Prototypical Nets Snell et al. (2017) N C4 49.42 68.20
MAML Finn et al. (2017) Y C4 48.7 63.11
Meta-SGD Li et al. (2017) Y C4 50.47 64.03

Relation Net Sung et al. (2018) N C4 50.44 65.32
SNAIL Mishra et al. (2017) Y C4 45.1 55.2
SNAIL Mishra et al. (2017) Y ResNet 55.71 68.88

ours N C4 54.47 68.27
ours N ResNet 56.89 70.51

Comparison with State-of-the-art Here we compare our proposed method with other state-of-
the-art approaches on the miniImageNet data set. As is shown in 3, under both 5-way 1-shot and
5-way 5-shot setting, our accuracies are much higher than those metric learning based method, such
as Matching Nets Vinyals et al. (2016), Prototypical Nets Snell et al. (2017), and Relation Net Sung
et al. (2018), indicating the superiority of individualized feature space.

5 CONCLUSION

In this paper, we introduced a meta-learning method based on learning how to create feature embed-
ding dynamically for different query images in the few-shot classification task. When recognizing a
given query image, its characteristics are considered into contrusting the feature embedding, leading
to an individualized feature space tailored for the query image, where the query image can be better
distinguished from other objects. The meta-learner is designed as a kernel generator to create the
dynamic convolution kernels. Good generalization of our models benefits from the kernel generator
which can obtain the meta-knowledge of creating adequate convolutional kernels for different query
images. The good performance on two data sets, i.e., Omniglot, and miniImageNet, demonstrates
the superiority of the proposed individualized feature space.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
and Nando de Freitas. Learning to learn by gradient descent by gradient descent. In NIPS, 2016.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a synaptic
learning rule. In Preprints Conf. Optimality in Artificial and Biological Neural Networks, 1992.

Luca Bertinetto, João F Henriques, Jack Valmadre, Philip H. S Torr, and Andrea Vedaldi. Learning
feed-forward one-shot learners. In NIPS, 2016.

Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. 2016.

Harrison Edwards and Amos Storkey. Towards a neural statistician. 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
CVPR, 2018.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. In ICLR, 2017.

Chunrui Han, Shiguang Shan, Meina Kan, Shuzhe Wu, and Xilin Chen. Face recognition with
contrastive convolution. In ECCV, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Ralph Hertwig, Greg Barron, Elke U Weber, and Ido Erev. Decisions from experience and the effect
of rare events in risky choice. Psychological science, 2004.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In International Conference on Artificial Neural Networks, 2001.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

D Kinga and J Ba Adam. A method for stochastic optimization. In ICLR, 2015.

Benjamin Klein, Lior Wolf, and Yehuda Afek. A dynamic convolutional layer for short rangeweather
prediction. In CVPR, 2015.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML Deep Learning Workshop, 2015.

Brenden Lake, R Salakhutdinov, J Gross, and J.B. Tenenbaum. One shot learning of simple visual
concepts. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society, 2011.

Ke Li and Jitendra Malik. Learning to optimize. In ICLR, 2017.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few
shot learning. arXiv preprint arXiv:1707.09835, 2017.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In NIPS 2017 Workshop on Meta-Learning, 2017.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. ICML, 2017.

Devang K Naik and RJ Mammone. Meta-neural networks that learn by learning. In International
Joint Conference on Neural Networks, 1992.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. CoRR,
2018.

9



Under review as a conference paper at ICLR 2019

Hang Qi, Matthew Brown, and David G. Lowe. Low-shot learning with imprinted weights. In
CVPR, 2018.

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan Yuille. Few-shot image recognition by predicting
parameters from activations. In CVPR, 2018.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. IJCV, 2015.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine learn-
ing, 2016.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 1992.

Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Shifting inductive bias with success-story
algorithm, adaptive levin search, and incremental self-improvement. Machine Learning, 1997.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
NIPS, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In CVPR, 2018.

Sebastian Thrun. Lifelong learning algorithms. In Learning To Learn. 1998.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, koray kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In NIPS. 2016.

10


	Introduction
	Related Work
	Individualized Feature Space
	Task Definition
	Framework
	Kernel Generator
	Loss Function

	Experiments
	Settings
	Omniglot
	miniImageNet

	Conclusion

