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Abstract

Cooperative multi-agent reinforcement learning often requires decentralised poli-
cies, which severely limit the agents’ ability to coordinate their behaviour. In
this paper, we show that common knowledge between agents allows for complex
decentralised coordination. Common knowledge arises naturally in a large number
of decentralised cooperative multi-agent tasks, for example, when agents can re-
construct parts of each others’ observations. Since agents can independently agree
on their common knowledge, they can execute complex coordinated policies that
condition on this knowledge in a fully decentralised fashion. We propose multi-
agent common knowledge reinforcement learning (MACKRL), a novel stochastic
actor-critic algorithm that learns a hierarchical policy tree. Higher levels in the
hierarchy coordinate groups of agents by conditioning on their common knowledge,
or delegate to lower levels with smaller subgroups but potentially richer common
knowledge. The entire policy tree can be executed in a fully decentralised fashion.
As the lowest policy tree level consists of independent policies for each agent,
MACKRL reduces to independently learnt decentralised policies as a special case.
We demonstrate that our method can exploit common knowledge for superior
performance on complex decentralised coordination tasks, including a stochastic
matrix game and challenging problems in StarCraft II unit micromanagement.

1 Introduction

Cooperative multi-agent problems are ubiquitous, for example, in the coordination of autonomous
cars (Cao et al.,2013). However, how to learn control policies for such systems remains a major
open question. Joint action learning (JAL, (Claus & Boutilier,|1998)) learns centralised policies that
select joint actions conditioned on the global state or joint observation. However, in order to execute
such policies, the agents need access to either the global state or an instantaneous communication
channel with sufficient bandwidth to enable them to aggregate their individual observations. These
requirements often do not hold in practice, but even when they do, learning a centralised policy can
be infeasible as the size of the joint action space grows exponentially in the number of agents. By
contrast, independent learning (IL, [Tan,|1993) learns fully decentralisable policies but introduces
nonstationarity as each agent treats the other agents as part of its environment.

These difficulties motivate an alternative approach: centralised training of decentralised policies.
During learning the agents can share observations, parameters, gradients, etc. without restriction but
the result of learning is a set of decentralised policies such that each agent can select actions based
only on its individual observations. While significant progress has been made in this direction (Rashid
et al., 2018; [Foerster et al., 2016, 2017, [2018; [Kraemer & Banerjee, [2016; Jorge et al.,[2016), the
requirement that policies must be fully decentralised severely limits the agents’ ability to coordinate
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their behaviour. Often agents are forced to ignore information in their individual observations that
would in principle be useful for maximising reward, because acting on it would make their behaviour
less predictable to their teammates. This limitation is particularly salient in IL, which cannot solve
many coordination tasks (Claus & Boutilier, |1998).

Common knowledge for a group of agents consists of facts that all
agents know and “each individual knows that all other individuals
know it, each individual knows that all other individuals know that
all the individuals know it, and so on” (Osborne & Rubinstein,
1994). This may arise in a wide range of multi-agent problems,
e.g., whenever a reliable communication channel is present. But
common knowledge can also arise without communication, if agents
can infer some part of each other’s observations. For example, if
each agent can reliably observe objects within its field of view and
the agents know each other’s fields of view, then they share common Figure 1: Three agents and their
knowledge whenever they see each other. This setting is illustrated in ~ fields of view. A and B’s locations
Figure[I|and applies to a range of real-world scenarios, for example, are common knowledge to A and
to robo-soccer (Genter et al.,[2017), fleets of self-driving cars and B as they are within each other’s
multi-agent StarCraft micromanagement (Synnaeve et al.,2016). fields of view. Although C can
see A and B, it shares no common
knowledge with them.

In the absence of common knowledge, complex decentralised coor-
dination has to rely on implicit communication, i.e., observing each
other’s actions or their effects (Heider & Simmel, |1944;|Rasouli et al., 2017). However, implicit com-
munication protocols for complex coordination problems are difficult to learn and, as they typically
require multiple timesteps to execute, can limit the agility of control during execution (Tian et al.}
2018). By contrast, coordination based on common knowledge is simultaneous, that is, does not
require learning communication protocols (Halpern & Moses,, 2000).

In this paper, we introduce multi-agent common knowledge reinforcement learning (MACKRL), a
novel stochastic policy actor-critic algorithm that can learn complex coordination policies end-to-end
by exploiting common knowledge between groups of agents at the appropriate level. MACKRL uses a
hierarchical policy tree in order to dynamically select the right level of coordination. By conditioning
joint policies on common knowledge of groups of agents, MACKRL occupies a unique middle
ground between IL and JAL, while remaining fully decentralised.

Using a proof-of-concept matrix game, we show that MACKRL outperforms both IL and JAL.
Furthermore, we use a noisy variant of the same matrix game to show that MACKRL can exploit a
weaker form of group knowledge called probabilistic common knowledge (Krasucki et al.|[1991),
that is induced by agent beliefs over common knowledge, derived from noisy observations. We show
that MACKRL’s performance degrades gracefully with increasing noise levels.

We then apply MACKRL to challenging StarCraft II unit micromanagement tasks (Vinyals et al.|
2017) from the StarCraft Multi-Agent Challenge (SMAC, |Samvelyan et al.,|2019). We show that
simultaneous coordination based on pairwise common knowledge enables MACKRL to outperform
the state-of-the-art algorithms COMA (Foerster et al., 2018) and QMIX (Rashid et al.,|2018) and
provide a variant of MACKRL that scales to tasks with many agents.

2 Problem Setting

Cooperative multi-agent tasks with n agents a € A can be modelled as decentralised partially
observable Markov decision processes (Dec-POMDPs, |Olichoek et al.; 2008). The state of the system
is s € §. At each time-step, each agent a receives an observation z* € Z and can select an action
ud, € US,. We use the env-subscript to denote actions executed by the agents in the environment, as
opposed to latent ‘actions’ that may be taken by higher-level controllers of the hierarchical method
introduced in Section Given a joint action Uepy := (ul, ..., u%,) € Ueny, the discrete-time system
dynamics draw the successive state s’ € S from the conditional distribution P(s'|s, Ueny) and yield a

cooperative reward according to the function (s, Ueny).

The agents aim to maximise the discounted return R; = Zzio 71 7(St41, Ugti,env) from episodes of
length H. The joint policy 7 (ueny|s) is restricted to a set of decentralised policies 7% (ul,|7¢*) that
can be executed independently, i.e., each agent’s policy conditions only on its own action-observation
history 77 = [2§,u§, 27, ..., 2{]. Following previous work (Rashid et al.| 2018; [Foerster et al.|



2016,2017, 2018} | Kraemer & Banerjee, 20165 Jorge et al.,2016)), we allow decentralised policies to
be learnt in a centralised fashion.

Common knowledge of a group of agents G refers to facts that all members know, and that “each
individual knows that all other individuals know it, each individual knows that all other individuals
know that all the individuals know it, and so on” |Osborne & Rubinstein|(1994)). Any data £ that are
known to all agents before execution/training, like a shared random seed, are obviously common
knowledge. Crucially, every agent a € G can deduce the same history of common knowledge Ttg from
its own history ¢ and the commonly known data £, that is, 7¥ := Z9 (7%, €) = Z9(7f,€),Va,a € G.
Furthermore, any actions taken by a policy 7% (u$,,|7¥) over the group’s joint action space UJ,
are themselves common knowledge, if the policy is deterministic or pseudo-random with a shared
random seed and conditions only on the common history Ttg , 1.e. the set formed by restricting each
transition tuple within the joint history of agents in G to what is commonly known in G at time .

Common knowledge of subgroups G’ C G cannot decrease, that is, Z9 (7%, &) D Z9 (7, €).

Given a Dec-POMDP with noisy observations, agents in a group G might not be able to establish
true common knowledge even if sensor noise properties are commonly known (Halpern & Moses,
2000). Instead, each agent a can only deduce its own beliefs iag (7{) over what is commonly known
within G, where 7/ is the agent’s belief over what constitutes the groups’ common history. Each
agent a can then evaluate its own belief over the group policy 79 (ug, |79). In order to minimize the
probability of disagreement during decentralized group action selection, agents in G can perform
optimal correlated sampling based on a shared random seed (Holenstein, 2007; Bavarian et al., [2016).

Probabilistic common knowledge measures how much group common knowledge group members
can infer at high probability given they share information but possibly no true common knowledge
(Krasucki et al.,|1991). Formally, a group of agents G admits probabilistic common knowledge ift
Vo € U, _g{1,...,|G|}", inflx) > 0 where inf(x) measures the amount of information that all
agents in x have about the partitions underlying each other’s individual knowledge accessibility
relations (Krasucki et al.| 1991} Definitions 8,13). Probabilistic common knowledge therefore denotes
a weaker form of group knowledge that can be exploited even if no true common knowledge exists,
such as e.g. if observations are noisy.

Learning under common knowledge (LuCK) is a novel cooperative multi-agent reinforcement
learning setting, where a Dec-POMDP is augmented by a common knowledge function Z9 (or
probabilistic common knowledge function Z9). Groups of agents G can coordinate by learning
policies that condition on their common knowledge. In this paper Z9 (or fg ) is fixed apriori,
but it could also be learnt during training. The setting accommodates a wide range of real-world
and simulated multi-agent tasks. Whenever a task is cooperative and learning is centralised, then
agents can naturally learn suitable Z9 or fg . Policy parameters can be exchanged during training
as well and thus become part of the commonly known data &. Joint policies where coordinated
decisions of a group G only condition on the common knowledge of G can be executed in a fully
decentralised fashion. In Section we introduce MACKRL, which uses centralised training to learn
fully decentralised policies under common knowledge.

Field-of-view common knowledge is a form of complete-history common knowledge (Halpern
& Moses, [2000), that arises within a Dec-POMDP if agents can deduce parts of other agents’
observations from their own. In this case, an agent group’s common knowledge is the intersection
of observations that all members can reconstruct from each other. In Appendix [D we formalise this
concept and show that, under some assumptions, common knowledge is the intersection of all agents’
sets of visible objects, if and only if all agents can see each other. Figure[I shows an example for
three agents with circular fields of view. If observations are noisy, each agent bases its belief on its

own noisy observations thus inducing an equivalent form of probabilistic common knowledge jag .

Field-of-view common knowledge naturally occurs in many interesting real-world tasks, such as
autonomous driving (Cao et al.|[2013) and robo-soccer (Genter et al.,[2017), as well as in simulated
benchmarks such as StarCraft II (Vinyals et al.,|2017). A large number of cooperative multi-agent
tasks can therefore benefit from common knowledge-based coordination introduced in this paper.
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Figure 2: An illustration of Pairwise MACKRL. [Left]: the full hierarchy for 3 agents (dependencies on
common knowledge are omitted for clarity). Only solid arrows are computed during decentralised sampling
with Algorithm|[1] while all arrows must be computed recursively during centralised training (see Algorithm [2).
[Right]: the (maximally) 3 steps of decentralised sampling from the perspective of agent A. (i) Pair selector

chooses the partition { AB, C'} based on the common knowledge of all agents Z4Z (74, ¢) = @. (ii) Based on

the common knowledge of pair A and B, Z48 (TA, &), the pair controller 7T§B can either choose a joint action

(ug?w, u®,), or delegate to individual controllers by selecting w4 (iii) If delegating, the individual controller
7 must select the action uZ, for the single agent A. All steps can be computed based on A’s history 7.

3 Multi-Agent Common Knowledge Reinforcement Learning

The key idea behind MACKRL is to learn decentralised policies that are nonetheless coordinated by
common knowledge. As the common knowledge history Ttg of a group of agents G can be deduced by
every member, i.e., Ttg =T9(12,€),Ya € G, any deterministic function based only on Ttg can thus
be independently computed by every member as well. The same holds for pseudo-random functions

like stochastic policies, if they condition on a commonly known random seed in .

MACKRL uses a hierarchical policy m(Ueny|[{7f }ac.4, §) over the joint environmental action space of
all agents Ueyy. The hlerarchy forms a tree of sub-policies ¥ over groups G, where the root 7 covers
all agents. Each sub-policy 79 (u9| Z9(7¢, £)) conditions on the common knowledge of G, including
a shared random seed in &, and can thus be executed by every member of G independently. The
corresponding action space U9 contains the environmental actions of the group u,, € U, and/or
a set of group partitions, that is, u9 = {G1,...,Gx} WithG; NG, = &, Vi # j and ulzlgl =G.
Choosing a partition u9 # U9, yields control to the sub-policies 79 of the partition’s subgroups
G; € uY. This can be an advantage in states where the common history 7;”* of the subgroups is more
informative than 7. All action spaces have to be specified in advance, which induces the hierarchical
tree structure of the joint policy. Algorithm [T shows the decentralised sampling of environmental
actions from the hierarchical joint policy as seen by an individual agent a € A.

As the common knowledge of a group with only one agent G = {a} is Z{%} (7% &) = 7¢, fully
decentralised policies are a special case of MACKRL policies: in this case, the root policy 7

has only one action //* := {u#}, u := {{1},...,{n}}, and all leaf policies 7{*} have only
environmental actions U1} .= 2.

3.1 Pairwise MACKRL

To give an example of one possible MACKRL architecture, we define Pairwise MACKRL, illustrated
in Figure 2] As joint action spaces grow exponentially in the number of agents, we restrict ourselves
to pairwise joint policies and define a three-level hierarchy of controllers.

Algorithm 1 Decentralised action selection for agent ¢ € A in MACKRL

function SELECT_ACTION(a, 7, &) > random seed in ¢ is common knowledge
G:=A > initialise the group G of all agents
w ~7 ( | Z9(7£,€)) > uY is either a joint environmental action in 245, ...
while uf ¢ U9, do > ... or a set of disjoint subgroups {G1,...,Gx}
G:={Glac g, G cuf} > select subgroup containing agent a

W ~ n9 (-1Z9(r,€)) > draw an action for that subgroup
return uy > return environmental action u¢ € U, of agent a




Algorithm 2 Compute joint policies for a given ud,, € UZ, of a group of agents G in MACKRL

function JOINT_POLICY(uY, | G, {78 }acg, &) > random seed in & is common knowledge
ad~@gG: 19:.= Ig(’?’ta/ ,€) > common knowledge 1Y is identical for every agent a’ € G

Deny := 0 > initialise probability for choosing environmental joint action ug,,

for u¥ € ¢4/9 do > add probability to choose u¥,, for all outcomes of 79

env

if uy = ug, then > if u¥ is the environmental joint action in question

Penv 1= Denv + 7"—g(ugnv‘ Ig)
if ud ¢ U9, then >ifu¥ = {G!,...,G*} is a set of disjoint subgroups

env
Penv = Peny + 79(u9] 1) [] JOINT_POLICY (g, |G', {7 }acq', &)
G'eu’d

return peyy > return probability that controller 79 would have chosen ugw

The root of this hierarchy is the pair selector WI;‘S‘, with an action set Z/{L;;1 that contains all possible
partitions of agents into pairs {{a1,@1},...,{ay/2,0n/2}} =: ut € Z/ll;?, but no environmental

actions. If there are an odd number of agents, then one agent is put in a singleton group. At the
second level, each pair controller ﬁgf of the pair G = {a,a} can choose between joint actions
uly, € Ug, x Ug, and one delegation action ug® := {{a}, {a}}, i.e., Up® := Ug, x Ug, U {ui®}.
At the third level, individual controllers 7 select an individual action ug,, € U2, for a single agent
a. This architecture retains manageable joint action spaces, while considering all possible pairwise
coordination configurations. Fully decentralised policies are the special case when all pair controllers
always choose partition u%” to delegate.

Unfortunately, the number of possible pairwise partitions is O(n!), which limits the algorithm to
medium sized sets of agents. For example, n = 11 agents induce |/, “‘g‘| = 10395 unique partitions.
To scale our approach to tasks with many agents, we share networﬁ parameters between all pair
controllers with identical action spaces, thereby greatly improving sample efficiency. We also
investigate a more scalable variant in which the action space of the pair selector 77;,‘; is only a fixed
random subset of all possible pairwise partitions. This restricts agent coordination to a smaller set of
predefined pairs, but only modestly affects MACKRL's performance (see Section[4.2).

3.2 Training

The training of policies in the MACKRL family is based on Central-V (Foerster et al., 2018), a
stochastic policy gradient algorithm (Williams| |1992) with a centralised critic. Unlike the decen-
tralised policy, we condition the centralised critic on the state s; € S and the last actions of all
agents Uepy,t—1 € Ueny. We do not use the multi-agent counterfactual baseline proposed by |[Foerster
et al.|(2018), because MACKRL effectively turns training into a single agent problem by inducing
a correlated probability across the joint action space. Algorithm [2 shows how the probability of
choosing a joint environmental action u,, € UZ, of group G is computed: the probability of choosing
the action in question is added to the recursive probabilities that each partition u¢ ¢ 149, would have
selected it. Algorithm|I{only traverses one branch of the tree during decentralised execution, during
which we employ deterministic policies that do not require any additional means of coordination
such as shared random seeds.

At time ¢, the gradient with respect to the parameters 6 of the joint policy 7 (Ueny|{7{ taca, &) is:

Vodi = (r(st, Ueny,t) + YV (St41, Uenv,t) — V (St Uenv,t—1)) Vo log (T (Weny,¢| {71 }aca, €)), (1)

sample estimate of the advantage function JOINT_POLICY (Ueny, t | A {7 }ac.4,8)

The value function V' is learned by gradient descent on the TD(\) loss (Sutton & Barto| [1998).
As the hierarchical MACKRL policy tree computed by Algorithm [2]is fully differentiable and
MACKRL trains a joint policy in a centralised fashion, the standard convergence results for actor-
critic algorithms (Konda & Tsitsiklis, |1999) with compatible critics (Sutton et al., | 1999) apply.
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4 Experiments and Results

We evaluate Pairwise MACKRL (henceforth referred to as MACKRL) on two environments: First,
we use a matrix game with special coordination requirements to illustrate MACKRL'’s ability to
surpass both IL and JAL. Secondly, we employ MACKRL with deep recurrent neural network
policies in order to outperform state-of-the-art baselines on a number of challenging StarCraft II
unit micromanagement tasks. Finally, we analyse MACKRL’s robustness to sensor noise and its
scalability to large numbers of agents to illustrate its applicability to real-world tasks.

4.1 Single-step matrix game

To demonstrate how MACKRL trades off between independent and joint action selection, we evaluate
a two-agent matrix game with partial observability. In each round, a fair coin toss decides which of
the two matrix games in Figure[3 [left] is played. Both agents can observe which game has been
selected if the observable common knowledge bit is set. If the bit is not set, each agent observes the
correct game only with probability 0.5, and is given no observation otherwise. Crucially, whether
agents can observe the current game is in this case determined independently of each other. Even if
both agents can observe which game is played, this observation is no longer common knowledge and
cannot be used to infer the choices of the other agent.

Figure 3 [middle] shows MACKRL's performance as a function of the probability of observing the
common knowledge bit. We contrast this with JAL, which selects both agents’ actions together.
With JAL, the agents learn the optimal decision for each matrix, but this decision yields no reward
in the other matrix. As the probability for common knowledge increases, so does the probability
of observing the current game. JAL’s expected reward closely follows the latter probability. This
indicates that JAL learns each game perfectly, but does not find the optimal policy in the case of no
observations. In contrast, the optimal no observation policy is found by independent actor-critic
(IAC), which is a variant of IL where each agent uses an actor-critic approach. However, as IAC
agents have no knowledge of each other’s actions, they find only a suboptimal solution when they
can in fact observe which game is played.

As expected, MACKRL smoothly interpolates between these extremes. For no common knowledge,
MACKRL behaves like IAC, but the exploitation of available common knowledge allows each agent
to anticipate the other’s actions. MACKRL therefore outperforms IAC and JAL in almost all cases.
Inspecting the policy verifies that MACKRL learns the optimal policy, which is to delegate to the
independent controllers whenever the common knowledge bit is absent and let the pair controllers
execute a joint action otherwise.

To assess MACKRL's performance in the case of probabilistic common knowledge (see Section|2),
we also consider the case where the observed common knowledge bit of individual agents is randomly
flipped with probability p. This implies that both agents do not share true common knowledge with
respect to the game matrix played. Instead, each agent a can only form a belief Z¢ over what is
commonly known. The commonly known pair controller policy can then be conditioned on each

agent’s belief, resulting in agent-specific pair controller policies ﬁ;g:a.

’

As e, and frgg:a, are no longer guaranteed to be consistent, in order to maximise their ability to
coordinate, agents need to sample from their respective pair controller policies in a way that minimizes
the probability that their outcomes disagree. Using their access to a shared source of randomness



& € &, the agents can optimally solve this correlated sampling problem using Holenstein’s strategy
(Holenstein, 2007; Bavarian et al.| 2016). Following Holenstein’s strategy with a suitably chosen
v > 0, each agent a is assigned a set

Ho = {(u,p) €U x T :p <78 (u)}, T ={0,7,27,...,1} )

Let 7t be a &-seeded random permutation of the elements in ugg' x T, then agent a samples 7t(i,,),
where i, is the smallest index such that 7t(i,) € H, (and agent o’ proceeds analogously). Given

the total variational distance § between the categorical probability distributions defined by ﬁgg’/a

and frgg’a,, the disagreement probability of agents a, a’ is then guaranteed to be at most 25 /(1 + 6)

(Bavarian et al.,[2016).

As the size of ugg' x I' increases quadratically with the number of actions per agent, characterising
the effective joint distribution arising from Holenstein’s strategy quickly becomes computationally
expensive. We therefore instead make use of a simple correlated sampling heuristic: Given a shared
random seed & € [0, 1], agent a samples an action u, such that

Ug—1 Uq
oA () <ESY 7 (u) 3)
u=1 u=1

(agent a’ proceeds analogously). While suboptimal, we find that this heuristic nevertheless performs
satisfactorily in practice and can be trivially extended to groups of more than two agents.

Figure [3] [right] shows that MACKRL’s performance declines remarkably gracefully with increasing
observation noise. Note that as real-world sensor observations tend to tightly correlate with the true
observations, noise levels of p > 0.1 in the context of the single-step matrix game are in comparison
rather extreme as they indicate a completely different game matrix. This illustrates MACKRL’s
applicability to real-world tasks with noisy observation sensors.

4.2 StarCraft II micromanagement

To demonstrate MACKRL'’s ability to solve complex coordination tasks, we evaluate it on a chal-
lenging multi-agent version of StarCraft II (SCII) micromanagement. To this end, we report perfor-
mance on three challenging coordination tasks from the established multi-agent benchmark SMAC
(Samvelyan et al., [2019).

The first task, map 253z, contains mixed unit types, where both the MACKRL agent and the game
engine each control two Stalkers and three Zealots. Stalkers are ranged-attack units that take heavy
damage from melee-type Zealots. Consequently, a winning strategy needs to be able to dynamically
coordinate between letting one’s own Zealots attack enemy Stalkers, and when to backtrack in order
to defend one’s own Stalkers against enemy Zealots. The challenge of this coordination task results
in a particularly poor performance of Independent Learning (Samvelyan et al., 2019).

The second task, map 3m, presents both sides with three Marines, which are medium-ranged infantry
units. The coordination challenge on this map is to reduce enemy fire power as quickly as possible
by focusing unit fire to defeat each enemy unit in turn. The third task, map 8m, scales this task up
to eight Marines on both sides. The relatively large number of agents involved poses additional
scalability challenges.

On all maps, the units are subject to partial observability constraints and have a circular field of view
with fixed radius. Common knowledge Z9 between groups G of agents arises through entity-based
field-of-view common knowledge (see Section[2]and Appendix D).

We compare MACKRL to Central-V (Foerster et al., [2018)), as well as COMA (Foerster et al., 2018)
and QMIX (Rashid et al.,|2018), where the latter is an off-policy value-based algorithm that is the
current state-of-the-art on all maps. We omit IL results since it is known to do comparatively poorly
(Samvelyan et al.,|2019). All experiments use SMAC settings for comparability (see Samvelyan et al.
(2019) and Appendix [B|for details). In addition, MACKRL and its within-class baseline Central-V
share equal hyper-parameters as far as applicable.

MACKRL outperforms the Central-V baseline in terms of sample efficiency and limit performance on
all maps (see Figure[d). All other parameters being equal, this suggests that MACKRL’s superiority
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Figure 4: Win rate at test time across StarCraft II scenarios: 2 Stalkers & 3 Zealots [left], 3 Marines [middle]
and 8 Marines [right]. Plots show means and their standard errors with [number of runs].

over Central-V is due to its ability to exploit common knowledge. In Appendix [C] we confirm this
conclusion by showing that the policies learnt by the pair controllers are almost always preferred over
individual controllers whenever agents have access to substantial amounts of common knowledge.

MACKRL also significantly outperforms COMA and QMIX on

all maps in terms of sample efficiency, with a similar limit per- 1.0
formance to QMIX (see Figure[d). These results are particularly ~— Fooooereeiinnmreiine g
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5 Related Work

Multi-agent reinforcement learning (MARL) has been studied extensively in small environments
(Busoniu et al.,2008; |Yang & Gu, 2004), but scaling it to large state spaces or many agents has proved
problematic. |Guestrin et al. (2002a) propose the use of coordination graphs, which exploit conditional
independence properties between agents that are captured in an undirected graphical model, in order
to efficiently select joint actions. Sparse cooperative Q-learning (Kok & Vlassis, [2004) also uses
coordination graphs to efficiently maximise over joint actions in the ()-learning update rule. Whilst
these approaches allow agents to coordinate optimally, they require the coordination graph to be
known and for the agents to either observe the global state or to be able to freely communicate. In
addition, in the worst case there is no conditional independence to exploit and maximisation must
still be performed over an intractably large joint action space.

There has been much work on scaling MARL to handle complex, high dimensional state and action
spaces. In the setting of fully centralised training and execution, [Usunier et al. (2016) frame the
problem as a greedy MDP and train a centralised controller to select actions for each agent in a
sequential fashion. Sukhbaatar et al. (2016) and [Peng et al.|(2017) train factorised but centralised
controllers that use special network architectures to share information between agents. These
approaches assume unlimited bandwidth for communication.

One way to decentralise the agents’ policies is to learn a separate (Q-function for each agent as in
Independent QQ-Learning (Tanl [1993). [Foerster et al.| (2017) and [Omidshafiei et al.|(2017) examine
the problem of instability that arises from the nonstationarity of the environment induced by both
the agents’ exploration and their changing policies. |Rashid et al.|(2018) and |Sunehag et al. (2017)
propose learning a centralised value function that factors into per-agent components. |Gupta et al.



(2017) learn separate policies for each agent in an actor-critic framework, where the critic for each
agent conditions only on per-agent information. [Foerster et al. (2018) and |Lowe et al.|(2017) propose
a single centralised critic with decentralised actors. None of these approaches explicitly learns a
policy over joint actions and hence are limited in the coordination they can achieve.

Thomas et al.|(2014) explore the psychology of common knowledge and coordination. Rubinstein
(1989) shows that any finite number of reasoning steps, short of the infinite number required for
common knowledge, can be insufficient for achieving coordination (see Appendix D). Korkmaz et al.
(2014) examine common knowledge in scenarios where agents use Facebook-like communication.
Brafman & Tennenholtz| (2003) use a common knowledge protocol to improve coordination in
common interest stochastic games but, in contrast to our approach, establish common knowledge
about agents’ action sets and not about subsets of their observation spaces.

Aumann et al.[(1974) introduce the concept of a correlated equilibrium, whereby a shared correlation
device helps agents coordinate better. (Cigler & Faltings/(2013) examine how the agents can reach such
an equilibrium when given access to a simple shared correlation vector and a communication channel.
Boutilier (1999) augments the state space with a coordination mechanism, to ensure coordination
between agents is possible in a fully observable multi-agent setting. This is in general not possible in
the partially observable setting we consider.

Amato et al. (2014) propose MacDec-POMDPs, which use hierarchically optimal policies that
allow agents to undertake temporally extended macro-actions. |Liu et al.[(2017) investigate how
to learn such models in environments where the transition dynamics are not known. Makar et al.
(2001) extend the MAXQ single-agent hierarchical framework (Dietterich, |2000) to the multi-agent
domain. They allow certain policies in the hierarchy to be cooperative, which entails learning the
joint action-value function and allows for faster coordination across agents. |Kumar et al. (2017) use
a hierarchical controller that produces subtasks for each agent and chooses which pairs of agents
should communicate in order to select their actions. |Oh & Smith| (2008) employ a hierarchical
learning algorithm for cooperative control tasks where the outer layer decides whether an agent
should coordinate or act independently, and the inner layer then chooses the agent’s action accordingly.
In contrast with our approach, these methods require communication during execution and some of
them do not test on sequential tasks.

Nayyar et al. (2013) show that common knowledge can be used to reformulate decentralised planning
problems as POMDPs to be solved by a central coordinator using dynamic programming. However,
they do not propose a method for scaling this to high dimensions. By contrast, MACKRL is entirely
model-free and learns trivially decentralisable control policies end-to-end.

Guestrin et al.|(2002b) represent agents’ value functions as a sum of context-specific value rules that
are part of the agents’ fixed a priori common knowledge. By contrast, MACKRL learns such value
rules dynamically during training and does not require explicit communication during execution.

Despite using a hierarchical policy structure, MACKRL is not directly related to the family of
hierarchical reinforcement learning algorithms (Vezhnevets et al., 2017), as it does not involve
temporal abstraction.

6 Conclusion and Future Work

This paper proposed a way to use common knowledge can to improve the ability of decentralised
policies to coordinate. To this end, we introduced MACKRL, an algorithm which allows a team of
agents to learn a fully decentralised policy that nonetheless can select actions jointly by using the
common knowledge available. MACKRL uses a hierarchy of controllers that can either select joint
actions for a pair or delegate to independent controllers.

In evaluation on a matrix game and a challenging multi-agent version of StarCraft Il micromanage-
ment, MACKRL outperforms strong baselines and even exceeds the state of the art by exploiting
common knowledge. We present approximate versions of MACKRL that can scale to greater numbers
of agents and demonstrate robustness to observation noise.

In future work, we would like to further increase MACKRL’s scalability and robustness to sensor
noise, explore off-policy variants of MACKRL and investigate how to exploit limited bandwidth
communication in the presence of common knowledge.
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