
Under review as a conference paper at ICLR 2018

A NEURAL METHOD FOR GOAL-ORIENTED DIALOG
SYSTEMS TO INTERACT WITH NAMED ENTITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Many goal-oriented dialog tasks, especially ones in which the dialog system has
to interact with external knowledge sources such as databases, have to handle
a large number of Named Entities (NEs). There are at least two challenges in
handling NEs using neural methods in such settings: individual NEs may occur
only rarely making it hard to learn good representations of them, and many of the
Out Of Vocabulary words that occur during test time may be NEs. Thus, the need
to interact well with these NEs has emerged as a serious challenge to building
neural methods for goal-oriented dialog tasks. In this paper, we propose a new
neural method for this problem, and present empirical evaluations on a structured
Question Answering task and three related goal-oriented dialog tasks that show
that our proposed method can be effective in interacting with NEs in these settings.

1 INTRODUCTION AND PROBLEM DESCRIPTION

Goal-oriented dialog systems (Wen et al., 2016; Bordes & Weston, 2016a; Dhingra et al., 2017)
are those in which the system tries to achieve an explicit goal by the end of the dialog. Examples
include restaurant reservation, flight ticket booking, and course selection advising. One common
aspect of many of these goal-oriented dialog systems is their need to interact with a large number
of Named Entities (NEs). This is especially true in cases where the system has to interact with
external knowledge sources such as DataBases (DB), as is the case in all of the examples mentioned
above. NEs in these systems include restaurant names, place names, phone numbers, addresses,
time, faculty names, course numbers, etc.

Recently, there has been a lot of interest in building neural methods for goal-oriented dialog systems.
The presence of and the need to interact with large numbers of Named Entities in these tasks has
emerged as a serious challenge to achieving good performance. There are different ways in which
past work has tried to handle NEs in these neural systems. One straightforward way is to add each
and every NE (including those in the DB) to the vocabulary, which has been evaluated for only
synthetic or small tasks (Neelakantan et al., 2015). For real world tasks with large DBs, this causes
an explosion in the vocabulary size and hence the number of parameters to learn. There is also the
problem of not being able to learn good representations for individual NEs, as individual NEs (e.g.
a particular phone number) generally occur only a few times in a dataset.

Another approach that has been proposed in the literature is to encode all the NEs with random
representations and keep them fixed throughout (Yin et al., 2015), but here we lose the meaning
associated with the neural embeddings and risk their representations interfering and correlating with
those of others in unexpected ways. There is another simple way in which NEs are handled in many
real world systems, which is to first recognize the NEs with either NE taggers (Finkel et al., 2005) or
entity linkers (Cucerzan, 2007; Guo et al., 2013; Yang & Chang, 2015), and then replace them with
NE-type tags. For example, all location names could be replaced with the tag NE location and all
the course numbers could be replaced with the tag NE course number. This prevents the explosion
in vocabulary size, but the system loses the ability to distinguish and reference different NEs of the
same type. If there are several location names mentioned in a dialog, the system loses its ability
to distinguish and use them separately as needed in future utterances in the dialog. In addition to
this, there is also the possibility of new NEs arising during the test time. In fact many of the Out Of
Vocabulary (OOV) words that arise during test time in many Natural Language Processing (NLP)
tasks are NEs.

1



Under review as a conference paper at ICLR 2018

In this paper, we propose a simple idea for neural methods to interact with NEs that handles all
the aforementioned issues, including robustness to OOV NEs during test time. The core idea is to
not include any of the NEs in the vocabulary, but rather to create a neural embedding for them on
the fly when the agent actually encounters them and then use these representations to retrieve and
use the actual NE value whenever required. We demonstrate our idea first on a simple structured
Question Answering (QA) task and then on three related goal-oriented dialog tasks that are extended
versions of some of the dialog bAbI tasks proposed in Bordes & Weston (2016b). We use a multiple-
attention based neural retrieval mechanism to retrieve items from a DB table. The results suggest
that our proposed way of handling NEs can be very useful in these tasks compared to not handling
them separately.

2 DETAILS OF PROPOSED SOLUTION

Consider a neural dialog system participating in a dialog with a user. It has a predefined vocabulary
obtained from the training data by excluding all NEs. When a user makes an utterance, the sentence
encoder (e.g. Recurrent Neural Network (RNN)) of the dialog system processes that utterance, word
by word. A Named Entity Recognizer (NER) is used to classify if a given word in the user utterance
is a NE or not (possibly along with its NE type). In most goal-oriented dialog systems that interact
with DB, these NEs come from the DB. So, there might not be a need for a separate NER, as the
NEs, along with type information, can be obtained easily by referring to the DB. The knowledge of
which words are NEs and their types can be very useful for goal oriented dialog tasks. For words
that are part of the vocabulary, their neural embeddings can be obtained from the encoding matrix to
give to the sentence encoder. If the word is a NE, then it will not be part of the vocabulary and hence
will not have a neural embedding in the encoding matrix. In such cases, the dialog system uses its
knowledge of the dialog so far, the current utterance so far and the NE-type (e.g. NE course number)
of the encountered NE to generate a neural embedding for it. This generated embedding is used for
the NE by the sentence encoder while encoding the sentence. It is also stored in a separate table
called the NE-Table. A new empty NE-Table is used for each individual dialog. The NE-Table is
populated with key-value pairs, where the key is the embedding generated by the dialog system and
the value is the actual NE (e.g. EECS 545) encountered.

Here is an example instantiation of the idea where the sentence encoder is a simple Recurrent Neu-
ral Network (RNN). Figure 1 shows the process associated with the equations below as an instan-
tiation of the idea in a Hierarchical Recurrent Encoder Decoder (HRED) model from Serban et al.
(2016). Let (Xt, Yt−1) be the user and system utterance at time step t and t − 1 respectively. Let
(xt,1, xt,2, ..., xt,i, ..., xt,N ) be the N words in the user utterance Xt. The following are the equa-
tions associated with encoding a single word xt,i of the user sentence.

if Is NE(xt,i) == True :

x̂t,i = NE type(xt,i)
ẑt,i =W enc

zx x̂t,i

zt,i = znet,i =Wzdh
d
t−1 +Wzhh

x,enc
t,i−1 +Wzz ẑt,i

else :

zt,i =W enc
zx xt,i

hx,enct,i = σ(W enc
hh hx,enct,i−1 +Whzzt,i + bh)

(1)

where, Is NE(xt,i) outputs True if xt,i is a NE and NE type(xt,i) gives the NE type of xt,i (e.g.
NE type(EECS 545) = NE course number. Note that, though NEs are not part of the vocabulary,
their NE-type tags are and hence will have a embedding in the encoding matrix W enc

zx . For words
that are NEs, the representation of the dialog so far (hdt−1), the sentence representation of the current
user utterance so far (hx,enct,i−1 ) and the NE-type (x̂t,i) are used to generate a neural embedding (znet,i )
on the fly and is stored in the NE-Table as key along with the NE xt,i associated with it stored as the
value.

When the dialog system wants to refer/get back to this NE value in the future, it can do so by
generating a key to match the keys in the NE-Table and then retrieve the corresponding value (e.g.
EECS 545) and use it. For example, it can refer to a NE that it came across earlier in the dialog from
the NE-Table, and use that in its system utterance (output sentence) or also to match (exact) over

2



Under review as a conference paper at ICLR 2018

Figure 1: Instantiation of the idea in a HRED (Decoder is not shown in the figure). When the encoder
RNN encounters a NE, the representation of the dialog so far (hdt−1), the sentence representation of
the current user utterance so far (hx,enct,i−1 ) and the NE type information are used to generate a neural
embedding (znei ) on the fly and is stored in the NE-Table as key along with the NE xt,i associated
with it stored as the value. Here the DB retrieval system generates a key to match the keys in the NE-
Table to retrieve the value (e.g. EECS 545) it is interested in. It can for example match (exact) over
an attribute’s (e.g. Course Number) values in an external DB (along with other required actions) to
retrieve information from the DB (e.g. the name of the faculty who teaches the course with course
number EECS 545).

an attribute’s (e.g. Course Number) values in an external DB (along with other required actions) to
retrieve information from the DB (e.g. the name of the faculty who teaches the course with course
number EECS 545) (the specific action performed with the NE retrieved depends on the choice of
the natural language generator and the DB retrieval mechanism).

The system utterance, just like the user utterance, is again processed word by word. In cases of
presence of a NE in the system utterance (e.g. name of a faculty), a new representation is generated
on the fly and stored in the NE-Table along with its value. Thus, all and only the NEs that have
appeared in that particular dialog so far will be present in the NE-Table associated with that dialog,
with their generated neural embedding keys and actual NE values.

The Dialog system learns to generate representations for the NEs as they come in, such that the rep-
resentations have relevant and enough information (depending on the downstream task from which
gradient signals come) which would allow it to match and retrieve them when required later in the
dialog (e.g. for its system utterance or for its interaction with DB and so on).

3 EXPERIMENTS AND RESULTS

We evaluate our idea on two types of tasks - a simple structured Question-Answering (QA) task
and goal-oriented dialog tasks, which are extended versions of some of the dialog bAbI tasks from
(Bordes & Weston, 2016b). All these tasks involve interaction with DB. For all our experiments, we
use a simple multiple-attention based neural retrieval mechanism which can use the NE-table idea.
There are also other neural mechanisms proposed recently such as Yin et al. (2015) and Dhingra
et al. (2017) which could be modified and used along with our idea for interaction with the DB.

3.1 MULTIPLE-ATTENTION BASED NEURAL RETRIEVAL MECHANISM

In this paper, we perform tasks on datasets where the information is present in a single database table,
where each row corresponds to a new entity of interest and the columns of the table correspond to

3



Under review as a conference paper at ICLR 2018

Figure 2: Multiple-attention based neural retrieval mechanism. When the encoder RNN encounters
a NE, it generates a key representation for it and stores it in the NE-Table. When the dialog man-
ager/decoder RNN wants to retrieve information from the DB, it attends to the relevant rows and
columns of the DB by generating attention key embeddings. While matching (to get the attention
scores), in the case of non-NE information in the DB, their neural embeddings are matched with
the key embeddings directly. For the NE information in the DB, exact matches are done using the
NE values retrieved from the NE-Table, which in turn are retrieved by matching the attention key
embeddings with the key embeddings of the NEs in the NE-Table.

the different attributes associated with it. For example, in the restaurant reservation domain, each
row of the table corresponds to a new restaurant and the columns correspond to restaurant attributes
such as cuisine, location, phone, address etc. For the course selection advising domain, each row
corresponds to a course and the columns correspond to course attributes, such as course number,
course name, instructor name etc. Each column of the table has a column heading, which labels the
attribute of that column. These headings are part of the vocabulary and have neural embeddings that
are learned during the dialog and retrieval process. The information within the DB is represented in
2 ways. If it is in a column which has been identified as containing NE values, then it is represented
by its exact value (not a part of the vocabulary). The information in the non-NE columns become a
part of the vocabulary are represented by their neural embeddings that comes from the vocabulary
encoding matrix.

In order to retrieve a particular cell from the table, the system needs to find the correct column
and row corresponding to it. The DB retrieval module does that by generating 3 different attention
key embeddings (vectors): Attention over Columns for Columns (ACC), Attention over Columns
for Rows (ACR), Attention over Rows for Rows (ARR). Figure 2 shows the schematic of the entire
retrieval process.

The column(s) that the final retrieved cell(s) belong to, are selected by matching ACC key embed-
dings with the neural embeddings of the column headings (Course Number, Instructor, Credits etc).
A separate ACC key embedding is generated for every column heading and matched with its embed-
dings to provide attention scores for all the columns. For the example, Who teaches EECS545?, the
system would want to retrieve the name of the Instructor. Therefore, the Instructor column heading
alone will have high attention score and be selected. In our experiments, the attention scores are got
through dot products followed by a sigmoids, which allows for multiple selections.

Now that the column(s) are chosen, the system has to select row(s), so that it can get the cell(s) it is
looking for. Each row in the table contains the values (EECS545, Machine Learning, Scott Mathew
etc) of several attributes (Course Number, Course Name, Instructor etc). But we want to assign
attention scores to the rows based on particular attributes that are of interest to the present scenario
(Course Number in this example). The column/attribute headings that the system has to attend to
for selecting these relevant attributes are obtained by matching ACR (Attention over Columns for
Rows) key embeddings with the neural embeddings of the different column headings.

4



Under review as a conference paper at ICLR 2018

The last step in the database retrieval process is to select the relevant rows using the ARR (Atten-
tion over Rows for Rows) key embedding. ARR is split into two parts ARR NE and ARR non-NE.
In a general scenario, ACR can select multiple columns to represent the rows. For each selected
column that is a NE column, a separate NE value is retrieved from the NE-Table using a separate
ARR NE embedding for each of them. These NE values are used to do exact match search along
the corresponding columns (in the NE row representations) to select the matching rows. For the
non-NE columns that are selected by ACR, their neural embeddings are combined together along
each row to get a fixed vector representation for each row in the DB (e.g. weighted sum of their
embeddings, weighted by the corresponding column attention scores). This is shown in the non-NE
row representation in the Figure 2. ARR non-NE is then used to match these representations for
selecting rows. The intersection of the rows selected in the NE row representations and the non-NE
row representations is the final set of selected rows.

In short, the dialog system can use neural embedding matching for non-NEs, exact value matching
for NEs and therefore a combination of both to decide which rows to attend to. Depending on the
number of columns and rows we match with, we select zero, one or more output cells.

For our running example, ARR NE is used to match with the keys in the NE-Table to select the
row corresponding to EECS 545 and the value EECS 545 is returned to do an exact match over
the NE1 row representations (represented by the course number values). This gives us the row cor-
responding to EECS 545 and hence the cell Scott Mathew. We could use our NE-Table idea with
potentially many types of neural retrieval mechanisms to retrieve information from the DB. The
multiple-attention based retrieval mechanism, described above, is only one such possible mecha-
nism.

3.2 STRUCTURED QUESTION ANSWERING FROM DB

The task here is to retrieve answers (single cell in a table) from a DB in response to structured
one line questions. We used the details of course offerings at a University to create these question-
answer pairs. Each row in the DB table corresponds to a unique course, and the different columns
correspond to the different attributes of the course.

Example structured question-answer pair:
Q: Course Number EECS545 Credits? A: 4

This is a simple task where 400 question-answer pairs were used for training and 100 question-
answer pairs were used for testing. The DB is a single table of 100 rows and 4 columns (Course
Number, Course Name, Department, Credits). The experiments were performed with two models.
The first model uses the proposed NE idea to handle the NEs (With-NE-Table), which are course
numbers, and course names in this task. The other (W/O-NE-Table) model does not distinguish NEs
from normal words. In the W/O-NE-Table model, all words including the NEs that occur in the
questions and those that occur in the DB are part of the vocabulary and have individual word repre-
sentations. Both models use a simple RNN to encode the question and the multiple-attention based
retrieval mechanism discussed above to retrieve answers. During training the different retrieval
attentions were trained by giving the ground truth labels.

For the example question above, both the models would have to attend to the column Credits us-
ing ACC (Attention over Columns for Columns) key. For selecting the attributes essential for row
matching, the models would have to attend to the column Course Number using ACR (Attention over
Column for Rows) key. In the Model W/O-NE-Table, each row will be represented by the neural
representation associated with the different course numbers, as all the different course numbers are
part of the vocabulary. The ARR non-NE key will then be used for matching and return the selected
row. For With-NE-Table model, the Course Number column will be identified as a NE column and
hence the ARR NE key matching will happen in the NE-Table. The returned NE value, EECS545,
will be used to do an exact match with the NE row representations. Note that in the model With-
NE-Table, the rows of the DB table are going to be represented with exact course number values (no
neural representations).

The test accuracy for the model W/O-NE-Table is 81% and 100% for the model With-NE-Table. The
train accuracy for both the models was 100%. We found that the main difference between the train
and test set for this task, is the presence of new NEs in the test set. This suggests that the 19% drop

5



Under review as a conference paper at ICLR 2018

in performance mainly comes from the NEs encountered in the questions during test time which
were not seen during training time. For the model W/O-NE-Table, these are the NEs that are in the
DB, and hence are part of the vocabulary, but have random representations which did not change
during the training time. The task was specifically constructed to be simple and with a small table
to show that, even in this very simple task where the W/O-NE-Table model achieves 100% accuracy
at training time, its test accuracy is affected significantly due to new NEs that come in the questions
during the test time. However, this does not pose a problem for our model With-NE-Table. The
With-NE-Table model can also easily scale to large datasets with thousands of NEs without any drop
in performance.

3.3 GOAL-ORIENTED DIALOG TASKS

We test our idea in extended versions of three dialog bAbI tasks 1 from Bordes & Weston (2016b)
to evaluate our idea’s usefulness in different aspects of goal-oriented dialog. Dialog bAbI dataset
has 5 goal-oriented dialog tasks - Task 1: Issuing API calls, Task 2: Updating API calls, Task3:
Displaying Options, Task 4: Providing extra information and Task5: Conducting full dialogs (which
is a combination of tasks 1-4). Each of the four tasks (1-4) test different capabilities required in
a general (commonly required) goal-oriented dialog system. The system is evaluated in a retrieval
setting. At each turn of the dialog, the system has to select a candidate response from a list of pos-
sible candidates. Issuing an api call corresponds to selecting a response which starts with api call
followed by the argument values. We evaluate our idea on extended versions of task 1, 2 and 4 (with
the extensions described below). Task 3 requires the agent to learn to sort the retrieved restaurants
based on their ratings and then display the options. As shown in Bordes & Weston (2016b), it is
tough for the agent to learn this sorting with the limited amount of data. Their model achieves close
to 0% accuracy on full dialog for this task. So we decided to skip task 3 and hence task 5 (which
includes task 3 dialogs), as we are more interested in testing our idea to handle NEs, rather than
trying to solve the sorting problem.

3.3.1 EXTENDED DIALOG BABI TASK 1: ISSUING API CALLS AND RETRIEVING
INFORMATION

In the original bAbI task 1, the conversation between the system and the user involves getting infor-
mation necessary to make an api call and an issue of api call with the appropriate argument values.
We extend this task as follows. In the extended task, the system has to perform an additional task.
Once the system determines that the next utterance is an api call, the system also has to perform the
actual query on the database to retrieve the restaurant details which match user preferences. In the
original task, the system simply responds with an utterance api call along with user preferences and
the database retrieval is not considered. In the extended task the system is evaluated on three things:
having conversation with the user, issuing api call and retrieving the correct information from the
DB. The DB is represented as a single table, with each row corresponding to a unique restaurant.
The different columns of the table correspond to different information about the restaurant, such as
its cuisine, location, address etc.

Example:

Original dialog bAbI task 1:
U: Hi !
S: Hello, what can I help you with
today ?
U: I’d like to book a table for six people in an
expensive price range with British food.
S: I’m on it
S: Where should it be ?
U: In London
S: Ok, let me look into some options
for you.
S: api call British, London, Six,
Expensive

Extended dialog bAbI task 1:
U: Hi !
S: Hello, what can I help you with
today ?
U: I’d like to book a table for six people in an
expensive price range with British food.
S: I’m on it
S: Where should it be ?
U: In London
S: Ok, let me look into some options
for you.
S: api call
S (Retrieved Information):
{The Place, british, london, ..., }
{The Fancy Pub, british, london, ..., }

1The extended versions of the dialog bAbI tasks 1,2 and 4 will be made publicly available online.

6



Under review as a conference paper at ICLR 2018

3.3.2 EXTENDED DIALOG BABI TASK 2: UPDATING API CALLS AND RETRIEVING
INFORMATION

In the original bAbI task 2, just like bAbI task 1, the conversation between the system and the user
involves getting the information necessary to make an api call followed by an issue of api call. In
task 2 however, after this, the user might ask the system to update his/her request for information by
changing some of their preferences. The system has to take this into account and make an updated
api call at the end of the conversation. The extension task 2 is very similar to task 1: whenever the
system decides to make an api call, it now has to actually do the work of the api call and retrieve
the information from the DB. Appendix A gives an example of the original and the extended dialog
bAbI task 2.

3.3.3 EXTENDED DIALOG BABI TASK 4: PROVIDING INFORMATION

The original dialog bAbI task 4 starts as if the user has agreed to book a table in a particular restau-
rant. The system is given all the information about only that particular restaurant. The user can ask
for the phone number, address or both. The system must learn to use the given information about the
restaurant of interest to answer these questions. We make few changes in the extended version. First
we do not consider information just about the particular restaurant of interest to the user, instead the
system needs to search and provide an answer from the full DB of all the restaurants. The candidate
responses are also changed. All the NEs in the candidate responses are now replaced with their
NE type tags. For example, The Fancy Pub phone and Suvai phone are now both replaced with
NE phone. The system has to select these candidates with NE-type tags and later replace the tags
with the actual NE values by retrieving them from the DB.

Example:
Original dialog bAbI task 4:
DB Information given :
NAME:The Place, CUISINE:british,
LOCATION:london, PRICE RANGE:Expensive,
RATING:7, PHONE:The Place phone,
ADDRESS:The Place address, AVAILABILITY:six
U: Hello
S: Hello, what can I help you with
today ?
U: I’d like to book a table at The Place
S: Great, let me do the
reservation.
U: May I have the address of the restaurant.
S: Here it is, The Place address.

Extended dialog bAbI task 4:
DB Information given : Entire DB
U: Hello
S: Hello, what can I help you with
today ?
U: I’d like to book a table at The Place
S: Great, let me do the
reservation.
U: May I have the address of the restaurant.
S: Here it is, NE address.
S: The Place address (retrieved
information)

This experiment setting is closer to how a human would do this task. When someone asks for phone
number/address of a restaurant, we don’t try to memorize it or figure out how one phone number is
related to another phone number, etc., rather, we search for the phone number/ address in the DB
and return the information to the user as part of the response.

3.3.4 MODEL DESCRIPTION AND RESULTS FOR THE GOAL-ORIENTED DIALOG TASKS

The model that we use for the goal-oriented dialog task experiments is an instantiation of our idea
(of using NE-Table) in an end-to-end memory network (Sukhbaatar et al., 2015). It is similar to
the model used in Bordes & Weston (2016b) paper, except that we encode the sentences using an
RNN, while, they use a bag of words representation. All the previous dialog history embeddings
are stored in the memory. The new user utterance embedding is used to attend over the memory to
get relevant information from the memory. This is done multiple times (3 in our experiments) and
the final embedding obtained is transformed and used to select both the candidate response, and to
generate the key embeddings for performing the retrieval operation from the DB.

For the With-NE-Table model, the NE key is generated (when a NE is encountered) and stored in the
NE-Table during the process of encoding the dialog sentences using an RNN. Since, we have access
to the DB, we use that to identify the NEs along with their types. The NE-type information is given

7



Under review as a conference paper at ICLR 2018

Table 1: Results for extended dialog bAbI task 1 and 2. Accuracies in % for Test and Test Out-Of-
Vocabulary (given in parenthesis).

Task Model ACR ARR non-
NE

ARR NE:
cuisine,
location

DB-
Retrieval

Per-
response Per-Dialog

Per-Dialog
+ DB-
Retrieval

Task 1

W/O-NE-
Table 100 (100) 9.3 (2.3) - 9.8 (7) 99.5 (95.7) 97.3 (74.8) 9.5 (4.9)

With-NE-
Table 100 (100) 98.6 (98.9) 100,100

(100,100) 99.0 (99.0) 99.7 (99.8) 98.4 (98.5) 97.9 (98.0)

Task 2

W/O-NE-
Table 100 (100) 8.6 (7.6) - 0.8 (0.6) 100 (100) 100 (100) 0.0 (0.1)

With-NE-
Table 100 (100) 99.3 (99.0) 100,100

(100,100) 99.3 (99.2) 100 (100) 100 (100) 98.6 (98.4)

to both the NE-Table and the W/O-NE-Table models. In all the experiments involving retrieval from
DB, the ground truth attention labels were used for training.

Evaluation measures’ description

• DB-Retrieval: Retrieval percentage accuracy for rows (task 1,2) and a particular cell (task
4).

• Per-response: Percentage of dialog responses that are correct.
• Per-Dialog: Percentage of dialogs where every dialog response is correct.
• Per-Dialog + DB-Retrieval: Percentage of dialogs where every dialog response and all the

information retrievals involved are correct.

Experiment details and results for extended dialog bAbI tasks 1 and 2:
The results for task 1 and task 2 are shown in Table 1. For both the models With-NE-Table and
W/O-NE-Table the DB-retrieval process happens only if the system chooses to output the api call
sentence.

With-NE-Table:
For issuing an api call in tasks 1 and 2, four argument values are required - cuisine, location, price
range and number of people. We consider cuisine and location to be NEs. So whenever cuisine and
location names occur in the dialog, a NE key is generated on the fly and is stored in the NE-Table
along with the NE values. Here we are interested in retrieving rows from the table. So, there is
no need for ACC. We need to find the column attributes with which we want to represent the rows
(ACR) and then use that to represent the rows. There are four column attributes that are of interest,
two are NEs (cuisine and location) and two are not (price range and number of people). Once ACR
selects these four, we move to the next step. The attention over rows is split into two parts. ARR non-
NE attends to rows based on the non-NE attributes, which are price range and number of people. So
each row in the DB is represented by its price range and number of people values (weighted vector
sum) and embedding key matching is done to get the attention scores. This retrieves all the rows in
the DB that match the price range and number of people values that we are looking for. The second
part of the row attention is ARR NE where the system attends over the NE-Table by matching its
generated key with the key present in the NE-Table to retrieve NE values. The selected NE values
are then matched (exact-match) with the cuisine and location values in the DB to retrieve the relevant
rows from the DB (the rows that have that particular cuisine and location values). The final retrieved
rows are the intersection of the rows selected by both these parts.

W/O-NE-Table:
Here, all input words (including NEs) are part of the vocabulary. For NEs however, their embedding
given to the sentence encoder is the sum of the NE word embedding and the embedding associated
with its NE-type. Similar to the case above, ACR is used to attend to the four relevant columns.
However, unlike the case above, each row is represented by the combined neural embedding rep-
resentation of the all the four attribute values, cuisine, location, price range and number of people.
ARR non-NE is used to retrieve the relevant rows.

From Table 1, we can see that both the models perform well in selecting the relevant columns, but the
model W/O-NE-Table performs poorly in retrieving the rows, while With-NE-Table performs very

8



Under review as a conference paper at ICLR 2018

well. This results in With-NE-Table model achieving close to 100% accuracy in DB retrieval while
W/O-NE-Table performs poorly. This is because, in the With-NE-Table model, the retrieving rows
task is split into two simpler tasks. The NEs are chosen from the NE-Table, and then exact matching
is used (which helps in handling OOV-NEs as well). The non-NEs, price range and number of
people, have limited set of possible values (low, moderate or expensive for price range and 2,4,6 or
8 for number of people respectively). This allows the system to learn good neural representation
for them and hence have high accuracy in ARR non-NE. Whereas in W/O-NE-Table model, ARR
non-NE involves the neural representations of cuisine and location values as well, where a particular
location and cuisine value will occur only a few number of times in the dataset. In addition to
that, new cuisine and location values can occur during the test time (Test OOV dataset, performance
shown in parenthesis).

For the dialog part (which does not involve the DB retrieval aspect) of extended tasks 1 and 2, the
system utterances do not have any NEs in them. However, the user utterances contain NEs (cuisine
and location that the user is interested in) and so the system has to understand them in order to select
the right system utterance. The accuracy in performing the dialog (by selecting responses from
candidate set) is similar for both the models on the normal test set. However, in the OOV-test set,
for task 1, where the system has to maintain the dialog state to track which attribute values have not
been provided by the user yet, W/O-NE-Table model seems to get affected, while the With-NE-Table
model is robust to that. While W/O-NE-Table gets a Per-Dialog accuracy of 74.8% in the OOV-test
set, With-NE-Table is able to get 98.5%.

Experiment details and results for extended dialog bAbI task 4:
The results for task 4 are shown in table 2. Here, DB-retrieval happens only when the system’s output
sentence has a general tag/placeholder in it, which needs to be replaced by some information from
the DB. As mentioned in the task description, all the NE values are replaced with their respective
NE-type tags in the candidate responses. This greatly reduces the number of possible candidate
responses in the dataset (’Here it is The place phone’ and ’Here it is Suvai phone’ will now be
both ’Here it is NE phone’). So, in order to give some information such as the phone number, the
system has to select a general candidate response that gives phone number (e.g. Here it is NE phone)
and then select the exact NE value to put in separately from the DB (e.g., The place phone). This
setting is similar to the system action templates proposed in Hybrid Code Networks from (Williams
et al., 2017). In this task, the restaurant name, phone number and address are considered as NEs.
In a general generation setting, the non-NE part of the response is generated word by word by the
decoder and the NE can be retrieved and inserted into the output sentence

With-NE-Table:
In task 4, the user tells the system the restaurant in which he/she wants to book a table. The restaurant
name, which is a NE, is stored in the NE-Table along with it’s generated key. When the user asks
for information about the restaurant such as, phone number, the NE restaurant name stored in the
NE table is selected and used for retrieving its corresponding phone number from the DB. For this
particular case, ACC attends over the column Phone and ACR attends over Restaurant Name. Since
the column selected by ACR is a NE column, the NE value (here the actual restaurant name given
by the user) is retrieved using ARR NE from the NE-Table. The retrieved NE value is used to do
an exact match over the DB column selected by ACR to select the rows. The cell that intersects the
selected row and the column selected by ACC is returned as the retrieved information and used to
replace the NE type tag in the output response.

W/O-NE-Table:
Here, all input words (including NEs) are part of the vocabulary and for NEs, their embedding
given to the sentence encoder is the sum of the NE word embedding and the embedding associated
with its NE-type. The candidate response retrieval (dialog) is same as the above model and the
column attentions are also similar. However, the models differ with respect to attention over rows.
Since NEs are not treated special here, attention over rows happens through ARR non-NE. For this
task, when ACR is selected correctly (restaurant name), each row will be represented by the neural
embedding representation of its restaurant names. ARR non-NE generates a key to match these
neural embeddings to attend to the row corresponding to the restaurant name mentioned by the user.

From table 2, we observe that the dialog performance (retrieving candidate responses) for both
models is very good and similar, but the W/O-NE-Table model fails in row retrieval while the With-
NE-Table performs well. The difficulty for the W/O-NE-Table model to retrieve rows comes from

9



Under review as a conference paper at ICLR 2018

Table 2: Results for extended dialog bAbI task 4. Accuracies in % for Test and Test Out-Of-
Vocabulary (given in parenthesis).

Model ACR ACC ARR non-
NE ARR NE DB-

Retrieval
Per-
response Per-Dialog

Per-Dialog
+ DB-
Retrieval

W/O-NE-
Table 100 (100) 100 (100) 0.0 (0.0) - 0.0 (0.0) 100 (100) 100 (100) 0.0 (0.0)

With-NE-
Table 100 (100) 100 (100) - 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

Table 3: Performance comparison of our model in the extended dialog bAbI tasks, with a baseline
model in the original bAbI tasks. Accuracies in % for Test and Test Out-Of-Vocabulary (given in
parenthesis).

Task/Dataset Model Evaluation-
Measure Task 1 Task 2 Task 4

Original bAbI tasks
Baseline (MemN2N
+ match type +
RNN encoding)

Per-Dialog 100 (100) 99.9 (50.6) 100 (100)

Extended bAbI tasks With-NE-Table Per-Dialog +
DB-Retrieval 97.9 (98.0) 98.6 (98.4) 100 (100)

the need to learn neural representations for all restaurant names, that can be used later to match and
retrieve the same.

Performance comparison with the original dialog bAbI tasks:
The extended dialog bAbI tasks that we present results for above require the dialog system to do
strictly more work compared to the original dialog bAbI tasks. For tasks 1 and 2, while in the
original version of the task, the dialog system has to have a conversation with the user and issue
api calls along with the arguments, in the extended version, the dialog system also has to retrieve
the relevant information from the DB (in addition to having the conversation and issuing api calls).
For task 4, in the original task the dialog system is given just the details of the particular restaurant
that the user will ask for. The dialog system has to find the correct attribute from it, depending on
what the user asks for. In the extended version of task 4, the dialog system is not given information
just about the restaurants the user is interested in, instead it has to use the restaurant name that the
user provides during the conversation to retrieve the relevant information that the user asks for, from
the full DB and use it in dialog.

Table 3 compares the performance of the With-NE-Table model in the extended bAbI tasks with that
of a baseline method on the original bAbI tasks. The baseline method here is an end-to-end memory
network with RNN encoding for its sentences (similar to the architecture used for With-NE-Table
model), without any NE-Table or retrieval mechanism. The baseline method is also given match
type features which gives extra information about the NE type when a NE occurs (as done in Bordes
& Weston (2016b)). The performance that we report here for the baseline model is higher than
that reported in Bordes & Weston (2016b). This is probably because we use RNN encoding for
sentences, while they use bag of words representation for sentences.

We compare our method’s accuracy (in the extended tasks) in getting every dialog response and
every information retrieval (per-Dialog + DB-Retrieval) in a dialog correct with the baseline model’s
accuracy (in the original task) in getting every dialog response (Per-Dialog) in a dialog correct.
Though not a strictly fair comparison for our model, from Table 3, we observe that the performance
of our With-NE-Table model in the extended bAbI tasks is as good as the performance of the baseline
model in the original bAbI tasks. In the case of bAbI task 2 OOV test set, the performance of the
With-NE-Table model is actually much higher compared to the baseline model (98.4% vs 50.6%).

4 RELATED WORKS

There are several papers in the Question Answering (QA) domain that focus on DB retrieval with
neural methods and suffer from the Named Entity (NE) issues described in the Introduction. Some

10



Under review as a conference paper at ICLR 2018

end-to-end systems (Neelakantan et al., 2015; Yin et al., 2015) were proposed to transform a natural
language question/query to a program that could run on DBs, but those approaches are only verified
on small or synthetic databases. Other papers dealing with large knowledge bases (KB) usually
rely on entity linking techniques (Cucerzan, 2007; Guo et al., 2013), which links entity mentions
in texts to knowledge base queries. For example, in knowledge base QA papers (Yih et al., 2015;
Yin et al., 2016; Yu et al., 2017), the text spans in questions are compared with KB entity names
at the character-level for entity linking; then after the linked entities have their properties extracted,
the corresponding text spans are replaced with special NE tags for further text processing like KB
relation extraction. Recently, Liang et al. (2016) extended end-to-end neural methods to question
answering over knowledge base, which could handle large KB and large number of entities. How-
ever, their method still relies on entity linking (Yang & Chang, 2015) to generate a short list of
entities linked from text spans in questions in advance. Yin et al. (2015) propose ’Neural Enquirer’,
a neural network architecture similar to the neural retrieval mechanism used in this work, to execute
natural language queries on DB. While using the Neural Enquirer, they keep the randomly initialized
embeddings of the NEs fixed as a way to handle NEs and OOV words. We could potentially use our
idea of NE-Table with a Neural Enquirer to retrieve information from tables.

There has been a lot of recent interest in end-to-end training of dialog systems (Vinyals & Le (2015);
Serban et al. (2016); Lowe et al. (2015); Kadlec et al. (2015); Shang et al. (2015)). Research on this
topic tends to focus on large-scale training corpora such as movie subtitles, social media chats, or
technical support logs. For large corpora it is natural to use supervised training techniques where
the Recurrent Neural Networks (RNNs) attempt to replicate the recorded human utterances. How-
ever, there are also approaches that envision training via reinforcement learning techniques, given a
suitably defined reward function in the dialog (Wen et al. (2016); Su et al. (2015b;a)). In more re-
cent work on end-to-end learning of task-oriented dialog such as Bordes & Weston (2016a); Dodge
et al. (2016) this paradigm is extended to decompose the main task into smaller tasks each of which
must be learned by the agent and composed to accomplish the main task. Williams & Zweig (2016)
use an LSTM model that learns to interact with APIs on behalf of the user. Weston (2016) (bAbI-
dialog) combines dialog and reasoning to explore how an agent can learn dialog when interacting
with a teacher. Guo et al. (2017) apply reinforcement learning and supervised learning in interac-
tive reasoning tasks. Dhingra et al. (2017) use reinforcement learning to build the KB look-up in
task-oriented dialog systems. But the look-up actions are defined over each entity in the KB and is
therefore hard to scale up. Most of these papers actually do not discuss the issue of interacting with
NEs though they are present.

In our work, we showed using simple tasks the usefulness in identifying and handling them (NEs)
in the way proposed. Recently, a new hybrid approach was also proposed by (Williams et al., 2017).
They proposed Hybrid Code Networks which combine an RNN with domain-specific knowledge en-
coded as software and system action templates. They achieved state-of-the-art performance on the
Facebook bAbI dataset, but their approach involves a developer writing domain-specific software
components e.g. the dialog state is maintained in the code. For certain tasks such as Machine Trans-
lation and summarization, neural copying mechanisms (Gulcehre et al. (2016), Gu et al. (2016))
have been proposed as means to handle OOV words and NEs. Here, the system has the option to
copy certain words from the input to the output. We could use our NE-Table idea along with such
copying mechanisms for cases like dialog generation.

5 CONCLUSION AND FUTURE WORK

In this paper we proposed a method for interacting with NEs in a goal-oriented dialog setting, which
typically also involves interacting with a DB. Our experiments show that, handling NEs in the pro-
posed way can indeed work and be useful for certain aspects of goal-oriented dialog. In future, we
are interested in testing the NE-Table idea with other retrieval mechanisms such the ’Neural En-
quirer’ proposed in (Yin et al., 2015) which can work with multiple tables, instead of the multiple-
attention mechanism used in our work. Our proposed idea is generic enough to be thought of as
follows: in many NLP tasks, goal-oriented dialogs in particular, there are places where we are
interested in encoding the meaning and relation of words/sentences by learning neural embedding
representations for them (for understanding a user question for example), there are also places where
we are not interested in the meaning, but rather just in the exact values (phone numbers, address etc).
One reason could be that working with these exact values can make certain tasks easier and accurate

11



Under review as a conference paper at ICLR 2018

(compared to having a neural embedding for them) and another practical reason could be that learn-
ing good neural representation for these particular values that occur rarely (sometimes only during
test time) is difficult. The NE-Table idea provides a way to work with exact values of entities but still
remain within the neural learning scheme, which allows the overall task to be end-to-end trainable
using back propagation. In future work, we are interested in exploring the use of this idea in a more
general setting of working with both symbols and distributed representations, exploiting the benefits
of both of them wherever appropriate and doing all this within a end-to-end trainable neural setting.

REFERENCES

A. Bordes and J. Weston. Learning end-to-end goal-oriented dialog. arXiv preprint
arXiv:1605.07683, 2016a.

Antoine Bordes and Jason Weston. Learning end-to-end goal-oriented dialog. arXiv preprint
arXiv:1605.07683, 2016b.

Silviu Cucerzan. Large-scale named entity disambiguation based on Wikipedia data. In Proceed-
ings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, 2007.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal Ahmed, and Li Deng.
Towards end-to-end reinforcement learning of dialogue agents for information access. In Proceed-
ings of the 55th Annual Meeting of the ACL, 2017.

J. Dodge, A. Gane, X. Zhang, A. Bordes, S. Chopra, et al. Evaluating prerequisite qualities for
learning end-to-end dialog systems. Proc. of ICLR-2016, 2016.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-local information
into information extraction systems by gibbs sampling. In Proceedings of the 43rd annual meet-
ing on association for computational linguistics, pp. 363–370. Association for Computational
Linguistics, 2005.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. Incorporating copying mechanism in
sequence-to-sequence learning. CoRR, abs/1603.06393, 2016. URL http://arxiv.org/
abs/1603.06393.

C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio. Pointing the unknown words. arXiv
preprint arXiv:1603.08148, 2016.

Stephen Guo, Ming-Wei Chang, and Emre Kiciman. To link or not to link? a study on end-to-end
tweet entity linking. In Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, 2013.

Xiaoxiao Guo, Tim Klinger, Clemens Rosenbaum, Joseph P Bigus, Murray Campbell, Ban Kawas,
Kartik Talamadupula, Gerry Tesauro, and Satinder Singh. Learning to query, reason, and answer
questions on ambiguous texts. 2017.

R. Kadlec, M. Schmid, and J. Kleindienst. Improved deep learning baselines for ubuntu corpus
dialogs. In Proc. of NIPS-15 Workshop on “Machine Learning for SLU and Interaction”, 2015.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao. Neural symbolic machines:
Learning semantic parsers on freebase with weak supervision. arXiv preprint arXiv:1611.00020,
2016.

R. Lowe, N. Pow, I. Serban, and J. Pineau. The Ubuntu Dialogue Corpus: A Large Dataset for
Research in Unstructured Multi-Turn Dialogue Systems. In Proc. of SIGDIAL-2015, 2015.

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: Inducing latent programs
with gradient descent. arXiv preprint arXiv:1511.04834, 2015.

I. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau. Building end-to-end dialogue systems
using generative hierarchical neural network models. In Proc. of AAAI-2016, 2016.

12

http://arxiv.org/abs/1603.06393
http://arxiv.org/abs/1603.06393


Under review as a conference paper at ICLR 2018

L. Shang, Z. Lu, and H. Li. Neural responding machine for short-text conversation. In Proc. of
ACL-2015, 2015.

P.-H. Su, D. Vandyke, M. Gašić, D. Kim, N. Mrkšić, T.-H. Wen, and S. Young. Learning from
real users: Rating dialogue success with neural networks for reinforcement learning in spoken
dialogue systems. In Proc. of INTERSPEECH-2015, 2015a.

P.-H. Su, D. Vandyke, M. Gasic, N. Mrksic, T.-H. Wen, and S. Young. Reward shaping with recurrent
neural networks for speeding up on-line policy learning in spoken dialogue systems. Proc. of
SIGDIAL-2015, 2015b.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In NIPS,
2015.

O. Vinyals and Q. Le. A neural conversational model. ICML, Workshop, 2015.

T.-H. Wen, M. Gasic, N. Mrksic, L. M. Rojas-Barahona, P.-H. Su, S. Ultes, D. Vandyke, and
S. Young. A network-based end-to-end trainable task-oriented dialogue system, 2016.

J. Weston. Dialog-based language learning. arxiv preprint arXiv:1604.06045, 2016.

J. D. Williams and G. Zweig. End-to-end lstm-based dialog control optimized with supervised and
reinforcement learning. arXiv preprint arXiv:1606.01269, 2016.

Jason D Williams, Kavosh Asadi, and Geoffrey Zweig. Hybrid code networks: practical and ef-
ficient end-to-end dialog control with supervised and reinforcement learning. arXiv preprint
arXiv:1702.03274, 2017.

Yi Yang and Ming-Wei Chang. S-mart: Novel tree-based structured learning algorithms applied to
tweet entity linking. In Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language Processing,
2015.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing via staged query
graph generation: Question answering with knowledge base. In Association for Computational
Linguistics (ACL), 2015.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao. Neural enquirer: Learning to query tables.
arXiv preprint arXiv:1512.00965, 2015.

Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, and Hinrich Schütze. Simple question answering
by attentive convolutional neural network. In Proceedings of COLING 2016, the 26th Interna-
tional Conference on Computational Linguistics, 2016.

Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos Santos, Bing Xiang, and Bowen Zhou. Im-
proved neural relation detection for knowledge base question answering. In Proceedings of the
55th Annual Meeting of ACL, 2017.

13



Under review as a conference paper at ICLR 2018

APPENDIX A: EXTENDED DIALOG BABI TASK 2 EXAMPLE

Original dialog bAbI task 2:
U: Hi !
S: Hello, what can I help you with
today ?
U: I’d like to book a table for six people in an
expensive price range with British food in London.
S: Ok, let me look into some
options for you.
S: api call British, London, Six,
Expensive
U: Instead, could it be Indian cuisine
S: Sure, is there anything else to
update ?
U: No.
S: Ok, let me look into some
options for you
S: api call Indian, London, Six,
Expensive

Extended dialog bAbI task 2:
U: Hi !
S: Hello, what can I help you with
today ?
U: I’d like to book a table for six people in an
expensive price range with British food in London.
S: Ok, let me look into some
options for you.
S: api call
S (Retrieved Information):
{The Place, british, london, ...,}
The Fancy Pub, british, london, ..., }
U: Instead, could it be Indian cuisine
S: Sure, is there anything else to
update ?
U: No.
S: Ok, let me look into some
options for you
S: api call
S (Retrieved Information):
{Suvai, Indian, london, ..., }
{Madras Masala, Indian, london, ..., }

14


	Introduction and Problem Description
	Details of Proposed Solution
	Experiments and Results
	Multiple-attention based neural retrieval mechanism
	Structured Question Answering from DB
	Goal-Oriented Dialog Tasks
	Extended dialog bAbI task 1: Issuing API calls and retrieving information
	Extended dialog bAbI task 2: Updating API calls and retrieving information
	Extended dialog bAbI task 4: Providing information
	Model description and results for the goal-oriented dialog tasks


	Related Works
	Conclusion and Future work

