
PZnet: Efficient CPU ConvNet Inference Engine for
3D Medical Image Processing

Sergiy Popovych
Computer Science Dept.

Princeton University
popovych@princeton.edu

Davit Buniatyan
Computer Science Dept.

Princeton University
davit@princeton.edu

Alexander Zlateski
Computer Science Dept.

MIT
zlateski@csail.mit.edu

H. Sebastian Seung
Princeton Neuroscience Institute

Princeton University
sseung@princeton.edu

Kai Li
Computer Science Dept.

Princeton University
ckyli@princeton.edu

Abstract

Convolutional nets have been shown to achieve state-of-the-art accuracy in many
biomedical image analysis tasks. To deploy convolutional nets in practical working
systems, it is also important to solve the efficient inference problem. Namely,
one should be able to apply an already-trained convolutional network to many
large images using limited computational resources. 3D images are especially
relevant because biological tissues are 3D, and data volumes are typically high
for 3D. While it is common to use GPUs for convolutional net inference, there
may be environments where CPUs are more abundant or accessible. In this paper
we present PZnet, a CPU-only engine that can be used to perform inference for a
variety of 3D convolutional net architectures. PZNet outperforms MKL-based CPU
implementations of PyTorch and Tensorflow by more than 3.5x for the popular
3D U-net architecture. Moreover, based on current pricing of preemptible or spot
instances, cloud CPU inference with PZnet is competitive in cost with cloud GPU
inference, for U-net style architectures.

1 Introduction

Modern deep learning frameworks such as Theano [2], Caffe [4], Tensorflow [1] and Pytorch [3]
are mostly optimized for processing of 2D images, and achieve lower hardware utilization on both
CPU and GPU platforms for 3D tasks. In this work we show that CPU efficiency for 3D ConvNet
inference can be improved by up to 8x, which results in higher utility of existing CPU infrastructure
and makes CPU inference a competitive choice in the cloud setting.

The main contribution of this work is an inference-only deep learning engine called PZnet, which is
specifically optimized for 3D inference on Intel Xeon CPUs. PZnet utilizes ZnnPhi[6], a state-of-the-
art direct 3D convolution implementation. ZnnPhi relies heavily on template-based metaprogramming
and requires a custom data layout, which makes it difficult to integrate into mainstream deep learning
frameworks. For this reason, we created a special inference-only framework PZnet. A convolutional
net can be trained using a mainstream deep learning framework, and then imported to PZnet when
large-scale inference is required.

PZnet also provides a number of ways of fusing multiple layers into one, thereby reducing the
amount of computation required during inference. These layer fusions are applicable to a number of
convolutional net architectures, and can reduce inference time by up to 20%.



PZnet outperforms MKL-based CPU implementations of PyTorch and Tensorflow by 3-8x, depending
on the network architecture and hardware platform. Moreover, we show that based on current cloud
compute prices, PZnet CPU inference is competitive with cuDNN based GPU inference. For inference
of a real-world residual 3D Unet architecture [5], PZnet is able to outperform GPU inference in terms
of cost efficiency by over 50%. To the best of our knowledge, this is the first work to show CPU
inference to beat GPU inference in terms of cloud cost.

2 PZnet

PZnet consists of 2 parts – a network generator and an inference API. Network generator compiles
the provided model specifications into so-called network files. Network files are shared library objects
that are distributed to worker machines. Workers run inference by accessing the models within the
network files through PZnet python inference API.

PZNet employs ZnnPhi, which, to the best of our knowledge, is the most efficient 3D direct convolu-
tion implementation known up to date. ZnnPhi achieves high performance though utilizing SIMD
instructions in a cache efficient way, and is compatible with SSE4, AVX, AVX2 and AVX512 SIMD
instruction families.

ZnnPhi requires image and kernel data to conform to a specific data layout. The data layout stems
from the way in which ZnnPhi utilizes SIMD instructions, and it prevents ZnnPhi from being directly
pluggable into mainstream deep learning frameworks.

Additionally, ZnnPhi heavily relies on metaprogramming through C++ templates, which means that
layer parameters, such as image and kernel sizes, have to be known during compile time. This
allows ZnnPhi to rely on compile time optimizations in order to produce maximally efficient code
for each parameter configuration. However, this adds another obstacle to integrating ZnnPhi into a
mainstream deep learning framework. Most deep learning frameworks allow user-supplied C++ layer
implementations, but they either require them as a compiled shared object or as generic source code.
Since ZnnPhi layers need to be recompiled for each layer configuration, integration with mainstream
deep learning frameworks cannot be achieved without implementing JIT compilation infrastructure.

In order to support ZnnPhi, PZnet compiler generates C++ source code which directly corresponds to
the provided model. Then, Intel C++ Compiler is invoked in order to produce optimized shared library
object files. All PZnet layers support ZnnPhi blocked memory layout. PZnet implicitly performs
memory layout transformations for the input and output data tensors in order to provide standard
input and output formats.

3 Optimizations

Figure 1: PZnet optimization flow

Optimizations performed by PZnet are mainly aimed at reducing the number of memory traversals
introduced by miscellaneous layers (batchnorm, scale, activation, etc). We modify ZnnPhi primitives
in order to perform operations required by several layers in one memory pass. The overall optimization
flow of PZnet is as follows. First, we fuse convolutions with element-wise addition layers, which are

2



commonly introduced by residual connections. After element-wise layers are fused, more convolution
layers immediately precede batch normalization and scaling layers. Both batch normalization and
scale perform linear transformations of tensors during inference time. Since weights of the convolution
layers can be modified in order to take account for subsequent linear transformation layers, we are able
to fuse batch normalization and scales into convolution. After linear transformation layers are fused,
convolutions are commonly followed by activation layers. We modify ZnnPhi primitives in order
to apply activation function to the convolution outputs before they are written out to memory, thus
fusing activation and convolution layers. Finally, after element-wise addition, linear transformation
and activation layers are removed, most of convolution layer outputs are used inputs of the subsequent
convolution layers. Thus, we can eliminate explicit input padding of the inputs by making convolution
layers produce padded outputs, which saves additional memory traversals. Overall, optimization by
3.5− 20% is performed, depending on CPU parameters and network architecture.

4 Evaluation

The experiments are performed on major types of CPU and GPU compute instances from Amazon
Web Services (AWS) and Google Cloud: AWS C4, AWS C5, Google Cloud Hasswell, Google Cloud
Skylake. 3 versions of 3D Unet architecture are evaluated: original, symmetric and residual.

Table 1 compares CPU performance of PZnet and Tensorflow. Tensorflow version used for evaluation
was compiled with MKL, FMA and AVX2 support. The results show that PZnet outperforms
Tensorflow by more than 3.4x for all of the experiment settings.

Table 1: PZnet vs Tensorflow CPU performance
Time per patch (sec)

PZnet Tensorflow

Network Act c4 c5 g Has g Sky c4 c5 g Has g Sky

Original ReLU 1.82 1.47 5.81 3.91 6.70 5.91 22.46 21.40
Original ELU 1.89 1.55 5.99 4.07 6.45 5.64 22.89 22.60
Symmetric ReLU 3.97 2.68 12.93 8.35 30.93 28.43 114.34 114.78
Symmetric ELU 4.11 2.78 13.30 8.68 30.79 27.64 114.50 113.89
Residual ReLU 1.61 1.48 5.00 4.62 8.96 7.95 22.75 22.97
Residual ELU 1.67 1.52 5.20 4.84 8.26 7.40 22.70 22.91

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[2] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud
Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano: new features
and speed improvements. arXiv preprint arXiv:1211.5590, 2012.

[3] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environment
for machine learning. In BigLearn, NIPS workshop, number EPFL-CONF-192376, 2011.

[4] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages
675–678. ACM, 2014.

[5] Kisuk Lee, Jonathan Zung, Peter Li, Viren Jain, and H Sebastian Seung. Superhuman accuracy
on the snemi3d connectomics challenge. arXiv preprint arXiv:1706.00120, 2017.

[6] Aleksandar Zlateski and H Sebastian Seung. Compile-time optimized and statically scheduled
n-d convnet primitives for multi-core and many-core (xeon phi) cpus. In Proceedings of the
International Conference on Supercomputing, ICS ’17, pages 8:1–8:10. ACM, 2017.

3


	Introduction
	PZnet
	Optimizations
	Evaluation

