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Abstract

Deep Learning (DL)-based diagnostic systems are getting approved for usage as fully au-
tomatic or secondary opinion products. This development derives from the achievement of
expert-level performance by DL across several applications (e.g. dermoscopy and diabetic
retinopathy). While recent literature shows their vulnerability to imperceptible digital
manipulation of the image data (e.g. through cyberattacks), the performance of medical
DL systems under physical world attacks is not yet explored. This problem demands at-
tention if we want to safely translate medical DL research into clinical practice. In this
paper, we design the first small-scale prospective evaluation addressing the vulnerability of
DL-dermoscopy systems under physical world attacks in absentia of knowledge about the
underlying DL-architecture. We publish the entire dataset of collected images as Physi-
cal Attacks on Dermoscopy (PADv1) for public use. The evaluation of susceptibility and
robustness reveals that such attacks lead to on average 31% accuracy loss across popular
DL-architectures. The DL diagnosis is changed by the attack in one of two cases even
without any knowledge of the DL method.
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1. Introduction

While medical systems empowered by Deep Learning (DL) are getting approved for clinical
procedures in hospitals and practices alike, only recently their vulnerability is taken into
consideration. In these studies (Paschali et al., 2018; Finlayson et al., 2018; Taghanaki et al.,
2018; Kügler et al., 2018), the authors attack medical DL systems digitally (e.g. through
cyberattacks) using adversarial examples. They show that maliciously crafted perturbations
of the image can alter the DL diagnosis with high success rates while maintaining high
confidence. Although demonstrated for computer vision tasks (Sharif et al., 2016), so far no
attention is given to vulnerabilities of DL systems under physical world attacks in realistic
clinical settings. While cyberattacks corrupt the image data digitally, physical world attacks
are constrained to changing the appearance of the region under consideration in the real
world. This leads to the following question: Can physical world attacks from the clinical
setting severely affect the performance of popular DL architectures?

One prominent medical application of DL is dermoscopy, where the diagnostic per-
formance reaches the level of experts (Esteva et al., 2017; Mahbod et al., 2018). Since
the acquisition of dermoscopic images is quick and causes neither pain nor harm to test
subjects, dermoscopy is an interesting test bench for prospective study of physical world
attacks. In addition, dermoscopy is a likely candidate for fully automated1 future DL-based
products with the promise of significantly simplifying the analysis of skin lesions (Lowell
et al., 2001). Emphasizing the relevance of physical world attacks, we identify exemplary
clinical scenarios with severe consequences for health-care in the following: (1) to indicate
additional testing incurring extra fees, (2) to mark the lesion with a little dot to help the
system zero-in or just to help with locating skin lesions (see Figure 1), (3) to extort for
personal gain or (4) to taint the reputation of medical software.

We propose a new evaluation for DL systems in medical imaging: robustness to physical
attacks. Such a prospective evaluation is necessary for the translation of DL into clinical
products, since seemingly irrelevant details from day-to-day clinical practice can lead to
the failure of DL-systems, despite not being particularly compelling for learning theory
research. Designing such experiments, which simulate physical world attacks in a clinical
setting, requires to overcome a central challenge: the wealth of different physical corrup-
tions. In dermoscopy, this includes natural and synthetic artifacts such as bruises, little
dots and lines. In this paper, we systematically analyze seven different attack patterns
by creating a small-scale prospective evaluation dataset (Physical Attacks on Dermoscopy,
PADv1) containing both clean and physically attacked images2. We assume that the at-
tacker has no knowledge of underlying DL architecture, model weights or training data.
The evaluation demonstrates how nonspecific knowledge of the task can be leveraged to
fool the decision method. Moreover, these attacks neither inhibit the dermatologist’s abil-
ity of accurate diagnosis nor add visual characteristics specific to a distinct skin disease
(e.g. malignant melanoma). We evaluate the performance of five popular DL architectures
including ResNet, InceptionV3, InceptionResNetV2, Xception and MobileNet.

Wherever there is money to be made, some people will exploit the opportunity and
abuse ambiguities, which is shown by cyber threats (Jarrett et al., 2018; American Medical

1. https://www.reuters.com/article/us-fda-ai-approval/u-s-fda-approves-ai-device-idUSKBN1HI2LC
2. Watch the video of our Physical Attacks on Dermoscopy: https://youtu.be/eyA6flBjCfQ
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attack procedure clean image attacked image
(InceptionV3 successful) (InceptionV3 failed)

Figure 1: Physical Attacks on Dermoscopy (PAD): left: creation for physical world arti-
facts in practice, center: clean, correctly classified images; right: corresponding
attacked, incorrectly classified images

Association, 2017) as well as individual (Ornstein and Grochowski Jones, 2014) and insti-
tutional (Kalb, 1999) instances of fraud and abuse in healthcare. Since we are interested in
making DL-based products clinically useful, more prospective clinical evaluations such as
the one proposed here are required (Kaplan and Irvin, 2015). For the benefit of the medical
imaging community, we make PADv1 publicly available3 for further evaluation.

2. Related Work

A significant body of work (Goodfellow et al., 2014; Kurakin et al., 2018; Moosavi-Dezfooli
et al., 2016; Brendel et al., 2018) presents methods for digitally attacking DL by adversarial
examples. In the context of adversarial attacks, we differentiate between black-box and
white-box attacks, which differ in the available knowledge about the attacked DL system.
While we have no knowledge in the former, we assume complete knowledge in the latter.
Digital attacks have successfully been applied to medical applications including dermoscopy
(Paschali et al., 2018; Taghanaki et al., 2018; Finlayson et al., 2018; Kügler et al., 2018).

3. Download the dataset at https://www.gris.tu-darmstadt.de/short/PhysicalAttacksonDermoscopy
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Physical world attacks, however, are less common. The transfer to the physical world
focuses on printed objects (Kurakin et al., 2016), which are misclassified when acquired by a
camera. An attacker can even fool commercial DL systems for facial recognition by prepar-
ing a custom-made frame for glasses (Sharif et al., 2016). Both methods realize white-box
attacks. Sharif et al. (2016) optimizes the texture printed onto the frames forward-facing
side through the simulation of different head-glasses configurations. Eykholt et al. (2017)
propose Robust Physical Perturbations (RP2) for road sign recognition. They achieved
high success rates for their sign classification task, even misclassifying one Stop Sign as a
Speed Limit Sign under all testing conditions. Their work has been criticized by Lu et al.
(2017), because in autonomous driving detectors are used instead of classifiers. More re-
cently, the consistency to fool DL in varying conditions is improved to generate adversarials
independent to a chosen distribution of transformations (Athalye et al., 2017).

However, to this day, no physical world black-box attack is reported in clinical setting.

3. Methods

We place small artifacts such as dots and lines in a region around the skin lesion and
evaluate, whether the DL diagnosis changes.

3.1. Models and Training

As is common for dermoscopic classification tasks (Codella et al., 2017), we fine-tune mul-
tiple state-of-the-art neural network architectures pre-trained on the ImageNet dataset:
ResNet (He et al., 2015), InceptionV3 (Szegedy et al., 2015), InceptionResNetV2 (Szegedy
et al., 2016), Xception (Chollet, 2016) and MobileNet (Howard et al., 2017). The fine-tuned
architecture consists of Dropout (75%), a fully-connected layer (1024 units, ReLU activa-
tion), Dropout (75%), and a fully-connected layer with 7 outputs and softmax activation
behind an average-pooling layer. Models are trained for 85 epochs using cross-entropy loss
and the RMSProp optimizer with the learning rate initially 10−3 and 10−5 by the final
epoch. During the first 5 epochs, we keep the pre-trained parameters frozen. Additionally,
we use class-weights to counteract the imbalanced class-distribution of the dataset.

For each architecture, we train 5 instances, resulting in a total of 25 trained networks
in effect averaging out the stochastic properties of the training process. We use a 80/20
train/test-split of the dataset images and choose the network by highest validation score
(balanced accuracy) in a keras environment with tensorflow backend.

Table 1: Details for PADv1-attacked: Number of images (unique lesion/attack combina-
tions) per physical attack pattern

Black Red

Acrylic Pen Acrylic Pen

Dot 17F 13C 17F+21C 14C

Line 19O 10O

F Dot placed at distance to lesion
C Dot placed in direct vicinity of lesion
O Line partially overlapping lesion

4



Physical Attacks in Dermoscopy: Evaluation of Robustness for clinical DL

3.2. Physical Attack Methodology

To simulate the physical attack in real clinical setting, we consider dots and lines of different
color placed in relation to the lesion. While visually very different to specific skin diseases,
the artifacts are chosen as proxies for shapes that correspond to specific observations. We
develop three basic attack types: black dot, red dot and black line. The black dot has some
resemblance with a nevus or melanoma, red dots could be misconstrued as blood stains or
bruising. Finally, thicker, black lines look similar to hair. To uniquely identify different
attack patterns, we use acronyms: BDFA, BDCP, BLOA, BLOP, RDFA, RDCA, RDCP.
The first letter indicates the color (Black, Red), the second the shape (Dot, Line), the third
the position (Close, Far, Overlapping) and the last indicates the texture (Acrylic, Pen).
Table 1 shows all variations we use for our attacks.

The attack patterns are prepared after clean images are taken. To achieve different
textures, artifacts are applied by different pens and acrylic paint. We draw and paint dots
using two tools: a marker with a round tip of approx. 3 millimeter size (pen) or a sharp-
tipped tool from wood (acrylic). We aim to keep it between half the size of the lesion
and equivalent to size of the lesion (typically around 4 millimeters in diameter). As an
additional degree of freedom for dots, we vary the relative position of the artifacts to the
lesion. Dots are placed at the border of the lesion (close, direct vicinity) or at a distance
of approximately the size of the lesion (far). For black lines, we use a black pen with 0.05
millimeter thickness (pen) and wooden splinters (acrylic). In some cases we use a sticker
for easy identification and correspondence of clean and attacked images.

3.3. Datasets

To train our Deep Learning models, we use the publicly available training dataset HAM10000
(Tschandl et al., 2018; Codella et al., 2017). This unbalanced dataset contains 10015 der-
moscopic lesion images. Experts classified individual images as one of seven skin diseases
ranging from melanocytic nevi to vasular skin lesions; 53.3% of them are pathologically
verified.

We introduce a new dataset: Physical Attacks on Dermoscopy (PADv1), which contains
prospective clinical data of 51 clean images with verified ground truth (Xclean, PADv1-
clean), 111 attacked images (Xattacked, PADv1-attacked, detailed in table 1) and a corre-
spondence table linking clean and attacked images. These attacked images are generated
based on the method outlined in section 3.2. PADv1 consists of data from young adults
aged between 25 to 35 years, including a total of 8 participants (6 male and 2 female) from
caucasian and middle eastern skin types. We use PADv1-clean i) to verify the generalization
ability of the models in a prospective study and ii) as a reference for physical world attacks
performed on the same lesions. PADv1-attacked contains corresponding images with lesion
and attacking artifact for the analysis of physical world attacks.

PADv1 images are acquired and diagnosed by a dermatologist using a combination of
a DermLite 2 Pro HR dermoscope and an iPhone 7. All lesions are non suspicious for
melanoma. PADv1 is a small-scale dataset (a total of 162 images) not histologically verified
and like the HAM10000 dataset (Tschandl et al., 2018) dominated by melanocytic nevi.
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Figure 2: Susceptibility to physical world attacks, minimum: -1 (worst case, no attacked
image correctly predicted); larger than 0: accuracy on PADv1-attacked larger
than on PADv1-clean; BDFA: Black Dot Far Acrylic, BDCP: Black Dot Close
Pen, BLOA: Black Line Over Acrylic, BLOP: Black Line Over Pen, RDFA: Red
Dot Far Acrylic, RDCA: Red Dot Close Acrylic, RDCP: Red Dot Close Pen

4. Results

We test the performance of five popular architectures (ResNet, InceptionV3, Inception-
ResNetV2, Xception, MobileNet) each from five independent trainings. We report the
performance of five models to show that the effects are not statistical outliers to a specific
set of weights, but rather agree across different training instances and architectures.

4.1. Quantitative analysis of physical attacks in PADv1

For the evaluation of the vulnerability to physical attacks, we introduce two evaluation
metrics: susceptibility and robustness. Susceptibility compares the accuracy of the DL
system under attack acc(Xattacked) with accuracy on clean data acc(Xclean): acc(Xattacked)

acc(Xclean)
−1.

Robustness indicates the stability to a decision, i.e. the fraction of cases, where the decision
is the same for the clean and the attacked image.

In terms of susceptibility, all models are negatively affected by attacked images with
accuracies decreasing by up to 60% for some attacks. Although most architectures are
affected negatively by the attack patterns, fig. 2 also indicates Xception and MobileNet
less susceptible with values close to zero. The average loss of accuracy due to attacks
across architectures is 30.8%. The figure shows standard deviations in addition to average
susceptibilities.
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Table 2: Robustness of different architectures to seven Physical World Attacks; Acronyms
of attacks are listed in the caption of fig. 2; InceptRNV2: InceptionResNetV2

Arch\Attack BDFA BDCP BLOA BLOP RDFA RDCA RDCP Overall

ResNet 0.48 0.66 0.39 0.37 0.29 0.18 0.51 0.40

InceptionV3 0.54 0.63 0.46 0.63 0.21 0.14 0.64 0.43

InceptRNV2 0.72 0.74 0.65 0.60 0.48 0.36 0.70 0.60

Xception 0.69 0.95 0.65 0.63 0.31 0.42 0.44 0.57

MobileNet 0.40 0.86 0.56 0.60 0.28 0.34 0.53 0.48

Mean 0.57 0.77 0.54 0.57 0.31 0.29 0.56 0.50

With robustness
∑

iN
−1 · 1(f(xi,clean) = f(xi,attacked)), results (table 2) show that

attacks change predictions in 40% to 60% of cases with two attacks (RDCA, RDFA) being
effective in 70% of cases across different models. Comparing averages for this 111-image
dataset, ResNet is the least robust, while InceptionResNetV2 and Xception are most robust.

We also report confidence values for the evaluation of PADv1-clean and PADv1-attacked
in Figure 3. Unlike for digital adversarial examples, physical attacks present a difference of
5% in average confidence.

Figure 3: Mean and Standard deviation of network confidence based on its decision
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Table 3: Mean and standard deviation of model accuracy on our 20% test-split from the
HAM10000 dataset and the PADv1-clean dataset; five models per architecture

Architecture\DataSet HAM10000 (test split) PADv1-clean

ResNet 0.776 ± 0.0074 0.752 ± 0.1591

InceptionV3 0.753 ± 0.0114 0.758 ± 0.0685

InceptionResNetV2 0.778 ± 0.0062 0.876 ± 0.0423

Xception 0.758 ± 0.0107 0.830 ± 0.0837

MobileNet 0.765 ± 0.0034 0.906 ± 0.0357

4.2. Performance on clean data

To emphasize the quality of the proposed models in clean dermoscopy cases, we report therin
performance on both the HAM10000 (Tschandl et al., 2018) and the PADv1-clean dataset.
Since seven classes exist for dermoscopy, we report the balanced accuracy on the HAM10000
dataset evaluation. However, since PADv1 only includes a small subset of lesion types, the
evaluation of “balanced accuracy” is impossible. Table 3 therefore includes the balanced
accuracy for HAM10000 and accuracy for PADv1-clean. Considering we do not introduce
sophisticated data augmentation or ensembling to our models, they perform comparable to
state-of-the-art methods, such as presented by Codella et al. (2017).

5. Discussion

In this paper, we present a novel evaluation (including a new dataset PADv1 and two
metrics) for the robustness of DL methods in clinical settings. We show small artifacts
captured from the real world can significantly reduce the accuracy of DL diagnosis where
dermatologists would not be impacted.

While limited in scope (dataset small), the success of our physical attacks unveils the
potential for exploitation of the healthcare system by corrupt or malicious patients and
medical staff. If unexplored, even trained experts would remain unaware of such threats,
because in addition to malicious scenarios, consequences might arise accidentally for random
or patient-specific scenarios: These might include parts of a tattoo, a bruise, a scar, a scab,
improper preparation or even a patch covering these up.

Understanding why attacks are successful – independent to whether they are digital or
physical – is crucial to make medical decision processes safe. In future work, we will focus
on robustness of methods in medical image analysis: To this effect, we will explore robust
methods (ensembling, confidence evaluations), the underlying reasoning (region-dependent
prediction, interpretability and causal models) and a general understanding of mechanism
in adversarial examples (Smith and Gal, 2018; Kügler et al., 2018).
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