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ABSTRACT

The high-quality node embeddings learned from the Graph Neural Networks
(GNNs) have been applied to a wide range of node-based applications and some
of them have achieved state-of-the-art (SOTA) performance. However, when ap-
plying node embeddings learned from GNNs to generate graph embeddings, the
scalar node representations may not suffice to preserve the node/graph properties
efficiently, resulting in sub-optimal graph embeddings.
Inspired by the Capsule Neural Network (CapsNet) (Sabour et al., 2017), we pro-
pose the Capsule Graph Neural Network (CapsGNN), which adopts the concept
of capsules to address the weakness in existing GNN-based graph embeddings al-
gorithms. By extracting node features in the form of capsules, routing mechanism
can be utilized to capture important information at the graph level. As a result, our
model generates multiple embeddings for each graph to capture graph properties
from different aspects. The attention module incorporated in CapsGNN is used to
tackle graphs with various sizes which also enables the model to focus on critical
parts of the graphs.
Our extensive evaluations with 10 graph-structured datasets demonstrate that
CapsGNN has a powerful mechanism that operates to capture macroscopic prop-
erties of the whole graph by data-driven. It outperforms other SOTA techniques
on several graph classification tasks, by virtue of the new instrument.

1 INTRODUCTION

GNN is a general type of deep-learning architectures that can be directly applied to structured data.
These architectures are mainly generalized from other well-established deep-learning models like
CNN (Krizhevsky et al., 2012) and RNN (Mikolov et al., 2010). In this paper, we mainly focus
on Convolution-based Graph Neural Networks which attract increasing interest recently. Convolu-
tion operation can be embedded into Graph Neural Networks from spectral or spatial perspective.
Bruna et al. (2013) defines the convolution operation in the Fourier domain which needs to calculate
the eigendecomposition of the graph Laplacian. This method is computationally expensive and the
filters they defined are non-spatially localized. Later, Henaff et al. (2015) introduces Chebyshev
expansion of the graph Laplacian to avoid computing eigenvectors and Kipf & Welling (2017) pro-
poses to do convolution within 1-step neighbor nodes to reduce the complexity. From the spatial
perspective, Hamilton et al. (2017) and Zhang et al. (2018) propose to define a node receptive-field
and do convolution within this field during which the information of each node as well as their
neighbor nodes is gathered and new representation of each node is generated through an activation
function. Both of these two perspectives perform well in node representation learning and a number
of variants (Velikovi et al., 2018) are developed based on the convolution idea and some of them
have proven to achieve SOTA in various tasks.

The success of GNN in node representation learning has inspired many deep-learning-based ap-
proaches to leverage on node embeddings extracted from GNN to generate graph embeddings for
graph-based applications. However, during this procedure, the learned representation of each node
will be considered as multiple individual scalar features instead of one vector. For example, Zhang
et al. (2018) applies element-wise max-pooling to nodes embeddings when generating graph em-
beddings, Verma & Zhang (2018) generates graph embeddings by computing the element-wise co-
variance of all nodes. These operations indicate that the authors capture node features in the form
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of scalar when they generate graph embeddings which may not suffice to preserve the node/graph
properties efficiently.

To build high-quality graph embeddings, it is important to not only detect the presence of different
structures around each node but also preserve their detailed properties such as position, direction,
connection, etc. However, encoding these properties information in the form of scalar means ac-
tivating elements in a vector one-by-one which is exponentially less efficient than encoding them
with distributed representations. This has been identified discussed in Sabour et al. (2017). Inspired
by CapsNet, we propose to extend scalar to vector during the procedure of applying GNN to graph
representation learning. Compared with scalar-based neural network, vector-based neural network
preserves the information of node/graph properties more efficiently. The technique for extracting
features in the form of vectors is proposed in Hinton et al. (2011) and improved in Sabour et al.
(2017) and Hinton et al. (2018). This technique is mainly devised for image processing. In their
work, the extracted vector is referred to as capsule (a group of neurons in neural network), so we
follow the same notation in our work. Introducing capsules allows us to use routing mechanism to
generate high-level features which we believe is a more efficient way for features encoding. Com-
pared with max-pooling in CNN in which all information will be dropped except for the most active
one, routing preserves all the information from low-level capsules and routes them to the closest
high-level capsules. Besides, this allows to model each graph with multiple embeddings and each
embedding reflects different properties of the graph. This is more representative than only one em-
bedding used in other scalar-based approaches.

In this paper, we propose Capsule Graph Neural Network (CapsGNN), a novel deep learning ar-
chitecture, which is inspired by CapsNet and uses node features extracted from GNN to generate
high-quality graph embeddings. In this architecture, each graph is represented as multiple embed-
dings and each embedding reflects the graph properties from different aspects. More specifically,
basic node features are extracted in the form of capsules through GNN and routing mechanism is
applied to generate high-level graph capsules as well as class capsules. In the procedure of gener-
ating graph capsules, an Attention Module can be applied to tackle graphs in various sizes. It also
assigns different weights to each capsule of each node so that this model focuses on critical parts of
the graph. We validate the performance of generated graph embeddings on classification task over
5 biological datasets and 5 social datasets. CapsGNN achieves SOTA performance on 6 out of 10
benchmark datasets and comparable results on the rest. T-SNE (Maaten & Hinton, 2008) is used
to visualize the learned graph embeddings and the results show that different graph capsules indeed
capture different information of the graphs.

2 BACKGROUND

Here, we provide a brief introduction to Graph Convolutional Networks (GCNs) (Kipf & Welling,
2017), routing mechanism in CapsNet and Attention mechanism which is used in CapsGNN.

2.1 GRAPH

By definition, a weighted directed graph can be represented by G = (V,X,A) where V =
{v1, v2, ...vN} is the set of nodes and A ∈ {0, 1}N×N is the adjacency matrix. If there is an
edge from vi to vj , then Aij = 1 otherwise Aij = 0. X ∈ RN×d represents the features of each
node. d is the number of feature channels and N is the number of nodes.

2.2 GRAPH CONVOLULTIONAL NETWORK

GCN, a widely used GNN architecture, is chosen as one of the key building blocks in our work. At
each layer of the GCN, the convolution operation is applied to each node as well as its neighbors
and the new representation of each node is computed through an activation function. This procedure
can be written as:

Zl+1 = f(TZlW l) (1)

where Zl ∈ RN×d represents nodes features at the layer l, d represents the number of feature
channels and Z0 = X , W l ∈ Rd×d′

is a trainable weights matrix which serves as a channel filter,
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f is a nonlinear activation function, T ∈ RN×N is the information transform matrix and it is usually
calculated from the adjacency matrix A for guiding the information flowing between nodes.

A complete GNN usually stacks L layers to generate final nodes embeddings ZL. In the architecture
proposed by Kipf & Welling (2017), at the lth layer of GCN, the extracted features of each node
actually take all its adjacent nodes within l steps into consideration. So l can be considered as the
size of the node receptive-field at this layer. This special property inspired us to use nodes features
extracted from different layers to generate the graph capsules.

2.3 CAPSULE NEURAL NETWORK

The concept of capsules is invented by Hinton’s team (Hinton et al., 2011) and used recently in
Sabour et al. (2017) and Hinton et al. (2018). CapsNet is designed for image features extraction and
it is developed based on CNN. However, unlike traditional CNN in which the presence of feature is
represented with scalar value in feature maps, the features in CapsNet are represented with capsules
(vectors). In Sabour et al. (2017), the direction of capsules reflects the detailed properties of the
features and the length of capsules reflects the probability of the presence of different features. The
transmission of information between layers follows Dynamic Routing mechanism. The specific
procedure of Dynamic Routing can be found in Appendix A for the completeness.

Inspired by CapsNet, the capsule mechanism is adopted and fused with GNN in our proposed Caps-
GNN to generate graph capsules and class capsules on the basis of node capsules which are extracted
from GNN. Dynamic Routing is applied to update weights between capsules from one layer to the
next layer so that the properties captured by node capsules can be propagated to suitable graph cap-
sules. Thus, each graph is modeled as multiple graph capsules, and then modeled as multiple class
capsules. Different graph capsules reflect the properties of the graph from different aspects.

2.4 ATTENTION MECHANISM

Attention mechanism is widely applied in image (Zheng et al., 2017) and natural language process-
ing domain (Gehring et al., 2016) where it is used to find the relevant parts of the input data to the
task target. The main procedure of Attention mechanism is: 1) defining an attention measure which
is used to measure the relevance of each part of the input data to the task target. 2) normalizing the
generated attention value. 3) scaling each part with the normalized attention value.

In CapsGNN, we apply Attention mechanism for two purposes: 1) scaling each node capsule so that
the graph capsules that are generated from different graphs are still comparable even though these
graphs are vastly different in sizes. 2) guiding the model to focus on more relevant parts of graphs.

3 CAPSULE GRAPH NEURAL NETWORK

In this section, we outline CapsGNN and show how it is used to generate high-quality graph cap-
sules which then can be applied to graph classification task. Figure 1 shows a simplified version of
CapsGNN. It consists of three key blocks:

1) Basic node capsules extraction block: GNN is applied to extract local vertices features with
different receptive-field and then primary node capsules are built in this block. 2) High level graph
capsules extraction block: Attention Module and Dynamic Routing are fused to generate multiple
capsules for graphs. 3) Graph classification block: Dynamic Routing is applied again to generate
class capsules for graph classification. The details of each block is explained in the following.

3.1 BASIC NODE CAPSULES

Firstly, the basic node features are extracted with GNN. Node degrees can be used as node attributes
if nodes do not have attributes. We use the architecture improved by Kipf & Welling (2017) (GCN)
as the node features extractor. The difference is that we extract multi-scale node features from
different layers and the extracted features are represented in the form of capsules. The procedure
can be written as:

Zl+1
j = f(

∑
i

D̃−
1
2 ÃD̃−

1
2Zl

iW
l
ij) (2)
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Figure 1: Framework of CapsGNN. At first, GNN is used to extract node embeddings and form
primary capsules. Attention module is used to scale node embeddings which is followed by Dynamic
Routing to generate graph capsules. At the last stage, Dynamic Routing is applied again to perform
graph classification.

where W l
ij ∈ Rd×d′

is the trainable weights matrix. It serves as the channel filters from the ith
channel at the lth layer to the jth channel at the (l + 1)th layer. Here, we choose f(·) = tanh(·)
as the activation function. Zl+1 ∈ RN×d′

, Z0 = X , Ã = A + I 1 and D̃ =
∑

j Ãij . To
preserve features of sub-components with different sizes, we use nodes features extracted from all
GNN layers to generate high-level capsules.

3.2 HIGH-LEVEL GRAPH CAPSULES

After getting local node capsules, global routing mechanism is applied to generate graph capsules.
The input of this block contains N sets of node capsules, each set is Sn = {s11, .., s1C1 , ..., sLCL

},
slc ∈ Rd, where Cl is the number of channels at the lth layer of GNN, d is the dimension of each
capsule. The output of this block is a set of graph capsules H ∈ RP×d′

. Each of the capsules
reflects the properties of the graph from different aspects. The length of these capsules reflects
the probability of the presence of these properties and the angle reflects the details of the graph
properties. Before generating graph capsules with node capsules, an Attention Module is introduced
to scale node capsules.

Attention Module. In CapsGNN, primary capsules are extracted based on each node which means
the number of primary capsules depends on the size of input graphs. In this case, if the routing
mechanism is directly applied, the value of the generated high-level capsules will highly depend on
the number of primary capsules (graph size) which is not the ideal case. Hence, an Attention Module
is introduced to combat this issue.

The attention measure we choose is a two-layer fully connected neural network Fattn(·). The num-
ber of input units of Fattn(·) is d×Call where Call =

∑
l Cl and the number of output units equals

to Call. We apply node-based normalization to generate attention value in each channel and then
scale the original node capsules. The details of Attention Module is shown in Figure 2 and the
procedure can be written as:

scaled(s(n,i)) =
Fattn(s̃n)i∑
n Fattn(s̃n)i

s(n,i) (3)

where s̃n ∈ R1×Calld is obtained by concatenating all capsules of the node n. s(n,i) ∈ R1×d

represents the ith capsule of the node n and Fattn(s̃n) ∈ R1×Call is the generated attention value. In
this way, the generated graph capsules can be independent to the size of graphs and the architecture
will focus on more important parts of the input graph.

1I represents identity matrix.
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Figure 2: The structure of Attention Module. We first flatten primary capsules and apply two layer
fully-connected neural network to generate attention value for each capsule. Node-based normal-
ization (normalize each row here) is applied to generate final attention value. Scaled capsules are
calculated by multiplying the normalized value with primary capsules.

After Attention Module, coordinate addition module can be used to preserve the position information
of each node during the procedure of generating node capsule votes. Here, we introduce coordinate
addition as an additional module and more details can be found in Appendix C.

The procedure of generating multiple graph capsules is summarized as follows:

1) Scale primary capsules: Apply Attention Module to scale primary capsules. The results of this
module should be S ∈ RN×Call×d.

2) Calculate votes: When calculating votes, capsules of different nodes from the same channel share
the transform matrix. The result of this step is a set of votes V ∈ RN×Call×P×d where Call denotes
the number of channels. P denotes the defined number of graph capsules.

3) Dynamic Routing Mechanism: High-level graph capsules are computed with the procedure intro-
duced in Section 2.3 based on votes produced in previous steps.

3.3 CLASSIFICATION

This block is designed for graph classification using the graph capsules.

Classification Loss. Dynamic Routing is applied again over graph capsules to generate final class
capsules C ∈ RK×d, where K is the number of graph classes. Here, we use margin loss function
proposed in Sabour et al. (2017) to calculate the classification loss and it is computed as:

Lossc =
∑
k

{Tk max(0,m+ − ‖ck‖)2 + λ(1− Tk)max(0, ‖ck‖ −m−)2} (4)

where m+ = 0.9, m− = 0.1 and Tk = 1 iff the input graph belongs to class k. λ is used to stop
initial learning from reducing the length of all class capsules especially when K is large.

Reconstruction Loss. Following Sabour et al. (2017), we use reconstruction loss as regularization
method. Here, all class capsules are masked except the correct one and it is decoded with two fully-
connected layer to reconstruct the input information. The information we reconstruct here is the
histogram of input nodes. The procedure can be written as:

Lossr =

∑
iMPi(di −mi)

2∑
iMPi

+

∑
i(1−MPi)(di −mi)

2∑
i(1−MPi)

(5)

where mi represents the number of nodes with the attribute i appear in the input graph, di is the
corresponding decoded value. MPi = 1 iff input graph contains nodes with attribute i. Equation 5
is used to prevent reducing reconstruction loss from setting all decoded value as 0 especially when
most of the elements of the ground truth are 0.
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The architecture details presented in section 3 describe the key design idea of CapsGNN which is
based on the fusing of GNN and CapsNet. We also present a general comparison between CapsGNN
with existing approaches in Appendix D.

4 EXPERIMENTS

We verify the performance of the graph embeddings extracted from CapsGNN against a number of
SOTA approaches and some classical approaches on classification task with 10 benchmark datasets.
Besides, we conduct experimental study to assess the impact of capsules in efficiency of encoding
features of graphs. We also conduct brief analysis on the generated graph/class capsules. The
experimental results and analysis is shown in the following. In addition to the analysis of the whole
framework, we also provide a comparison experiment to evaluate the contribution of each module
of CapsGNN with classification task. More details can be found in Appendix F.

4.1 GRAPH CLASSIFICATION

The goal of graph classification is to predict the classes these graphs belong to by analyzing the
structure and nodes labels information of graphs. More specifically, given a set of labeled graphs
D = {(G1, y1), (G2, y2), . . . } where yi ∈ Y is the label of each graph Gi. The objective of graph
classification is to find a mapping f such that f : G → Y.

4.1.1 BASELINES METHODS

We compare CapsGNN with both kernel-based and deep-learning-based algorithms. The details are
given as follows:

Kernel-based Methods: Three kernel-based algorithms, namely the Weisfeiler-Lehman subtree
kernel (WL) (Shervashidze et al., 2011), the graphlet count kernel(GK) (Shervashidze et al., 2009),
and the Random Walk (RW) (Vishwanathan et al., 2010). Typically, kernel-based algorithms first
decompose graphs into sub-components based on the kernel definition, then build graph embeddings
in a feature-based manner. Lastly, some machine learning algorithms (i.e., SVM) are applied to
perform graph classification.

Deep-Learning-based Methods: Three types of deep-learning-based algorithms are selected:

1) Graph2vec (Narayanan et al., 2017), Deep Graph Kernel (DGK)(Yanardag & Vishwanathan,
2015) and AWE (Ivanov & Burnaev, 2018). Graph2vec, DGK and AWE require extracting sub-
structures in advance while Graph2vec and AWE learn the representations of graphs in the manner
of Doc2vec (Le & Mikolov, 2014), DGK applies Word2vec (Mikolov et al., 2013) to learn the
similarity between each pair of sub-structures which will be used to build the graph kernel. Then
kernel-based machine learning methods (i.e., SVM) are applied to perform graph classification.
These three algorithms as well as kernel-based methods are all sub-components based and they all
require two stages to do graph classification. So although Graph2vec, DGK and AWE apply learning
approaches to learn the embeddings, we still consider them and other kernel-based algorithms as the
same type in our experiments and we mainly compare our proposed architecture with the other
remained methods which are all end-to-end and totally data-driven architectures.

2) PATCHY-SAN (PSCN)(Niepert et al., 2016). This method first sorts all nodes, then defines a
receptive-field size for each node. These receptive-field are then filled with sorted neighbor nodes.
Lastly, 1-D CNN is applied to perform graph classification.

3) GCAPS-CNN (Verma & Zhang, 2018), Dynamic Edge CNN (ECC) (Simonovsky & Komodakis,
2017) and Deep Graph CNN (DGCNN) (Zhang et al., 2018). These methods are all GNN-based
algorithms. GCAPS-CNN first extract FGSD (Verma & Zhang, 2017) features for nodes that do not
have attributes and then generate capsules for each node with higher-order statistical moment value
of its neighbor nodes. At the last layer, they calculate covariance between all nodes to generate
graph embeddings. ECC extracts node features on the condition of edge labels in GNN and then
apply multi-scale pyramid structure to coarsen the graph. It uses average pooling at the last layer
to generate graph embeddings. DGCNN generates nodes embeddings through a multi-layer GNN
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and combine features extracted from all layers. Then they order the nodes based on the embeddings
extracted from the last layer which is followed by 1-D CNN.

4.1.2 EXPERIMENTAL SET-UP

Five biological graph datasets: MUTAG, ENZYMES, NCI1, PROTEINS, D&D and five social net-
work datasets: COLLAB, IMDB-B, IMDB-M, RE-M5K, RE-M12K (Yanardag & Vishwanathan,
2015) are used for our experimental study. Details of these datasets can be found in Appendix B.

We applied 10-fold cross validation to evaluate the performance objectively. Each time we use 1
training fold as validation fold to adjust hyper-parameters, 8 training fold to train the architecture
and the remained 1 testing fold to test the performance. We stop training when the performance on
the validation fold reaches to the highest. Then we use the accuracy on the test fold as our test result.
The final result is the average of these 10 test accuracy. By default, we use the results reported in
the original work for baseline comparison. However, in cases where the results are not available,
we use the best testing results reported in Verma & Zhang (2018), Zhang et al. (2018) and Ivanov &
Burnaev (2018). More details about experimental setting can be found in Appendix E.

4.1.3 CLASSIFICATION RESULT

Table 1 lists the results of the experiments on biological datasets, Table 2 lists the results of the
experiments on social datasets. For each dataset, we highlight the top 2 accuracy in bold. Compared
with all the other algorithms, CapsGNN achieves top 2 on 6 out of 10 datasets and achieves compa-
rable results on the other datasets. Compared with all the other end-to-end architectures, CapsGNN
achieves top 1 on all the social datasets.

Table 1: Experiment Result of Biological Dataset

Algorithm MUTAG NCI1 PROTEINS D&D ENZYMES

WL 82.05±0.36 82.19±0.18 74.68±0.49 79.78±0.36 52.22±1.26
GK 81.58±2.11 62.49±0.27 71.67±0.55 78.45±0.26 32.70±1.20
RW 79.17±2.07 >3days 74.22±0.42 >3days 24.16±1.64
Graph2vec 83.15±9.25 73.22±1.81 73.30±2.05 - -
AWE 87.87±9.76 - - 71.51±4.02 35.77±5.93
DGK 87.44±2.72 80.31±0.46 75.68±0.54 73.50±1.01 53.43±0.91

PSCN 88.95±4.37 76.34±1.68 75.00±2.51 76.27±2.64 -
DGCNN 85.83±1.66 74.44±0.47 75.54±0.94 79.37±0.94 51.00±7.29
ECC 76.11 76.82 - 72.54 45.67
GCAPS-CNN - 82.72±2.38 76.40±4.17 77.62±4.99 61.83±5.39

CapsGNN 86.67±6.88 78.35±1.55 76.28±3.63 75.38±4.17 54.67±5.67

CapsGNN achieves the SOTA performance on social datasets. More specifically, we are able to
improve the classification accuracy by a margin of 2.78% and 5.30% on RE-M5K and RE-M12K
respectively. This demonstrates that learning features in the form of capsules and modeling a graph
to multiple embeddings is beneficial to capture macroscopic properties of graphs which are more
important in classifying social networks. These results also consistent with the property of CapsNet,
as it focuses more on extracting important information from children capsules by voting. However,
applying routing to the whole graph leads to preserve all the information at a graph level and this
property is not suitable to give prominence to individual fine structures which might be more impor-
tant to biological datasets analysis. This results in less robust of CapsGNN on biological datasets.
Despite this, the performance of CapsGNN in graph classification task still demonstrates its capa-
bility of graph representation especially its high potential of large graph dataset analysis.
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Table 2: Experiment Result of Social Dataset

Algorithm COLLAB IMDB-B IMDB-M RE-M5K RE-M12K

WL 79.02±1.77 73.40±4.63 49.33±4.75 49.44±2.36 38.18±1.30
GK 72.84±0.28 65.87±0.98 43.89±0.38 41.01±0.17 31.82±0.08
DGK 73.09±0.25 66.96±0.56 44.55±0.52 41.27±0.18 32.22±0.10
AWE 73.93±1.94 74.45±5.83 51.54±3.61 50.46±1.91 39.20±2.09

PSCN 72.60±2.15 71.00±2.29 45.23±2.84 49.10±0.70 41.32±0.42
DGCNN 73.76±0.49 70.03±0.86 47.83±0.85 48.70±4.54 -
GCAPS-CNN 77.71±2.51 71.69±3.40 48.50±4.10 50.10±1.72 -

CapsGNN 79.62±0.91 73.10±4.83 50.27±2.65 52.88±1.48 46.62±1.90

4.2 EFFICIENCY OF CAPSULES

The main objective of this experiment is to examine the efficiency of capsules in encoding graph
features. More efficient in feature encoding here means representing more information with the
similar number of neurons. We construct a scalar-based neural network for each CapsGNN and then
compare the CapsGNN with its related scalar-based architecture by comparing their training and
testing accuracy on graph classification task to demonstrate the efficiency in feature representation.
More specifically,these scalar-based architectures are designed by replacing the graph capsules block
and the class capsules block in CapsGNN with fully-connected layers (FC). In this case, the only
difference between each pair of CapsGNN and its corresponding scalar-based architecture is that
CapsGNN represents features with vectors and uses routing to propagate information between layers
while the scalar-based architecture encodes features with scalar values.

In this experiment, the number of layers of GNN is set as L = 3, the number of channels at each
layer is all set as Cl = 2. We construct different CapsGNNs by adjusting the dimension of nodes
(dn) and graphs (dg) capsules and the number of graph capsules (P ). The size of FC in scalar-based
architectures is adjusted based on the size of CapsGNNs so that they have comparable number of
trainable weights. Other hyper-parameters are the same as Appendix E. The details of the tested
architectures are shown in Table 3. Besides, NCI1 dataset, which has more than 4000 graphs, is
used for the test. The accuracy of NCI1 on various architectures can be found in Figure 3.

Table 3: Details of Tested Architectures in Efficiency Evaluation Experiment

2-4-2 2-4-4 2-4-8 2-4-16 4-4-2 4-4-4 4-4-8 4-4-16

No. trainable Para.(Caps) 208 367 688 1328 448 704 1216 2240
No. trainable Para.(Scalar) 216 370 692 1336 452 712 1232 2246
Dim Node Feat.(Both) 2 2 2 2 4 4 4 4
Dim Graph emb.(Caps) 2× 4 4× 4 8× 4 16× 4 2× 4 4× 4 8× 4 16× 4
Dim FC.(Scalar) 12 23 48 92 10 20 40 79

In Table 3 and Figure 3, the setting of different architectures is represented as dn-dg-P . Here, we
choose the simplest setting (2-4-2) as an example: 2-4-2 means that the dimension of nodes capsules
is dn = 2, the dimension of graph and class capsules is dg = 4 and the number of graph capsules
P equals to 2. Besides, we set the dimension of FC of its corresponding scalar-based architecture
as 12 so that they have comparable number of trainable weights. In this case, each graph is modeled
as 2 4-dimensional graph embeddings in the CapsGNN or 1 12-dimensional graph embedding in its
corresponding scalar-based architecture. Both architectures are sub-optimal to represent the whole
dataset while CapsGNN can still reach higher accuracy compared with the scalar-based architecture.

As we can see from Figure 3, the test accuracy of Caps-based architectures (CapsGNN) is higher
than the corresponding scalar-based architectures in all settings. For the training accuracy, when the
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Figure 3: Comparison of efficiency in feature representation. The horizontal axis represents the
setting of tested architectures. The vertical axis represents classification accuracy on NCI1.

dimension of FC is slightly higher than the dimension of graph embeddings in CapsGNN, CapsGNN
can still reach higher accuracy which indicates that CapsGNN is more powerful in representing the
whole dataset. When we keep increasing the number of graph capsules in CapsGNN and enlarging
the dimension of FC in scalar-based architectures, the difference between the dimension of graph
embeddings and the size of FC becomes larger, their training accuracy will be closer. It is noted
that the training accuracy of scalar-based architectures is slightly higher than the CapsGNNs when
the dimension of FC is about 20% larger than the dimension of graph capsules. In this experi-
ment, we use extremely simple architectures on purpose to simulate the situation where we need to
model complex datasets with relatively simple architectures. Since each pair of CapsGNN and its
corresponding scalar-based architecture have similar structure and comparable number of trainable
weights, the higher training accuracy and testing accuracy of CapsGNN demonstrate its efficiency
in feature encoding and its strong capability of generalization.

4.3 GRAPH CAPSULES ANALYSIS

CapsGNN leverages on capsules idea to get multiple embeddings for each graph so that complex
information underlying graphs can be captured more effectively. To explore the properties of the
extracted graph/class capsules, we plot the graph distribution based on capsules extracted from dif-
ferent channels with t-SNE. Due to space constrain, we only take REDDIT-M12K as an example.

Table 4: Visualization of Graph Capsules

Subreddit Channel 1 Channel 2 Channel 11 Channel 14

atheism
&

IAmA

atheism
&

mildlyinteresting

We choose to depict the distribution of graphs which are generated from 3 categories, namely athe-
ism , IAmA and mildlyinteresting with capsules extracted from the 1st, 2nd, 11th, 14th channel of
graph capsules. As we can see from Table 4, different channels of capsules represent different as-
pects of graph properties. atheism and IAmA can be discriminated obviously with capsules extracted
from the 11th and the 14th channels while they are hard to be separated with capsules extracted
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from the 1st and the 2nd channels. However, atheism and mildlyinteresting can be discriminated
with the capsules extracted from the 1st and the 2nd channels while they are mixed in the 11th and
the 14th channels which is opposite to the case of atheism and IAmA. This phenomenon can also be
observed in other multi-class datasets. It is still hard to figure out the specific aspects these capsules
focus on. However, compared with scalar-based neural networks, modeling an object with multiple
embeddings makes it possible to explore the meaning of each channel which may lead the model to
learn more interpretable embeddings in the future.

Table 5: Visualization of Class Capsules

Subreddit atheism IAmA mildlyinteresting Concatenate

atheism(g)
&

IAmA(r)
&

mildlyinteresting(b)

As we can see from Table 5, different class capsules focus on different classification-related graph
properties. For example, the capsules that represent athesism (first column) can well discriminate
athesism (red) from the other two types of graphs while IAmA (green) and mildlyinteresting (blue)
are mixed in this channel. The similar phenomenon can also be found in other class capsules. Be-
sides, when we concatenate the capsules of these three classes together, three types of graphs can be
well discriminated with the concatenated capsules which also directly reflect the classification per-
formance. This property is quite different from standard scalar-based architectures where each graph
is modeled with only one graph embedding2. By introducing the concept of capsules, the graph and
class capsules can not only preserve classification-related properties of each graph (reflected with
the length of class capsules) but also other properties information (reflected with the angle of class
capsules). The generated class capsules can also be useful in other follow-up work and we leave this
to be explored in the future.

5 CONCLUSION

We have proposed CapsGNN, a novel framework that fuses capsules theory into GNN for more ef-
ficient graph representation learning. Inspired by CapsNet, the concepts of capsules are introduced
in this architecture to extract features in the form of vectors on the basis of nodes features extracted
from GNN. As a result, one graph is represented as multiple embeddings and each embedding cap-
tures different aspects of the graph properties. The generated graph and class capsules can preserve
not only the classification-related information but also other information with respect to graph prop-
erties which might be useful in the follow-up work and we leave this to be explored in the future.
We believe this is a novel, efficient and powerful data-driven method to represent high-dimensional
data such as graphs. Our model has successfully achieved better or comparable performance when
compared with other SOTA algorithms on 6 out of 10 graph classification tasks especially on social
datasets. Compared with similar scalar-based architectures, CapsGNN is more efficient in encoding
features and this would be very beneficial for processing large datasets.
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A SPECIFIC PROCEDURE OF ROUTING

The specific procedure of routing is shown in Algorithm 1.

Algorithm 1 Dynamic routing mechanism returns parent capsules H given children capsules S, a
set of trainable transform matrices W and the number of iterations t.

1: procedure DYNAMIC ROUTING(t,S,W)
2: for all children capsule i : vj|i = sTi Wij

3: for all children capsule i to all parent capsule j: rij ← 0
4: for t iterations do
5: for all children capsule i: r̃i ← softmax(ri)
6: for all parent capsule j: hj ←

∑
i r̃ijvij

7: for all parent capsule j: h̃j ← squash(hj)

8: for all children capsule i to all parent capsule j: rij ← rij + h̃T
j vij

9: end for
10: return h̃j

11: end procedure

B DETAILS OF EXPERIMENTAL DATASETS

The details of benchmark datasets we use in our experiment is shown in Table 6.

Table 6: Dataset Description

Dataset Source Graphs Classes Nodes Avg. Edges Avg. Nodes Labels

MUTAG Bio 188 2 17.93 19.79 7
ENZYMES Bio 600 6 32.46 63.14 6
NCI1 Bio 4110 2 29.87 32.30 23
PROTEINS Bio 1113 2 39.06 72.81 4
D& D Bio 1178 2 284.31 715.65 82
COLLAB Social 5000 3 74.49 4914.99 -
IMDB-B Social 1000 2 19.77 193.06 -
IMDB-M Social 1500 3 13 131.87 -
REDDIT-M5K Social 4999 5 508.5 1189.74 -
REDDIT-M12K Social 11929 11 391.4 456.89 -

C COORDINATE ADDITION

After Attention Module, coordinate addition can be used to preserve the position information of each
node during the procedure of generating node capsule votes. The details of Coordinate Addition
module can be found in Figure 4. This module is not necessary in some datasets. Here, we propose
this module as a selective optimization. When the GNN goes deeper, the extracted nodes features
contain more specific position information of each node. Inspired by Zhang et al. (2018) where
the node embeddings learned from the last layer of GNN are taken to order all nodes, we also take
the capsules extracted from the last layer of GNN as the position indicators of corresponding nodes
by concatenating it with each capsule of the node. The procedure of calculating votes with node
position indicators can be written as:

v(n,i)j = [sT(n,i)W
n
ij‖sT(n,Call)

W p
j ] (6)

where v(n,i)j ∈ R1×(dn+dp) represents the node capsule vote from the ith channel of the nth node
to the jth channel of graph capsules. W n

ij ∈ Rd×dn and W p
j ∈ Rd×dp are the transform matrices.

s(n,i) is the same as introduced in Section 3.2 and ‖ represents concatenate operation.
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Figure 4: The structure of Coordinate Addition Module. We take the capsules extracted from the
final layer of GNN as the position indicators of corresponding nodes by concatenating it with each
capsule of the node. The node capsules votes generated in this way contain more position informa-
tion.

D DIFFERENCES FROM EXISTING APPROACHES

Here, we present a general comparison between CapsGNN with existing approaches.

1) Compared with Atwood & Towsley (2016), Simonovsky & Komodakis (2017) and Zhang et al.
(2018) (GNN-based graph representation learning architectures), CapsGNN represents node features
in the form of capsules. This is helpful to preserve the properties information contained in nodes
more efficiently when generating graph embeddings. Besides, each graph is modeled as multiple
embeddings in CapsGNN instead of only one embedding used in other approaches. This allows
us to capture information of graphs from different aspects. The second difference is that, in these
approaches, each part of the graph is given equal importance. However, the attention mechanism
used in CapsGNN allows it to assign various weights to different nodes. This leads the model
to focus on critical parts of input graphs. Lastly, different from Atwood & Towsley (2016) and
Simonovsky & Komodakis (2017), CapsGNN and Zhang et al. (2018) uses node features extracted
from multiple layers of GNN so that different size of receptive-fields are applied to preserve more
information.

2) GCAPS-CNN proposed by Verma & Zhang (2018) also introduced capsule-related concept into
graph representation learning. However, they generate capsules in a feature-based manner instead of
learning capsules as distributed embeddings. More specifically, when they extend a scalar feature to
a capsule for the node n, P higher-order statistical moment value is calculated based on its neighbor
nodes and these P value is concatenated to a P -dimensional capsule. Between layers, GCAPS-
CNN performs dimension reduction to compress capsules back to scalar features, which defeats the
purpose of having capsules in the first place. CapsGNN learns each dimension of capsules in a
data-driven manner and apply routing mechanism between layers to preserve the learned meaning
of each capsule. This also allows us to preserve multiple properties information contained in nodes
more efficiently especially when generating graph embeddings.

3) Compared with CapsNet proposed by Sabour et al. (2017) which works well in image processing
domain, CapsGNN needs to handle more complex situations when handling graphs. In image pro-
cessing domain, the size of the input images can be standardized by resizing the images. However,
it is not possible to simply resize the graphs. So, we introduced an additional Attention Mod-
ule to tackle graphs that are vastly different in sizes and preserve important parts of graphs. We
also propose to use features extracted from all layers of GNN since it is hard to define a suitable
receptive-field size for graphs. Furthermore, compared with the architecture of CapsNet, CapsGNN
has one additional graph capsules layer which is used to learn multiple graph embeddings and these
embeddings reflect different aspects of graph properties which is valuable in future research. To the
best of our knowledge, we are the first one to model a graph as multiple embeddings in the form
of distributed capsules and we believe this approach of learning representations has a high potential
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for other complex data analysis which is not limited to graphs. Besides, CapsGNN has different
explanation of linear transformation. In CapsNet, by applying a linear trainable transformation to
pose vectors, the spatial relationship between object parts and the whole object can be well modeled.
However, by applying linear trainable transformation, CapsGNN is simply computing the prediction
vectors from nodes-level representations to graph-level representations. This transform matrix is not
trying to model the change of viewpoint or capture viewpoint invariant knowledge but to model the
relationship between the properties of nodes and the properties of the whole graph.

E EXPERIMENTAL SETTING

The same architecture settings are used in CapsGNN for all datasets to show its robust performance.
For the node capsules extraction, the GCN has 5 layers (L = 5), the number of channels at each
layer is set as the same which is 2 (Cl = 2). The number of graph capsules is fixed as 16 (P = 16).
The dimension of all capsules are set as 8 (d = 8). The number of units in the hidden layer of
Attention Module is set as 1

16 of the number of input units. The number of iterations in routing is
set as 3. During training stage, we simultaneously reduce Lossc and Lossr and we scale Lossr
with 0.1 so that the model focuses on classification task. λ is set as 0.5 and 1.0 for multi-class
classification and binary classification respectively. As for the node attributes in different datasets,
considering that REDDIT-M5K and REDDIT-M12K are large-scale datasets with widely distributed
nodes degree, we set the attributes of all nodes in these two datasets as the same which means we
consider the initial node embeddings for all the nodes as the same to avoid over-fitting. For the
remained relatively small datasets, both of the node degree and other node attributes are sent to
CapsGNN as node features to speed up the training and we apply dropout(dropput rate is 0.3) to
the input node features to improve the learning performance. The settings are summarized in the
Table 7:

Table 7: Experimental Setting for Graph Classification

Hyper-parameter description Notation Value
Number of GCN layers L 5
Number of channels at each layer Cl 2
Number of graph capsules P 16
Dimension of all capsules d 8
Number of iterations in routing t 3
Value used to scale Lossr r 0.1
Value used to balance the loss
from the positive and negative output λ

0.5 for multi-class classification
1.0 for binary classification

F CONTRIBUTION OF EACH MODULE

In addition to evaluate the performance of the whole architecture on the classification task, we
also provide detailed study to quantify the contributions made by each module in CapsGNN on the
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classification task. The six comparison architectures set-up is shown as below and the settings of the
hyper-parameters are the same as Section 4.1.2.

1) CapsGNN (GCN + Attention + Routing + Reconstruction): Basic CapsGNN.

2) CapsGNN-Coord (GCN + Attention + Coordinate + Routing + Reconstruction): Basic Caps-
GNN with Coordinate Addition module.

3) CapsGNN-Avg (GCN + Average + Routing + Reconstruction): The Attention module in basic
CapsGNN is replaced with the Average module.

4) CapsGNN-noRout (GCN + Attention + Reconstruction): In this architecture, we will fix the
similarity coefficients between all the capsules from one layer to the next layer as the same so that
each children capsule will be equally routed to all the parent capsules.

5) CapsGNN-noRecon (GCN + Attention + Routing): In this architecture, we directly remove the
Reconstruction loss module.

6) CapsGNN-Avg-noRout (GCN + Routing): In this architecture, we replace the Attention mod-
ule in basic CapsGNN with the Average module and fix the similarity coefficients between all the
capsules from one layer to the next layer as the same.

Table 8: Validation Accuracy Comparison of Each Module

Architecture COLLAB IMDB-B PROTEINS NCI1 D&D

CapsGNN 79.77±1.15 74.42±2.20 77.27±2.58 79.23±1.88 76.16±4.19
CapsGNN

-Coord 80.00±1.22 74.81±2.96 76.58±2.42 79.04±1.93 77.41±3.33
CapsGNN

-Avg 79.61±0.81 73.29±2.66 76.54±2.98 78.36±1.95 74.44±3.46

CapsGNN
-noRout 80.48±0.86 74.11±2.94 77.18±2.94 77.62±1.15 75.28±4.17

CapsGNN
-noRecon 80.44±0.88 74.03±2.11 76.69±1.78 78.23±2.41 74.70±3.12

CapsGNN
-Avg-noRout 80.15±1.02 74.23±3.47 75.94±2.61 76.25±2.40 73.93±3.56

The validation accuracy of each architecture is shown in Table 8 where we highlight the highest and
lowest accuracy respectively. As we can see from the Table, IMDB-B and D&D reach better per-
formance with CapsGNN-Coord which indicates the effectiveness of Coordinate Addition Module.
However, the performance of social datasets is still comparable across all types of architectures. On
the other hand, the performance of biological datasets(NCI1, PROTEINS, D&D) is more sensitive to
the introduced modules in each architecture. The highest accuracy of NCI1, PROTEINS is achieved
on CapsGNN which indicates the little effectiveness of Coordinate Addition Module in these two
datasets. More specifically, the comparison between CapsGNN-Avg-noRout and CapsGNN-Avg
on NCI1, PROTEINS and D&D indicates the effectiveness of Routing mechanism which improves
the accuracy by 2.1%, 0.6% and 0.51% respectively. Besides, the comparison between CapsGNN-
Avg-noRout and CapsGNN-noRout on NCI1, PROTEINS and D&D indicates the effectiveness of
Attention Module which improves the accuracy by 1.37%, 1.24% and 1.35% respectively. The ac-
curacy of NCI1, PROTEINS and D&D can be improved by as much as 2.98%, 1.33% and 2.23%
when Attention Module and Routing mechanism are combined in the architecture.

Overall, CapsGNN is a general framework that fuses capsule theory to GNN for more efficient graph
representation learning. In this framework, we also provide multiple possible modules to improve
the quality of learned graph embeddings while we do not target to find the best combination of
modules for each dataset. Since each possible module plays a different role in different datasets, it
would be better to adjust the architecture and hyper-parameters based on practical situation.
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