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ABSTRACT

This paper introduces NEMO, an approach to unsupervised object detection that uses mo-
tion—instead of image labels—as a cue to learn object detection. To discriminate between
motion of the target object and other changes in the image, it relies on negative examples
that show the scene without the object. The required data can be collected very easily by
recording two short videos, a positive one showing the object in motion and a negative one
showing the scene without the object. Without any additional form of pretraining or super-
vision and despite of occlusions, distractions, camera motion, and adverse lighting, those
videos are sufficient to learn object detectors that can be applied to new videos and even
generalize to unseen scenes and camera angles. In a baseline comparison, unsupervised
object detection outperforms off-the shelf template matching and tracking approaches that
are given an initial bounding box of the object. The learned object representations are also
shown to be accurate enough to capture the relevant information from manipulation task
demonstrations, which makes them applicable to learning from demonstration in robotics.
An example of object detection that was learned from 3 minutes of video can be found
here [video link].

1 INTRODUCTION

Object-based representations are a powerful abstraction of our world. Since these representations remove
large amounts of information—an image of size 120×160 for example has 120×160×3 = 57.600 dimen-
sions, while the coordinates of an object in that image only have 2 dimensions—object-based representations
enable efficient generalization, simulation, planning, communication, etc. But grounding objects in sensory
input currently relies on supervised learning, which requires a high number of labeled images, e.g. 500.000
manually annotated segments to learn 80 objects (Lin et al., 2014). This paper takes a step towards replacing
this labor-intensive supervision by learning to detect objects from videos that can be gathered quickly with
minimal supervision and by exploiting the physical properties of objects.

A physical object is a collection of matter that moves as a unit. Motion, in turn, can be a strong cue to learn
object detection and replace the need for supervision in the form of labeled images. Given a video of a mov-
ing object, we can learn object-based representations by optimizing them to describe physically plausible
motion (Jonschkowski et al., 2017). But this approach only works in the absence of visual distractions. With
camera motion, other moving objects, or changes in the background, motion alone is not sufficient to learn
such representations because many features in the image move in a physically plausible way.

This paper improves on previous approaches by learning to ignore visual distractions through negative ex-
amples, i.e., videos of the scene without the target object but with the distractions. These negative videos are
easy to collect because they do not need to be in sync with the positive ones, i.e., they do not need to have the
same sequence of camera movements or the same object motions. This paper also addresses the challenge
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Figure 1: Learning to detect an object from 3 min of video. Left to right: training video of a pen in hand,
negative video without pen, two test videos with per frame detections shown as black dots. [video link]

of changes between training and test videos, e.g. due to different lighting or changes in the background.
Those changes can be harmful if an object representation is extracted using a standard pyramid-shaped con-
volutional network because every pixel directly affects the output, even if it is far from the object’s location.
Therefore, this paper uses a spatial encoder architecture that uses a spatial softmax output (Finn et al., 2016),
which is only affected by the strongest local activations, making it invariant to many visual distractions.

The contribution of this paper is to demonstrate unsupervised object detection based on data that is easy and
fast to collect. This is achieved by formulating the use of negative examples for object detection as a loss
function, combining it with motion-based learning objectives, and using these objectives to train a spatial
encoder network using a combination of random search and gradient descent. The resulting method is called
learning from negative examples and motion (NEMO). A glimpse of the results are shown in Figure 1.

Experimental results in Section 4 show that NEMO can learn new objects from only two short videos of a
few minutes, without using pretrained models and without using supervision beyond marking these videos
as positive and negative. The results also show that NEMO can learn object detection in the presence of
frequent occlusions, distractions, camera motion, and changes in lighting and background. Even though it
uses data that can be collected in seconds to minutes, the learned object detection generalizes to new scenes
and camera angles and outperforms template matching and tracking baselines. The experiments also show
how the learned object representations can be useful to demonstrate tasks such as writing or pick-and-place
tasks, e.g. to make robot learning more data-efficient.

2 RELATED WORK

This work is strongly related to physics-based representation learning, where a latent representation is
learned by optimizing consistency with physics. Stewart & Ermon (2017) learn to map images to latent
representations by optimizing consistency with a known dynamics model. Jonschkowski & Brock (2015)
and Jonschkowski et al. (2017) make more general assumptions about physical interactions and define them
as learning objectives. A number of approaches combine physical assumptions with image reconstruction to
learn latent representations (Goroshin et al., 2015; Watter et al., 2015; Finn et al., 2016). Gao et al. (2016)
learn to embed object regions in an image using spatio-temporal consistency. Jang et al. (2018) learn object
embeddings from self-supervised interactions based on object persistence. (Jayaraman & Grauman, 2015)
learn representations that are equivariant to known ego motion. Sermanet et al. (2017) learn latent repre-
sentations from multiple synchronous videos of motion. While these approaches are similar to this paper in
spirit, they learn image embeddings, while this paper learns to detect objects in the image coordinates. This
more constrained object-based representation makes the presented approach particularly robust and efficient.

This paper is also connected to the idea of active perception (Bajcsy, 1988), where action is used to facilitate
perception. Motion has been used for a long time to identify and track objects (Lipton et al., 1998), to
segment them (Fitzpatrick, 2003), to understand their articulation (Katz & Brock, 2008), and so on. Recently,
this idea has been combined with learning in order to generalize beyond the observed motion, e.g. to learn
object segmentation from videos of moving objects (Pathak et al., 2017) and from videos generated by robot
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Figure 2: NEMO overview. (a) Spatial encoder architecture with n residual blocks, c channels, and kernel
size k. (b)-(d) Different losses for object detection; the target object is illustrated as a blue rectangle; the
detected object location z is shown as a black dot. (b) The variation loss based on two frames at times t and
t+d enforces variation between detected object locations, resulting in a gradient that pushes z(t) and z(t+d)
apart. (c) The slowness loss enforces object detections in frames t and t + 1 to be close, which produces a
gradient that pulls z(t) and z(t+1) together. (d) The presence loss enforces that the object is detected in the
positive frame t rather than in the negative frame t−, which creates a gradient that increases activations in
the positive frame and decreases them in the negative frame.

interactions (Pathak et al., 2018). This paper goes into the same direction for learning object detection by
introducing ideas from representation learning and by leveraging negative examples.

Labeling the training videos as positive and negative examples can also be viewed as weakly supervised
learning, which deals with learning from labels that are only partially informative. Weakly supervised object
detection relies on image-wide labels to learn to localize the corresponding objects in the image (Pandey
& Lazebnik, 2011; Oquab et al., 2015). While these approaches use image-wide labels to replace object
location labels, which are more difficult to obtain, this paper go a step further and only uses per-video labels
and compensates this reduction of supervision by adding motion as a cue for learning object detection.

3 UNSUPERVISED LEARNING FROM NEGATIVE EXAMPLES AND MOTION (NEMO)

The key idea of NEMO is to learn to detect an object from two videos, a positive video that shows the
target object in motion and a negative video of the same scene without that object. These videos are used
to optimize two objectives: 1) Learn to detect something that moves in a physically plausible way in the
positive video, such that its location varies over time without having instantaneous jumps, which is defined
below as a combination of a variation loss and a slowness loss. 2) Learn to detect something that is present
in the positive video but not in the negative video, which is defined as a presence loss. These objectives are
used to train a spatial encoder network, which produces an object detection based on the strongest activation
after a stack of convolutions. Optimization is done by a combination of random search and gradient descent.
We will now look in detail into each of these components.

3.1 NETWORK ARCHITECTURE: SPATIAL ENCODER

NEMO’s network architecture is based on the encoder part of deep spatial autoencoders (Finn et al., 2016)
and therefore called a spatial encoder. The spatial encoder is a stack of convolutional layers (LeCun et al.,
1998) without pooling or subsampling, which uses residual connections (He et al., 2016), batch normal-
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ization (Ioffe & Szegedy, 2015), and ReLU nonlinearities (Nair & Hinton, 2010). The spatial encoder has
n residual blocks, each with c channels and kernel size k (see Figure 2a). The experiments in this paper
used c = 32 channels, up to n = 10 layers, and kernel sizes k ∈ {3, 5, 7}. Since the parameters n and k
control the receptive field of the object detector, they must roughly match the size of the target object. The
experiments used k = 7 for learning to detect the Roomba and k = 3 for all other objects.

The output layer of the spatial encoder has a single channel, followed by a spatial softmax, which produces
a probability distribution over the object’s location in the image. The mean and mode of this distribution es-
timate the object’s location. The mode can be used during inference because it is more robust to distractions
but not during gradient-based training since it is not differentiable.

3.2 LOSSES: CROSS-ENTROPY, VARIATION, AND SLOWNESS

The spatial encoder is trained by minimizing a combination of three losses—variation, slowness, and pres-
ence (see Figure 2b-d), which are defined here. Let us denote the input image at time t as I(t) ∈ Rh×w
where h and w are the height and width of the image. We will refer to the spatial encoder as f with param-
eters θ, and the output of f before the spatial softmax as O(t) ∈ Rh×w, such that O(t) = f(I(t);θ). By
applying the spatial softmax across image coordinates i and j, we get a probability image P (t) ∈ Rh×w and
its mean z(t) ∈ R2 normalized to [−1, 1] as

P
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The first two losses, variation and slowness, operate on the mean z in positive frames. Together, they
measure whether the detected object location z(t) moves in a physically plausible way by comparing pairs
of z(t) for different t.

The variation loss encodes the assumption that the target object does not stay still by enforcing that zt+d is
different from zt for d in some range [dmin, dmax]. The variation loss measures the proximity using e−distance,
which is 1 if zt = zt+d and goes to 0 with increasing distance (Jonschkowski et al., 2017).

Lvariation(θ) = Et,d∈[dmin,dmax][e
−β||zt+d−zt||].

The hyperparameter β scales this distance and controls how far zt and zt+d need to be apart. The hyperpa-
rameters dmin and dmax define for which time differences variation is enforced; dmin should be large enough
that the object has typically changed its location in the image after dmin frames; dmax should be small enough
that slower changes in the background typically take longer than dmax frames. All experiments in this paper
use the parameters β = 10, dmin = 50, and dmax = 100.

The slowness loss encodes the assumption that objects move with relatively low velocities, i.e., that their
locations at time t and t + 1 are typically close to each other. Consequently, this loss measures the squared
distance between z in consecutive time steps t and t + 1, which favors smooth over erratic object trajecto-
ries (Wiskott & Sejnowski, 2002; Jonschkowski & Brock, 2015).

Lslowness(θ) = Et[||zt+1 − zt||2].

The presence loss encodes the assumption that the object is present in the positive video but not in the
negative one. Taking a positive frame t and a negative frame t−, we can compute the probability of the
object being somewhere in the positive frame q(t,t

−) by computing the spatial softmax jointly over both
frames and summing over all pixels. The loss is then defined as negative log probability.

Lpresence(θ) = Et,t− [− log(q(t,t
−))],where q(t,t

−) =
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These three losses are combined in a weighted sum, L(θ) = wvariationLvariation(θ) + wslownessLslowness(θ) +
wpresenceLpresence(θ),where the weights were chosen such that all gradients have the same order of magnitude.
All experiments in this paper use wvariation = 2, wslowness = 10, and wpresence = 1.

3.3 OPTIMIZATION: RANDOM SEARCH AND GRADIENT DESCENT

The losses are optimized from minibatches of size b, such that every minibatch includes b samples of con-
secutive frames {(I(t), I(t+1))}t and b samples of frames d ∈ [dmin, dmax] steps apart {(I(t), I(t+d))}t,d,
which are used to compute the variation and slowness losses. The presence loss uses all combinations of
the positive frames in {(I(t), I(t+d))}t,d with b negative frames {I(t−)}t− resulting in 2b2 pairs to average
over. All experiments use b = 10. For a good initialization of the spatial softmax output, O(t) is divided
by a temperature α = 10 before the softmax is applied. For numerical stability of the gradient computation,
Gaussian noise ε ∼ N (µ = 0, σ = 10−5) is added to zt and q(t,t

−) is clipped at 10−3.

When L(θ) is optimized with an the adaptive gradient descent method Adam (Kingma & Ba, 2015), it either
converges very quickly within a few hundred gradient descent steps or—for some objects—gets stuck in a
local optimum. NEMO addresses this problem by optimizing the loss with a combination of random search
and gradient descent. It initializes the spatial encoder m = 10 times, optimizes each by a small number, e.g.
200, gradient descent steps and then finetunes the best model in additional 1000 gradient steps. Stopping
the training this early results in very fast training time of about 10 minutes on a single GPU and seemed to
improve generalization compared to training to convergence, although this needs to be further investigated.

4 EXPERIMENTS

The following experiments evaluate object detection for a number of different objects without using pre-
trained networks and without using any labeled images, instead relying on a few minutes of positive videos
showing a moving object and negative videos of the same scene that are quick and easy to obtain (in total
about 20 minutes of video for all experiments). All results show object detection on test videos not used
for training. The results show per-frame detections in subsampled 120 × 160 or 90 × 160 videos without
applying any tracking or filtering.

The experiments evaluate NEMO in three different settings, testing detection accuracy with static and mov-
ing cameras for single and multiple objects and generalization to new scenes and camera angles. The exper-
iments also illustrate how learned object detection can enable learning from demonstration, and provide a
comparison to template matching and tracking that shows a substantial advantage over these baselines.

The data and code based on TensorFlow (Abadi et al., 2015) and Keras (Chollet et al., 2015) to reproduce
all experiments will be published with this paper.

4.1 OBJECT DETECTION WITH A STATIC CAMERA

In the first experiment (see Figure 1), the algorithm learned to detect a pen in a hand from a positive video
in which the pen was moved in random spirals across the table and a negative video of the hand moving
without the pen. Testing the learned object detector on unseen videos of writing “hello” and “world” shows
precise and stable per frame object detection from only 2.5 minutes of video. Note how the method learned
to be invariant to distractions such as position of the arm.
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4.2 OBJECT DETECTION WITH A MOVING CAMERA

Moving the camera causes motion in the entire video, which makes it more difficult to learn object detection
based on motion. This experiment evaluates NEMO on such videos that were recorded by moving the
camera in a way that keeps the object in video without constantly centering on it, because that would cancel
any object motion in the image. For this set of experiments, the object detector uses the current frame and
additionally a difference image from the previous frame as input, which produced more consistent results.

The results in Figure 3 show that NEMO works despite camera motion, that it can handle difficult lighting
conditions as for the toy car, and that the learned object detection can even transfer to different scenes, as for
the car detector that was trained in the balcony scene and tested in the hallway. The total training data used
for learning all three objects is just under 12 minutes of video.

4.3 DETECTION OF MULTIPLE OBJECTS

This experiment tests detection of multiple objects in a table top setting with five objects. The training data
for this experiment are five videos of about 2 minutes, with one video per object in which the object is
randomly moved on the table without any other object being present. Each video was used as positive and
the remaining four as negative examples to train a different object detector. The results in Figure 4 show
the output of these five object detectors in a test video in which objects are randomly rearranged on the
table. These results show mostly correct detections, even under occlusions by the hand and other objects,
and generalization to a different camera angle never seen during training.

The video linked in the caption reveals that the object detector is not perfect. It works most of time, but
generates two kinds of errors: 1) It occasionally errorneously detects the hand as being the target object
even when the object is visible—this is a clear error. 2) More often, it detects the object in a wrong location
when it is actually occluded by the hand. This is because, in the current version, the spatial encoder cannot
return nothing, it always returns the most likely object location. This could be resolved by estimating the
detection uncertainty and only returning the object location when the certainty exceeds a threshold. Since
the straight-forward approach of using the value of the pre-softmax activations as a certainty estimate did
not produce satisfying results, this should be addressed in future work.

4.4 ENABLING LEARNING FROM DEMONSTRATION

This experiment illustrates how object-based representations learned by NEMO can enable subsequent learn-
ing such as learning from demonstrations (see Figure 5). The experiment uses the object detectors learned
in the last experiment and applies them to demonstrations for three pick-and-place tasks. Comparing the
object locations in the first and last frame of the demonstration reveals which objects were moved to which
locations. Simple statistics over the final object locations across all demonstrations of a task describe the
task in a way that could be used as the goal for a planning algorithm or as reward for reinforcement learning.

4.5 COMPARISON TO BASELINES

Since there is no other approach for learning object detection from positive videos of moving objects and
negative videos without those objects, there is no baseline to fairly compare against. To still put NEMO’s per-
formance in the context of existing work on object detection and tracking, this experiment compares it to es-
tablished template matching and tracking approaches using their OpenCV implementations (Bradski, 2000):
template matching with normalized cross correlation (Lewis, 1995), tracking with online boosting (OLB,
Grabner et al., 2006), tracking with online multiple instance learning (MIL, Babenko et al., 2009), track-
ing with kernelized correlation filters (KCF, Henriques et al., 2015), and tracking-learning-detection (TLD,
Kalal et al., 2012). Since all of these baselines need some form of supervision, they were given bounding
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Figure 3: Learning to detect a moving object with a moving camera. Left to Right: Object detection in
four random test frames; a set of image crops centered at the detected locations for random test frames. Top
to bottom: Three separately trained object detectors for a Roomba in a living room, a drone in a hallway, and
a toy car on a balcony. The last row shows toy car detector generalizing to a different scene. [video link]

Figure 4: Learning to detect multiple objects: a USB cable (orange), a toy cow (green), a Rubik’s Cube
(purple), a whiteboard marker (red), and a phone (blue). Top: Random frames in a multi-object test video
after training on single object videos. Middle: Image crops centered at the detected object locations in
random test frames. Bottom: Generalization to a test video from a different viewpoint. [video link]
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Figure 5: Demonstrating manipulation tasks with learned object representations. Left: Four demon-
strations with overlayed first and the last frames. First frame object detections (black circles) are connected
to last frame detections (white circles). Right: Mean and three standard deviations of last frame detections
across all demonstrations reveal the goal of the tasks; white circle indicates task-relevance based on if aver-
age object motion is at least 10 pixels. Top to bottom: Three manipulation tasks: 1) Move the cow (green) to
a goal location. 2) Move all objects to a goal location. 3) Arrange objects in a vertical line ordered by size.
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Figure 6: Baseline comparisons. Mean squared error (MSE) is computed in image coordinates normalized
to [0,1]. (a-c) MSE over time for three test videos. NEMO outperforms all baselines in (b) and (c). (d) MSE
for a given object shows substantial advantage compared to best baselines; methods are colored as in (a).
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boxes around the initial object locations to initialize tracking or extract an object template. The baselines
were applied to the non-subsampled video with resolution 480× 640.

Figure 6 compares NEMO to these baselines for three test videos from the experiments above, for which 20
equally spaced frames across the video were manually labeled. The results show that detecting or tracking
the pen is relatively easy. NEMO, MIL, and KCF retain a very low error rate in this video. But for the other
two videos, all tracking methods quickly diverge and template matching performs poorly as well, while
NEMO solves these videos almost perfectly. The tracking methods fail in these videos due to substantial
occlusions during object motion in the table top setting and difficult lighting conditions and fast motion
in the toy car example. Template matching cannot handle the change in appearance of the objects based
on lighting, scale, and orientation. The additional videos used by NEMO for learning the object detector,
however, lead to robustness to these variations, which shows the advantage of unsupervised learning.

5 CONCLUSION

This paper presented NEMO, a novel approach to unsupervised object detection from short videos of moving
objects and negative videos of scenes without those objects. By demonstrating data-efficient and robust
object detection without the use of image labels, this paper opens up new research directions. There are a
number of extensions that would improve the presented approach. Combining it with ensemble methods, for
example, could provide an uncertainty estimate required to infer whether the object is visible in the current
frame. Integrating the approach with tracking or filtering could exploit temporal consistency not only during
training but also during inference. For learning multiple objects in the same scene, merging the different
object detectors into a single network could improve performance by sharing intermediate features. And
creating a large-scale data-set for this approach would be very valuable to develop it further.

Taking a broader view, the presented approach takes a step towards unsupervised learning of object-based
representations. While this paper used manually recorded videos, the method can also be applied to data
collected by a robot similar to Jang et al. (2018) and Pathak et al. (2018) to learn objects autonomously.
Acquiring such object-based representations could build a bridge to geometric and symbolic reasoning and
enable efficient learning, communication, prediction, and planning in object-based representations.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
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