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ABSTRACT

Recent advances have made it possible to create deep complex-valued neural net-
works. Despite this progress, the potential power of fully complex intermediate
computations and representations has not yet been explored for many challenging
learning problems. Building on recent advances, we propose a novel mechanism
for extracting signals in the frequency domain. As a case study, we perform audio
source separation in the Fourier domain. Our extraction mechanism could be
regarded as a local ensembling method that combines a complex-valued convolu-
tional version of Feature-Wise Linear Modulation (FiLM) and a signal averaging
operation. We also introduce a new explicit amplitude and phase-aware loss, which
is scale and time invariant, taking into account the complex-valued components
of the spectrogram. Using the Wall Street Journal Dataset, we compare our phase-
aware loss to several others that operate both in the time and frequency domains
and demonstrate the effectiveness of our proposed signal extraction method and
proposed loss. When operating in the complex-valued frequency domain, our deep
complex-valued network substantially outperforms its real-valued counterparts
even with half the depth and a third of the parameters. Our proposed mecha-
nism improves significantly deep complex-valued networks’ performance and we
demonstrate the usefulness of its regularizing effect.

1 INTRODUCTION

Complex-valued neural networks have been studied since long before the emergence of modern
deep learning techniques (Georgiou & Koutsougeras, 1992; Zemel et al., 1995; Kim & Adalı, 2003;
Hirose, 2003; Nitta, 2004). Nevertheless, deep complex-valued models have only started to gain
momentum (Reichert & Serre, 2014; Arjovsky et al., 2015; Danihelka et al., 2016; Trabelsi et al.,
2017; Jose et al., 2017; Wolter & Yao, 2018b; Choi et al., 2019), with the great majority of models in
deep learning still relying on real-valued representations. The motivation for using complex-valued
representations for deep learning is twofold: On the one hand, biological nervous systems actively
make use of synchronization effects to gate signals between neurons – a mechanism that can be
recreated in artificial systems by taking into account phase differences (Reichert & Serre, 2014). On
the other hand, complex-valued representations are better suited to certain types of data, particularly
those that are naturally expressed in the frequency domain.

Other benefits provided by working with complex-valued inputs in the spectral or frequency domain
are computational. In particular, short-time Fourier transforms (STFTs) can be used to considerably
reduce the temporal dimension of the representation for an underlying signal. This is a critical
advantage, as training recurrent neural networks (RNNs) or convolutional neural networks (CNNs)
on long sequences remains challenging due to unstable gradients and the computational requirements
of backpropagation through time (BPTT) (Hochreiter, 1991; Bengio et al., 1994). Applying the STFT
on the raw signal, on the other hand, is computationally efficient, as in practice it is implemented
with the fast Fourier transform (FFT) whose computational complexity is O(n log(n)).

The aforementioned biological, representational and computational considerations provide compelling
motivations for designing learning models for tasks where the complex-valued representation of the
input and output data is more desirable than their real-counterpart. Recent work has provided building
blocks for deep complex-valued neural networks (Trabelsi et al., 2017). These building blocks have
been shown, in many cases, to avoid numerical problems during training and, thereby, enable the
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use of complex-valued representations. These representations are well-suited for frequency domain
signals, as they have the ability to explicitly encode frequency magnitude and phase components.
This motivates us to design a new signal extraction mechanism operating in the frequency domain. In
this work, our contributions are summarized as follows:

1. We present a new signal separation mechanism implementing a local ensembling procedure.
More precisely, a complex-valued convolutional version of Feature-wise Linear Modulation
(FiLM) (Perez et al., 2018) is used to create multiple separated candidates for each of the
signals we aim to retrieve from a mixture of inputs. A signal averaging operation on the
candidates is then performed in order to increase the robustness of the signal to noise and
interference. Before the averaging procedure, a form of dropout is implemented on the
signal candidates in order to reduce the amount of interference and noise correlation existing
between the different candidates.

2. We propose and explore a new magnitude and phase-aware loss taking explicitly into
account the magnitude and phase of signals. A key characteristic of our loss is that it is
scale- and time-invariant.

We test our proposed signal extraction mechanism in the audio source separation setting where we
aim to retrieve distinct audio signals associated with each speaker in the input mix. Our experiments
demonstrate the usefulness of our extraction method, and show its regularizing effect.

2 RELATED WORK

2.1 RELATED WORK ON LEARNING REPRESENTATIONS IN THE FOURIER DOMAIN

Leveraging the Convolution Theorem to retrieve information has been done decades ago in the
machine learning community using holographic reduced representations (HRRs) in the context of
associative memories (Plate, 1991; 1995). HRRs enable one to store key-value data. Retrieval of a
value in the data associated with a given key can be performed by convolving the whole data with the
key or by applying an inner product between these two. By applying a fast Fourier transform (FFT) on
the keys and the data, one can perform elementwise multiplication between the Fourier transforms and
apply an inverse FFT to convert the result to the time domain. This would be equivalent to performing
circular convolution between the key and the data in the time domain and has the advantage of being
less expensive. Recently, Danihelka et al. (2016) have used associative memories to augment the
capacity of LSTMs and to increase their robustness to noise and interference. For that, they applied
independent permutations on the memory to create multiple copies of it. This enables one to obtain
decorrelated noise in each of the permuted copies. A complex multiplication is then performed
between the key and each of the copies. A signal averaging on the resulted multiplications eliminates
the decorrelated noise in them and strengthens the signal-to-noise ratio (SNR) of the retrieved signal.
Danihelka et al. (2016), however, have not relied on FFTs in order to convert the temporal signals to
the frequency domain. In fact, they assumed that complex-valued multiplication between the key and
the data is itself enough to perform retrieval, and they have assumed that for each input representation
the first half is real and the second one is imaginary.

During this decade, interest in Fourier domain representations has started to grow in the machine
learning community. Bruna et al. (2013) introduced a generalization of convolutions to graphs
using the Graph Fourier Transform, which is defined as the multiplication of a graph signal by the
eigenvector matrix of the graph Laplacian. However, the computation of the eigenvector matrix
is expensive. Recently, methods that are computationally more efficient have been introduced in
Defferrard et al. (2016) and Kipf & Welling (2016) to avoid an explicit use of the Graph Fourier basis.
In the context of Convolutional Neural Networks (CNNs), Rippel et al. (2015) introduced spectral
pooling, which allows one to perform pooling in the frequency domain. This allows one to maintain
the output spatial dimensionality, and thus the technique can retain significantly more information
than other pooling approaches. Rippel et al. (2015) have also observed that the parametrization of
the convolution filters in the Fourier domain induces faster convergence during training. Arjovsky
et al. (2016) designed a recurrent neural network (RNN) where the transition hidden matrix is unitary.
More precisely, the hidden transition matrix is constructed using the product of specific unitary
transformations such as diagonal matrices, permutations, rotations, the Discrete Fourier Transform
and its inverse. This allows one to preserve the norm of the hidden state, and as a consequence,
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mitigates the problem of vanishing and exploding gradients. Wolter & Yao (2018a) designed an
RNN where the input is converted to the frequency domain using a Short Time Fourier Transform
(STFT). The output is converted back to the time domain by applying an inverse STFT. Zhang et al.
(2018) proposed a Fourier Recurrent Unit (FRU) where they showed that FRU has gradient lower
and upper bounds independent of the temporal dimension. They have also demonstrated the great
expressivity of the sparse Fourier basis from which the FRU draws its power. As we consider the
task of speech separation as case study, we provide a related work section on both time domain and
frequency domain speech separation methods in section 2.2.

2.2 RELATED WORK ON TIME DOMAIN AND FREQUENCY DOMAIN SPEECH SEPARATION

Speech separation has been the subject of extensive study within the audio processing literature
for a considerable amount of time. Recently, there has been growing interest in leveraging deep
learning techniques (Du et al., 2014; Huang et al., 2014; Hershey et al., 2015; Gao et al., 2018;
Ephrat et al., 2018) to tackle the speech separation problem. Hershey et al. (2015) proposed a deep
clustering approach to speech separation. The basic idea is to learn high-dimensional embeddings
of the mixture signals, that is later exploited to separate the speech targets with standard clustering
techniques. A recent attempt to extend deep clustering led to the deep attractor network proposed by
Chen et al. (2016). Similarly to deep clustering, high dimensional embeddings are learned, but the
network also creates the so-called “attractors" to better cluster time-frequency points dominated by
different speakers. The aforementioned approaches estimate only the magnitude of the STFTs and
reconstruct the time-domain signal with the Griffin-Lim algorithm (Griffin & Lim, 1984) or other
similar procedures (Sturmel & Daudet, 2006). Other papers have recently proposed to integrate the
phase-information within a speech separation system without necessarily working in the complex-
valued frequency domain. The work by Erdogan et al. (2015), for instance, proposes to train a deep
neural network with a phase-sensitive loss. Another noteworthy attempt has been described in Wang
et al. (2018), where the neural network still estimates the magnitude of the spectrum, but the time-
domain speech signals are retrieved by directly integrating the Griffin-Lim reconstruction into the
neural layers. Furthermore, methods reported in Wang et al. (2018) integrate the phase-information
within a speech separation system by reconstructing the clean phase of each source starting from the
estimated magnitude of each source and the mixture phase. This is fundamentally different from
our proposed framework, as we provide an end-to-end solution to perform signal retrieval in the
complex-valued frequency domain, and process both spectrogram magnitude and phase information
rather than working only on magnitude representation with heuristic reconstruction of phase. Another
attempt to estimate the clean phase is reported in Le Roux et al. (2019) where the clean phase of
each speaker is estimated using discrete representation. This is also fundamentally different from our
work as it considers a discrete representation of the phase for source separation and, in our case, we
consider continuous representation of the complex-domain signal.

Instead of explicitly integrating phase-information, other recent work perform speech separation in
the time domain directly, as described in Venkataramani & Smaragdis (2018). Likewise, the TasNet
architecture proposed in Luo & Mesgarani (2017) and ConvTasNet (Luo & Mesgarani, 2018) perform
speech separation using the mixed time signal as input. Operating directly on the time-domain signal
using the ConvTasNet architecture, which implements temporal convolutional networks (TCN) (Bai
et al., 2018), has led to state-of-the-art results in audio speech separation (Luo & Mesgarani, 2018;
Shi et al., 2019). The studies by (Lee et al., 2017; Hu & Wang, 2004; Huang et al., 2014) are more
related to our work as they address the speech separation problem by processing the complex-valued
spectral input of the mixed speech. However, this was done without leveraging the recent advances in
complex-valued deep learning.

3 CONNECTION TO SIGNAL PROCESSING: MOTIVATION FOR USING FILM
AND SIGNAL AVERAGING

Our signal extraction method takes advantage of the convolution theorem which states that the Fourier
transform of two circularly convolved signals is the elementwise product of their Fourier transforms.
It also implements a signal averaging procedure that allows to reduce the energy of the noise existing
in the estimates of a clean signal, and so, to increase their respective signal to noise ratio (SNR).
We detail here the motivation for using FiLM (Perez et al., 2018) and how our extraction method
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increases the signal to noise ratio. Let’s consider a clean signal s corrupted by the environment
impulse response r and an additive noise ε. The corrupted signal can be expressed as y = s ~ r + ε,
where ~ denotes the circular convolution operator. By leveraging the convolution theorem and the
linearity of the Fourier transform we get :

F(y) = F(s)�F(r) + F(ε), (1)

where F denotes the Fourier transform and � the complex element-wise multiplication. If we want
to retrieve the spectral information of the clean signal s, we can express it as:

F(s) =

[
F(y)� 1

F(r)

]
− F(ε)

F(r)
, (2)

where 1
F(r) and −F(ε)

F(r) are respectively scaling and shifting representations. These representations
could easily be inferred using FiLM (Perez et al., 2018) as it conditionally learns scaling Γ and
shifting B representations. To be more rigorous, we can assume in the case of speech separation
that, for each speaker, there exists an impulse response such that when it is convolved with the clean
speech of the speaker, it allows to reconstruct the mix. We would then have:

mix = si ~ ri + εi ∀i ∈ {1, ...,Nb speakers}

⇒ F(si) = F(mix)� 1

F(ri)
− F(εi)

F(ri)

⇒ F(si) = F(mix)� Γi + Bi.

(3)

Now, let’s assume that y is a stochastic process such that y = x + ε, where ε is the noise component
which mean E[ε] = 0. x is the clean signal that we want to estimate such that x is constant for all
observations and that an ith observation of y is given by yi = x + εi. The signal-to-noise ratio
(SNR), which is a measure of the signal quality, is defined as the ratio of the power of a clean signal to
the power of noise, i.e, SNR = E[|x|2]

E[|εi|2] . Estimating the clean speech x by approximating E[y] allows
to discard the noise component as E[y] = x. In that case x̂ = 1

N

∑N
i=1(x + εi) = x + 1

N

∑N
i=1 εi.

The SNR would then be: SNR = E[|x|2]
E[| 1N

∑N
i=1 εi|2]

= E[|x|2]
1

N2 E[|
∑N

i=1 εi|2]
. If εi are uncorrelated,

E[|∑N
i=1 εi|2] =

∑N
i=1 E[|εi|2] = N E[|εi|2] ⇒ SNR = N E[|x|2]

E[|εi|2] . This shows that the signal
averaging operation and the uncorrelated noises allow to increase the SNR by a factor of N . If we
want to approximate F(si) by performing signal averaging, we would then have:

E[F(si)] = F(mix)� E[Γi] + E[Bi]

⇒ ̂E[F(si)] = F(mix)� Ê[Γi] + Ê[Bi]

= F(mix)� 1

N

N∑

j=1

Γij +
1

N

N∑

j=1

Bij ,

(4)

where F(mix) is constant. In equation (4), N is equal to the number of scaling and shifting
representations generated to approximate respectively each of E[Γi] and E[Bi].

4 AMPLITUDE AND PHASE-AWARE LOSS

In Choi et al. (2019) a weighted version of the cosine similarity is proposed in order to maximize the
signal-to-distortion ratio (SDR) proposed in Vincent et al. (2006). Recall that cosine similarity loss is
defined in the real-valued domain and it is given by the following equation:

costime(y,x) =
−∑i xi ◦ yi
||x|| · ||y|| , (5)

where ◦ denotes the element-wise real-valued multiplication operation. Both y and x are real-valued
in the above equation as y is the target signal in the temporal domain and x is the estimated signal
after performing an inverse STFT on the spectrogram. The phase is then taken implicitly into account
as the real-valued target signal encodes inherently the phase of the spectrogram. As the task in
Choi et al. (2019) is speech enhancement (which is different from ours as we are performing speech
separation), the authors used a weighted version of the costime loss to weight the part of the loss
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corresponding to the speech signal and also the complementary part corresponding to the noise signal.
This weighting is performed according to their respective target energies. In our case we are interested
in extracting the clean speech signals of all the involved speakers whether each speaker signal has
either high or low energy in the mixture. This is why we are not interested in penalizing the retrieved
speech of each speaker by its corresponding energy.

Here, we suggest the use of a loss function which explicitly takes into account both magnitude and
phase. This is accomplished by computing the inner product, between the reference signal and its
estimate, in the complex plane. In fact computing the inner product in the frequency domain is
equivalent to computing the cross correlation in the time domain followed by a weighted average.
The inner product in the frequncy domain is then shift-invariant (time-invariant). The complex inner
product between 2 signals is given by the following equation:

〈x|y〉 =
∑

j

[<(xj)<(yj) + =(xj)=(yj)] + i [<(xj)=(yj)−=(xj)<(yj)]. (6)

If x and y are identical, which is equivalent of having ||x|| = ||y|| and ∠x = ∠y, then, 〈x|y〉 =

||y||2 + 0i. If x and y are parallel, then 〈x|y〉
||x||·||y|| = 1 + 0i = 1. The inner product between the 2

signals normalized by the product of their amplitudes, is then scale and time invariant. We chose
a loss that maximizes the real part of that normalized inner product and minimizes the square of
its imaginary part. Note that each of the real and imaginary parts of the normalized inner product
lies between [-1, 1]. We refer the reader to section A.1 in the appendix for more information on
how the complex inner product is both amplitude and phase aware, how the real part of equation (6)
is responsible of the amplitude similarity between the reference and estimate signals and how the
imaginary part of the same equation is responsible for the phase matching between them. We define
the following similarity loss denoted by CSimLoss as:

CSimLoss(x,y) =− λreal<
( 〈x|y〉
||x|| · ||y||

)
+ λimag=2

( 〈x|y〉
||x|| · ||y||

)
, (7)

where λreal and λimag are penalty constants. λreal is penalizing amplitude mismatch and λimag is
penalizing phase mismatch. We fixed λreal to 1 in all our experiments. We tried different values of
λimag ∈ {102, 103, 104}. we found that the only value of λimag that allows the phase matching part
of the train loss to have same range of values than the amplitude matching part is λimag = 104. All
the results are reported in Table 2 and Table 3 for CSimLoss correpond to λimag = 104.

5 DETAILS OF THE U-NET ARCHITECTURE USED FOR SPEECH SEPARATION

We detail here the architecture we used to perform speech separation1. For this, we rely on the U-Net
architecture proposed by Ronneberger et al. (2015) and the complex-valued building blocks proposed
by Trabelsi et al. (2017). This is similar to the complex-valued U-Net architecture used in Dedmari
et al. (2018) who reported state-of-the-art results in MRI reconstruction using complex-valued raw
input. Our primary goal is to demonstrate that our proposed signal extraction mechanism can improve
upon the performance of baseline models.

For our task, we required the addition of residual connections inside the U-Net blocks and replaced
complex batch normalization with complex layer normalization, as the model was otherwise unable
to learn, yielding instabilities during training. The reasons why complex LayerNorm outperformed
complex BatchNorm are discussed in the appendix in section A.2. We describe, in section 6 how our
extraction mechanism is implemented in the context of audio source separation.

5.1 COMPLEX RESIDUAL U-NET

Residual networks (He et al., 2016a) and identity connections (He et al., 2016b) have had a significant
impact on image segmentation. These architectural elements have also been combined with U-Nets
(Drozdzal et al., 2016) for image segmentation. In our case, we use simple basic complex residual
blocks (Figure 2 in appendix) inside each of the U-Net encoding and decoding paths (Figure 1) .
Figure 2 (Left) and (Middle) illustrate the basic structure of our Residual U-Net upsampling and

1The source code is located at https://github.com/FourierSignalRetrievalICLR2020/FourierExtraction
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downsampling blocks (Ui and Di) used in Figure 1, while Figure 2 (Right) illustrates the structure of
the complex residual blocks used in Figure 2 (Left) and Figure 2 (Middle).

Each U-Net block begins with a downsampling block (in the encoding U-Net path) or an upsampling
block (in the decoding U-Net path). It also contains a block that doubles the number of feature
maps (in the encoding path), or halves them (in the decoding path). The upsampling, downsampling,
doubling and halving blocks each applies successively a complex layer normalization, a CReLU and
a complex convolution to their inputs. All complex convolutions have a kernel size of 3×3 except for
the case of a downsampling block, where the convolution layer has a kernel size of 1× 1 and a stride
of 2× 2. In the case of upsampling, we use bilinear interpolation instead of transposed convolution
because we found empirically that it yielded better results. Immediately before and immediately
after the doubling / halving blocks, we use k = 1 or k = 2 residual blocks. We have opted for this
residual U-Net block architecture because of memory constraints and because residual connections
are believed to perform inference through iterative refinement of representations (Greff et al., 2016;
Jastrzebski et al., 2017).

mix

D1

D2

D3

D4

Bottleneck

U4

U3

U2

U1

O

i=1..N

j=1..C

i=1..N

j=1..C

FiLMFunctionij(O)
Γij

Bij

Γij ⊗ mix+ Bij

GenerateMasks(O,XFS)

XFS

⊗

candidatesij

1
C+1

C∑
j=0

candidatesij

Si

Figure 1: The architecture of our Deep Complex Extractor. It consists of a pipeline containing
a U-Net and a Complex Extractor Masking operator (see Algorithm 1). The Deep Extractor takes
as input the mixed speech signal which is fed to the U-Net. The downsampling blocks of the U-
Net are denoted by Di where i ∈ {1, 2, 3, 4} and the upsampling blocks are denoted by Ui where
i ∈ {1, 2, 3, 4}. The output of the U-Net along with the input mix are then fed to the Complex
Extractor Masking operator in order to estimate the clean speech for each of the speakers.

6 COMPLEX MASK GENERATION

Featurewise Linear Modulation (FiLM) (Perez et al., 2018) techniques have yielded impressive
results in visual question answering (VQA). The FiLM approach applies an affine transformation to
convolutional feature maps, given the embedding of the question. In our approach, we create multiple
transformations of the complex input spectrogram using FiLM. The FiLM parameters are determined
from the output of our U-Net (See Figure 1). We then generate a complex mask for the original
input spectrogram as well as for each of the FiLM-transformed spectrograms. This is accomplished
by using a ResNet conditioned on the U-Net output, the spectrogram and its FiLM transformations.
Each spectrogram is multiplied by its corresponding complex mask. This leads to multiple candidates
for the separated speech of each speaker. The resulting outputs are averaged to produce the final
estimated clean speech. This could be interpreted as a local ensembling procedure to estimate the
clean speech of the different speakers. More precisely, given the output of the last upsampling block
of the U-Net, we generate scaling matrices Γj and shift matrices Bj , j ∈ [1, C] of the same size as
the input mix spectrogram. These parameters operate on the input mix as described by the following
equation:

input_transformationj = Γj ⊗ inputmix + Bj , (8)
where Γj and Bj are functions of the output of the last upsampling block in the U-Net, and ⊗ is
the elementwise complex product. In our case, we used a simple complex convolution layer with
a kernel of size 3 × 3 to generate Γj and Bj . The original input mix and its C scaled and shifted
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transformations together form C + 1 representations of the input mix. Given these C + 1 complex
representations, we generate C + 1 corresponding complex masks, with which the representations
are then multiplied. These masks are generated by a sequence of a complex convolution layer
which kernel size is 3 × 3 followed by two residual blocks. Once we have performed the complex
multiplication of the masks with their respective inputs, C + 1 separated speech candidates are
obtained for a given speaker. This procedure is repeated for the maximum number of speakers
that could exist in an input mix. The main motivation for this process is to increase the separation
capability and reduce interference between the separated speakers. Each transformation can focus on
a specific pattern in the representation. Each mask corresponding to a specific input transformation
can be seen as a feature of the speaker embedding. Grouped together, the masks generated to retrieve
the speech of a given speaker could be interpreted as an embedding identifying the speaker. The
proposed complex masking procedure is summarized in Algorithm 1.

Algorithm 1 Complex Extractor Masking
Input: U-Net output: O
Input: Nb transformations (XFs): C
Input: Nb speakers: N
Input: Input Mix: mix
Output: Speakers separated speeches: S1, ..., SN

1: function C-FILMED MASKING(O, C, N , mix)
2: for i← 1 to N do
3: Γi1 ...ΓiC , Bi1 ...BiC ← FilMFunction(O)
4: end for
5: XFS← [ ]
6: for i← 1 to N do
7: for j ← 1 to C do
8: XFij ← Γij ⊗mix + Bij
9: XFSi.append(XFij)

10: end for
11: end for
12: XFS← concatenate(XFS11, ...,XFSNC)
13: masks← GenerateMasks(O,XFS)
14: candidates← masks⊗ XFS
15: cleanspeeches← [ ]
16: for i← 1 to N do
17: cleanspeechi ← average(candidates[(C + 1)× (i− 1) + 1 : (C + 1)× i]))
18: cleanspeeches.append(cleanspeechi)
19: end for
20: return cleanspeeches
21: end function

7 SYNOPSIS OF THE EXPERIMENTS

We present in Table 1 the most important results obtained when conducting our experiments. The
complete results and the extended empirical analysis can be found in the appendix in section A.5.
The data pre-processing and training protocol can be found in the appendix, in section A.4.

We explore several variants of our architecture and report the test SDR. They are parametrized by:

• k, the number of residual blocks used inside the residual U-Net block (See Figure 2).
• START FMAPS, the number of feature maps in the first layer of the encoding path in the

U-Net. START FMAPS defines the depth of each of the successive layers in the model. 2

• PARAMS, the number of parameters, in millions.
• TRANSFORMS, the number of input mixture transformations.
• DROPOUT, the mask dropout rate. 3

2The effective number of feature maps for a complex feature map is equal to the number of reported feature
maps × 2. This is due to the fact that it has a real and an imaginary part.

3Dropping out a mask is equivalent to a dropout of input mixture transformations or clean speech candidates.
Performing dropout on the masks reduces the correlation of the different noise components existing in the
different candidates of clean speech. Along with signal averaging, dropout regularizes the retrieval mechanism.
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Table 1: The most important results obtained for the task of speech separation conducted on mixtures
of 2 speakers using the standard setup with the Wall Street Journal corpus.

MODEL k START FMAPS PARAMS TRANSFORMS DROPOUT LOSS TEST SDR

REAL U-NET 1 64 8.45 0 0 L2freq 4.59
REAL U-NET 2 64 14.76 0 0 L2freq 7.92

COMPLEX U-NET 1 32 4.29 0 0 L2freq 9.61
COMPLEX U-NET 2 32 7.4 0 0 L2freq 9.70

COMPLEX U-NET 2 40 11.67 15 0 L2freq 10.93
COMPLEX U-NET 2 40 11.67 15 0 CSimLoss 10.91
COMPLEX U-NET 2 40 11.61 10 0 L2time 10.86
COMPLEX U-NET 2 40 11.67 15 0 costime 10.74

COMPLEX U-NET 2 44 13.97 0 0 L2freq 9.88
COMPLEX U-NET 2 44 13.97 0 0 CSimLoss 9.87
COMPLEX U-NET 2 44 14.09 15 0.1 L2freq 10.91
COMPLEX U-NET 2 44 14.03 10 0.1 CSimLoss 11.34

From the first four rows of the results contained in Table 1, we will highlight that the complex-valued
baseline models vastly outperform their real-valued counterparts. These baselines (both real and
complex) are architecturally the same as the U-Net of Figure 1, but do not include our extraction
mechanism (the FiLM, GenerateMask and signal-averaging operations). The real and complex
U-Nets’ outputs are masks that are complex-multiplied with the mix to infer the clean speech of the
speakers. All complex models, whether they have approximately the same number of parameters
(R:8.45M ≈ C:7.4M), half (R:8.45M; C:4.39M) or a third, with half the depth (R:14.76M; C:4.39M)
outperformed by a convincing margin their real counterparts. Thus, natively-complex input, inference
and output give complex networks such an overwhelming advantage that almost no handicap of size
or depth can mask it. We will therefore not consider real-valued models, transformations and losses
any further.

A second highlight from Table 1 is that, while our signal extraction mechanism is inexpensive in
terms of parameter count, the extraction mechanism substantially improves the quality of the retrieved
signal. For instance, when 10 mixture transformations are in use, the number of parameters is
marginally increased by less than 1% (13.97M to 14.03M) while a substantial jump in terms of SDR
is observed (from 9.87 to 11.34). This can be also observed in Figure 3 in the appendix. Dropping
out the speech candidates with low probability has a further regularization effect on the wider models
that have more feature maps, as shown in appendix Figure 5.

The third highlight is that spectral-domain losses, i.e CSimLoss and L2freq, outperform their time-
domain counterparts. Our proposed CSimLoss posts the best reported result, 11.34 SDR, and Tables
2 and 3 and Figure 4 demonstrate that our extraction mechanism is ideally paired with the CSimLoss
objective.

Finally, and although this is out of scope for this paper, we compare ourselves to ConvTasNet (Luo &
Mesgarani, 2018), which operates on a time-domain input mixture (as mentioned in §2.2). ConvTas-
Net claims state-of-the-art results in speech separation, and has led to even further improvements
(Shi et al., 2019). Its headline achievement of 15.6 SDR must, however, be understood in light of
a significant difference in their preparation of the dataset. Whereas we follow the standard setup
described in Hershey et al. (2015), with input mixtures generated using an SNR between 0 and 5
dB, Luo & Mesgarani (2018) use an SNR between -5 and 5 dB. Keeping this in mind, we retrain
optimally-configured ConvTasNet but using the standard setup, and obtain 12.1 SDR, compared to
our own model’s 11.3 SDR.

8 CONCLUSION

In this work, we introduced a new complex-valued extraction mechanism for signal retrieval in
the Fourier domain. As a case study, we considered audio source separation. We also proposed
a new phase-aware loss taking, explicitly, into account the magnitude and phase of the reference
and estimated signals. The amplitude and phase-aware loss improves over other frequency and
time-domain losses. We believe that our proposed method could lead to new research directions
where signal retrieval is needed.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
ICML, 2015.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, pp. 1120–1128, 2016.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 1994.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Zhuo Chen, Yi Luo, and Nima Mesgarani. Deep attractor network for single-microphone speaker
separation. CoRR, abs/1611.08930, 2016.

Hyeong-Seok Choi, Janghyun Kim, Jaesung Huh, Adrian Kim, Jung-Woo Ha, and Kyogu Lee.
Phase-aware speech enhancement with deep complex u-net. arXiv preprint arXiv:1903.03107,
2019.

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalchbrenner, and Alex Graves. Associative long
short-term memory. ICML, 2016.

Muneer Ahmad Dedmari, Sailesh Conjeti, Santiago Estrada, Phillip Ehses, Tony Stöcker, and Martin
Reuter. Complex fully convolutional neural networks for mr image reconstruction. In International
Workshop on Machine Learning for Medical Image Reconstruction, pp. 30–38. Springer, 2018.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

Michal Drozdzal, Eugene Vorontsov, Gabriel Chartrand, Samuel Kadoury, and Chris Pal. The
importance of skip connections in biomedical image segmentation. In Deep Learning and Data
Labeling for Medical Applications, pp. 179–187. Springer, 2016.

J. Du, Y. Tu, Y. Xu, L. Dai, and C. Lee. Speech separation of a target speaker based on deep neural
networks. In Proc. of ICSP, pp. 473–477, 2014.

Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wilson, Avinatan Hassidim, William T.
Freeman, and Michael Rubinstein. Looking to listen at the cocktail party: A speaker-independent
audio-visual model for speech separation. CoRR, 2018.

H. Erdogan, J. R. Hershey, S. Watanabe, and J. Le Roux. Phase-sensitive and recognition-boosted
speech separation using deep recurrent neural networks. In Proc. of ICASSP, pp. 708–712, 2015.

Ruohan Gao, Rogério Schmidt Feris, and Kristen Grauman. Learning to separate object sounds by
watching unlabeled video. CoRR, 2018.

George M Georgiou and Cris Koutsougeras. Complex domain backpropagation. IEEE transactions
on Circuits and systems II: analog and digital signal processing, 1992.

Klaus Greff, Rupesh K Srivastava, and Jürgen Schmidhuber. Highway and residual networks learn
unrolled iterative estimation. arXiv preprint arXiv:1612.07771, 2016.

D. Griffin and Jae Lim. Signal estimation from modified short-time fourier transform. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 32(2):236–243, 1984.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

9



Under review as a conference paper at ICLR 2020

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016b.

John R. Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji Watanabe. Deep clustering: Discrimina-
tive embeddings for segmentation and separation. CoRR, 2015.

Akira Hirose. Complex-valued neural networks: theories and applications. World Scientific, 2003.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. PhD thesis, 1991.

Guoning Hu and DeLiang Wang. Monaural speech segregation based on pitch tracking and amplitude
modulation. Trans. Neur. Netw., 2004.

Po-Sen Huang, Kim Minje, Mark Hasegawa-Johnson, and Paris Smaragdis. Deep learning for
monaural speech separation. ICASSP, 2014.

Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. arXiv preprint arXiv:1710.04773, 2017.

Cijo Jose, Moustpaha Cisse, and Francois Fleuret. Kronecker recurrent units. arXiv preprint
arXiv:1705.10142, 2017.

Taehwan Kim and Tülay Adalı. Approximation by fully complex multilayer perceptrons. Neural
computation, 2003.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Jonathan Le Roux, Gordon Wichern, Shinji Watanabe, Andy Sarroff, and John R Hershey. Phasebook
and friends: Leveraging discrete representations for source separation. IEEE Journal of Selected
Topics in Signal Processing, 13(2):370–382, 2019.

Yuan-Shan Lee, Chien-Yao Wang, Shu-Fan Wang, Jia-Ching Wang, and Chung-Hsien Wu. Fully
complex deep neural network for phase-incorporating monaural source separation. In ICASP,
2017.

Yi Luo and Nima Mesgarani. Tasnet: time-domain audio separation network for real-time, single-
channel speech separation. CoRR, abs/1711.00541, 2017.

Yi Luo and Nima Mesgarani. Tasnet: Surpassing ideal time-frequency masking for speech separation.
arXiv preprint arXiv:1809.07454, 2018.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
1983.

Tohru Nitta. Orthogonality of decision boundaries in complex-valued neural networks. Neural
Computation, 2004.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. 2018.

Tony Plate. Holographic reduced representations: Convolution algebra for compositional distributed
representations. In IJCAI, pp. 30–35, 1991.

Tony A Plate. Holographic reduced representations. IEEE Transactions on Neural networks, 6(3):
623–641, 1995.

David P Reichert and Thomas Serre. Neuronal synchrony in complex-valued deep networks. ICLR,
2014.

10



Under review as a conference paper at ICLR 2020

Oren Rippel, Jasper Snoek, and Ryan P Adams. Spectral representations for convolutional neural
networks. In Advances in neural information processing systems, pp. 2449–2457, 2015.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. pp. 234–241, 2015.

Ziqiang Shi, Huibin Lin, Liu Liu, Rujie Liu, and Jiqing Han. Furcanext: End-to-end monaural
speech separation with dynamic gated dilated temporal convolutional networks. arXiv preprint
arXiv:1902.04891, 2019.

N. Sturmel and L. Daudet. Signal reconstruction from stft magnitude: A state of the art. In In Proc.
of the International conference on digital audio effects, 2006.

Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, João Felipe
Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christopher J Pal. Deep complex
networks. ICLR, 2017.

Shrikant Venkataramani and Paris Smaragdis. End-to-end networks for supervised single-channel
speech separation. CoRR, abs/1810.02568, 2018.

Emmanuel Vincent, Rémi Gribonval, and Cédric Févotte. Performance measurement in blind audio
source separation. IEEE Trans. Audio, Speech & Language Processing, 14(4):1462–1469, 2006.

Zhong-Qiu Wang, Jonathan Le Roux, DeLiang Wang, and John R. Hershey. End-to-end speech
separation with unfolded iterative phase reconstruction. CoRR, abs/1804.10204, 2018.

Chao Weng, Dong Yu, Michael L Seltzer, and Jasha Droppo. Deep neural networks for single-
channel multi-talker speech recognition. IEEE/ACM Transactions on Audio, Speech and Language
Processing (TASLP), 23(10):1670–1679, 2015.

Moritz Wolter and Angela Yao. Fourier rnns for sequence analysis and prediction. arXiv preprint
arXiv:1812.05645, 2018a.

Moritz Wolter and Angela Yao. Gated complex recurrent neural networks. arXiv preprint
arXiv:1806.08267, 2018b.

Dong Yu, Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen. Permutation invariant training of
deep models for speaker-independent multi-talker speech separation. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 241–245. IEEE, 2017.

Richard S Zemel, Christopher KI Williams, and Michael C Mozer. Lending direction to neural
networks. NIPS, 1995.

Jiong Zhang, Yibo Lin, Zhao Song, and Inderjit S Dhillon. Learning long term dependencies via
fourier recurrent units. arXiv preprint arXiv:1803.06585, 2018.

A APPENDIX

A.1 DETAILS ABOUT THE AMPLITUDE AND PHASE-AWARE LOSS

We show here that solving the two-equation system, assimilating the real part of the inner product,
between the two signals x and y, to the square of the amplitude of y, and canceling its imaginary
part, amounts to canceling the differences in amplitude and phase between x and y, respectively (See
equation 11). For this we will use the following trigonometric properties:

cos(θx) cos(θy) = 1
2
cos(θx − θy) + 1

2
cos(θx + θy)

sin(θx) sin(θy) = 1
2
cos(θx − θy) − 1

2
cos(θx + θy)

cos(θx) sin(θy) = 1
2
sin(θx + θy) − 1

2
sin(θx − θy)

sin(θx) cos(θy) = 1
2
sin(θx + θy) + 1

2
sin(θx − θy),

(9)
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where θx, θy ∈ R. For simplicity of notation, we will denote a complex-valued target scalar as y and
a its estimate as x instead of ŷ:

y = |y|eiθy = |y| [cos(θy) + i sin(θy)] ∈ C

x = |y|eiθx = |x| [cos(θx) + i sin(θx)] ∈ C.
(10)

θy and θx are the corresponding phases of the reference y and its complex estimate x respec-
tively.Resolving the system of equations below is equivalent of having both magnitude and phase of
the reference and estimation identical OR when y is 0. Recall that <(〈x|y〉) =

∑
j [<(xj)<(yj) +

=(xj)=(yj)] and =(〈x|y〉) =
∑
j [<(xj)=(yj)−<(yj)=(xj)].{

<(x)<(y) + =(x)=(y)− |y|2 = 0

<(x)=(y)−<(y)=(x) = 0

⇔

{
<(x)<(y) + =(x)=(y) = <(y)2 + =(y)2

<(x)=(y) = <(y)=(x)

⇔

{
|x| cos(θx) |y| cos(θy) + |x| sin(θx) |y| sin(θy) = |y|2

|x| cos(θx) |y| sin(θy) = |y| cos(θy) |x| sin(θx)

⇔

{
|x| |y|

[
cos(θx) cos(θy) + sin(θx) sin(θy)

]
= |y|2

|x| |y|
[
cos(θx) sin(θy)− cos(θy) sin(θx)

]
= 0

⇔

|y|
[
|x|
(
cos(θx) cos(θy) + sin(θx) sin(θy)

)
− |y|

]
= 0

|x| = 0 OR |y| = 0 OR
[
cos(θx) sin(θy)− cos(θy) sin(θx)

]
= 0

⇔

{
|y| = 0 OR |x|

(
cos(θx) cos(θy) + sin(θx) sin(θy)

)
= |y|

|x| = 0 OR |y| = 0 OR cos(θx) sin(θy) = cos(θy) sin(θx)

⇔

{
|y| = 0 OR |x|

(
1
2
cos(θx − θy) + 1

2
cos(θx + θy) + 1

2
cos(θx − θy) − 1

2
cos(θx + θy)

)
= |y|

|x| = 0 OR |y| = 0 OR 1
2
sin(θx + θy) − 1

2
sin(θx − θy) = 1

2
sin(θx + θy) + 1

2
sin(θx − θy)

⇔

{
|y| = 0 OR |x| cos(θx − θy) = |y|
|x| = 0 OR |y| = 0 OR − sin(θx − θy) = sin(θx − θy)

⇔

{
|y| = 0 OR |x| cos(θx − θy) = |y|
|x| = 0 OR |y| = 0 OR θx − θy ≡ 0 (modπ)

⇔

{
|y| = 0 OR |x| cos(θx − θy) = |y|
|x| = 0 OR |y| = 0 OR − sin(θx − θy) = sin(θx − θy)

⇔

{
|y| = 0 OR |x| cos(kπ) = |y|, k ∈ Z
|x| = 0 OR |y| = 0 OR θx = θy + kπ, k ∈ Z

⇔

{
|y| = 0 OR |x| cos(2k′π) = |y| OR |x|cos((2k′ + 1)π) = |y| = 0 (because cos((2k′ + 1)π) = −1)

|x| = 0 OR |y| = 0 OR θx = θy + k′π, k′ ∈ Z

⇔

{
|y| = 0 OR |x| = |y| OR |x| = |y| = 0

|x| = 0 OR |y| = 0 OR θx = θy + 2k′π, k′ ∈ Z

⇔

{
|y| = 0 OR |x| = |y|
θx = θy + 2k′π, k′ ∈ Z.

(11)
We have just shown that <(〈x|y〉)j = |yj |2 AND =(〈x|y〉)j = 0 is equivalent of having [(|yj | = 0
OR |yj | = |xj |) AND ∠xj = ∠yj]. This means that the real and imaginary parts of the inner
product between the estimate and target are respectively responsible of the amplitude and phase
matching between the estimate and the target. Now, a solution corresponding to a null reference
vector y could be problematic as it leads to an infinite number of choices for the estimated signal
x. In fact, Choi et al. (2019) mentioned this issue and chose to work with a cosine similarity-based
function in order to learn from noisy-only data. This is why it is more convenient to work with the
normalized inner product loss.
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A.2 COMPLEX LAYER NORMALIZATION

Just as in complex batch normalization, complex layer normalization consists in whitening 2D vectors
by left-multiplying the 0-centered data

(
x− E[x]

)
by the inverse square root of the 2× 2 covariance

matrix V . x̃ = (V )−
1
2

(
x− E[x]

)
, where the covariance matrix V is

V =

(
Vrr Vri
Vir Vii

)

=

(
Cov(<{x},<{x}) Cov(<{x},={x})
Cov(={x},<{x}) Cov(={x},={x})

)
.

Complex layer normalization is distinguished from complex batch normalization by its computation
of the mean and covariance statistics over the layer features instead of the batch instances. This allows
us, as in the real-valued version, to avoid estimating batch statistics during training. An intuition for
batch normalization’s inappropriateness is related to the sparsity, in both time and frequency domains,
of speech. This is reflected in the spectrograms. Speech is temporally halting and restarting, and
spectrally consists of at most a few simultaneously-held fundamentals and their discrete overtones.
Mixing few speakers does not significantly change this property.

In the light of this observation, it stands to reason that statistics computed across a batch’s multiple
utterance mixtures are almost meaningless. Speakers within and across utterance mixtures are not
controlled for volume, nor can their pauses be meaningfully aligned. Batch statistics will therefore be
inappropriately driven by the mixture with the most simultaneous speakers, the loudest speaker(s), or
the speaker(s) with the “dirtiest” spectrogram. Finally, in the absence of any speech, batch statistics
will inappropriately boost background noise to a standardized magnitude.

The above motivates the use of exclusively intra-sample normalization techniques like Layer Normal-
ization for speech data. Batch normalization is more appropriate for natural images, which are dense,
both in space and frequency.

In addition to the fact that intra-sample normalization is more appropriate for speech signals, CLN
ensures a more robust normalization of data when the number of feature maps is sufficiently large. In
fact, according to the weak law of large numbers, as the sample size increases, the sample statistics
approximate their expected values. Therefore, when the number of feature maps far exceeds the
number of batch instances, we obtain more robust estimates because they converge, in probability, to
the corresponding expected values.

A.3 FIGURES

Downsampling Block

k Residual Blocks

Doubling Block

k Residual Blocks

k Residual Blocks

Halving Block

k Residual Blocks

Upsampling Block

Complex Layer Norm

Complex Activation

Complex Convolution

Complex Layer Norm

Complex Activation

Complex Convolution

⊕

Figure 2: The basic structures of our U-Net downsampling blockDi (Left) and our U-Net upsampling
block Ui (Middle) used respectively in the encoding and the decoding paths of Figure 1. The structure
of a basic complex residual block (Right) in each of Di and Ui.

13



Under review as a conference paper at ICLR 2020

A.4 DATA PRE-PROCESSING AND TRAINING DETAILS

The speech mixtures are generated using the procedure adopted in Erdogan et al. (2015); Wang
et al. (2018). More precisely, the training set consists of 30 hours of two-speaker mixtures that were
generated by randomly selecting sentences (uttered by different speakers) from the Wall Street Journal
WSJ0 training set called si_tr_s. The signals are then mixed with different amplitude factors,
leading signal-to-noise ratios (SNR) ranging between 0 dB and 5 dB. Using the same method, we also
generated 10 hours of validation set. The test set is composed of 5 hours that were generated similarly
using utterances from the different speakers belonging to the WSJ0 development set si_dt_05.
The data sampling rate is 8KHz. Regarding the STFT parameters, a Hann window of size 256 and a
hop length equal to 128 are used.

Table 2 (see section A.5) and Table 3 contain the results for the experiments conducted using the
Wall Street Journal dataset. All models in Tables 2 (see section A.5) and 3 were trained using the
backpropagation algorithm with Stochastic Gradient Descent with Nesterov momentum (Nesterov,
1983) set at 0.9. The gradient norm was clipped to 1. We used the learning rate schedule described
in Trabelsi et al. (2017). In order to warm up the model during training, a constant learning rate of
0.01 was fixed for the first 10 epochs. From epoch 10 to 100, the learning rate was increased to 0.1.
Later, an annealing of the learning rates by a factor of 10, at epochs, 120 and 150 was performed.
We ended up the training at epoch 200. Models in Table 2(see section A.5 ) have been trained using
a batch size of 40. Models in Table 3 have been trained using a batch size of 24 to fit in the GPU
memory. All the models have been trained in parallel using 8 V100 GPUs. For all the tested losses,
we used the Permutation Invariant Training criterion knows as PIT (Yu et al., 2017). The PIT criterion
allows to take into account all possible assignments between the target signals and the estimated
clean speeches. This is done by computing all possible permutations between the targets and the
estimated clean speeches. During training, the assignment with the minimal loss is considered for
backpropagation. This is due to the fact that for the synthetically mixed input, the order of the
target speakers is randomly chosen and it doesn’t satisfy a specific criterion. This random order in
the target speakers causes the well-known label permutation problem (Hershey et al., 2015; Weng
et al., 2015). The PIT criterion allows then to reduce significantly this problem by considering the
output-target assignment yielding the minimal training loss. During inference, we assume that the
model has learned to produce output that does not permute speeches. (Yu et al. (2017) mention
that output-to-speaker assignment may change across time frames. This would have the effect of
decreasing the Signal to Noise Ratio (SNR) and the Signal to Distortion Ratio (SDR) as it causes
interference of speakers speeches.

A.5 EXPERIMENTS

We tried different configurations combining unitary and standard complex initializations. All of these
initializations have been proposed by Trabelsi et al. (2017). It turned out that the best configuration
is obtained when using a complex standard initialization for all layers, except for the convolutional
layer, generating the FiLM parameters, and the first convolutional layer in the generating mask
function which precedes the 2 residual blocks. For the above-mentioned convolutional layers a
unitary initialization respecting the He criterion (He et al., 2015) was applied. This is not surprising
as a unitary weight matrix ∈ Cd×d constitutes a basis of Cd. Therefore any complex-valued vector in
Cd, such as those representing the FiLM parameters or the masks, could be generated using a linear
combination of the row vectors of that unitary matrix.

In Tables 2 and 3 we experiment with architectures that use different number of mixture transfor-
mations. Adding mixture transformations does not significantly increase the number of parameters
compared to the size of the whole model. In the case where 15 transformations are adopted, the
number of parameters is increased by less than 1% of the total number.

Since Table 2’s first row contains baselines, they exclude our proposed masking method and loss.
These baselines (both real and complex) are architecturally the same as the U-Net of Figure 1, without
the FiLM, the GenerateMask and the averaging operation. A real counterpart of a complex model
is one where the convolution and the normalization layers are real, the nonlinearity is plain ReLU
and He init is used for the weights. The real and complex U-Nets output the masks which are
complex multiplied with the mix in order to infer the clean speech of the speakers. All the complex
models, whether they have approximately the same number of parameters (R:8.45M ≈ C:7.4M),
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Table 2: Speech separation experiments on two speakers using the standard setup with the Wall Street
Journal corpus.
We explore different real and complex-valued model variants and report the test SDR. k is the the
number of residual blocks used inside the residual U-Net block (See Figure 1). Start Fmaps is the
number of feature maps in the first layer of the encoding path in the U-Net. The Start Fmaps defines
the width of each of the successive layers in the model. We respectively double and half the size of
the layers in each of the successive downsampling and upsampling stages. The effective number of
feature maps for a complex feature map is equal to the number of reported feature maps × 2. This
is due to the fact that it has a real and an imaginary part. The number of parameters is expressed in
millions. The number of input mixture transformations is also reported. Test SDR scores for different
time and spectral domain losses are inserted in the last column.

MODEL k START FMAPS PARAMS TRANSFORMS LOSS FUNCTION TEST SDR

REAL U-NET 1 64 8.45 0 L2freq 4.59
REAL U-NET 2 64 14.76 0 L2freq 7.92
COMPLEX U-NET 1 32 4.29 0 L2freq 9.61
COMPLEX U-NET 2 32 7.4 0 L2freq 9.70

COMPLEX U-NET 2 40 11.55 0 L2freq 10.30
COMPLEX U-NET 2 40 11.55 0 CSimLoss 10.21
COMPLEX U-NET 2 40 11.55 0 L2time 9.31
COMPLEX U-NET 2 40 11.55 0 costime 9.34

COMPLEX U-NET 2 40 11.57 5 L2freq 10.58
COMPLEX U-NET 2 40 11.57 5 CSimLoss 10.87
COMPLEX U-NET 2 40 11.57 5 L2time 10.31
COMPLEX U-NET 2 40 11.57 5 costime 10.14

COMPLEX U-NET 2 40 11.61 10 L2freq 10.59
COMPLEX U-NET 2 40 11.61 10 CSimLoss 10.90
COMPLEX U-NET 2 40 11.61 10 L2time 10.86
COMPLEX U-NET 2 40 11.61 10 costime 10.47

COMPLEX U-NET 2 40 11.67 15 L2freq 10.93
COMPLEX U-NET 2 40 11.67 15 CSimLoss 10.91
COMPLEX U-NET 2 40 11.67 15 L2time 10.66
COMPLEX U-NET 2 40 11.67 15 costime 10.74

half (R:8.45M; C:4.39M) or a third, with half the depth (R:14.76M; C:4.39M) outperformed by a
large margin their real counterparts. This shows that whether the comparison is fair, or even where
advantages in terms of capacity and depth are given to the real network, it doesn’t perform as well as
complex models when it comes to process complex input and infer complex output. Thus, we will no
longer focus on real-valued models, but, instead, will concentrate on transformations and losses that
are appropriate for complex-valued models.

Three major observations can be inferred from the numbers displayed in Table 2: 1- Wider and deeper
models improve the quality of separation in terms of SDRs; 2- The increase in the number of input
transformations has a positive impact on the task of separating audio sources, as additional input
transformations achieve higher SDR scores; 3- For a given number of input transformations, the best
results are obtained with losses computed in the spectral domain. For all the experiments reported in
Table 2, either the CSimLoss or the L2freq achieve the highest SDR.

The scores reported in Table 2 show that the local ensembling procedure is beneficial to the task of
speech separation. This rewarding impact is confirmed in all experiments of Table 3 (See also Figure
3). As mentioned in section 6, each mask could be seen as a feature of the speaker embedding and the
generated masks together constitute the whole embedding. Performing dropout on the masks might
then allow to perform regularization for the retrieval and separation mechanism. Dropping out a mask
is equivalent to a dropout of input mixture transformations or clean speech candidates. Since spectral
loss functions yielded higher SDRs than their time-domain counterparts, we adopted them to evaluate
the effect of applying different dropout rates to the input transformations. Wider and deeper models
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Table 3: Experiments on two speaker speech separation using the standard setup with the Wall Street
Journal corpus. We explore different numbers of input mixture transformations and different dropout
rates on the latter using the training losses defined in the spectral domain. The losses in questions are
L2freq and CSimLoss. The number of parameters is expressed in millions. All tested models contain
44 feature maps in the first downsampling layer of the U-Net instead of 40 in Table 2. The same
number of k = 2 residual blocks is used inside the basic structure of the residual U-Net block. SDR
scores are shown in the last column.

PARAMS TRANSFORMS DROPOUT LOSS FUNCTION TEST SDR

13.97 0 0 L2freq 9.88
13.99 5 0 L2freq 10.11
14.03 10 0 L2freq 10.91
14.09 15 0 L2freq 9.92
13.97 0 0 CSimLoss 9.87
13.99 5 0 CSimLoss 10.64
14.03 10 0 CSimLoss 11.05
14.09 15 0 CSimLoss 10.82

13.99 5 0.1 L2freq 10.54
14.03 10 0.1 L2freq 10.72
14.09 15 0.1 L2freq 10.91
13.99 5 0.1 CSimLoss 10.96
14.03 10 0.1 CSimLoss 11.34
14.09 15 0.1 CSimLoss 11.22

13.99 5 0.2 L2freq 10.67
14.03 10 0.2 L2freq 10.90
14.09 15 0.2 L2freq 10.90
13.99 5 0.2 CSimLoss 11.23
14.03 10 0.2 CSimLoss 11.29
14.09 15 0.2 CSimLoss 11.23

13.99 5 0.3 L2freq 10.71
14.03 10 0.3 L2freq 10.06
14.09 15 0.3 L2freq 10.91
13.99 5 0.3 CSimLoss 11.21
14.03 10 0.3 CSimLoss 11.12
14.09 15 0.3 CSimLoss 11.06

13.99 5 0.4 L2freq 10.72
14.03 10 0.4 L2freq 10.74
14.09 15 0.4 L2freq 10.83
13.99 5 0.4 CSimLoss 11.09
14.03 10 0.4 CSimLoss 11.08
14.09 15 0.4 CSimLoss 11.12

with Start Fmaps = 44 and k=2 residual blocks are tested in the conducted experiments. Results are
reported in Table 3.

In the absence of dropout and multiple transformations, we observe from the results displayed in
Table 3, that wider models are not necessarily more beneficial to the separation task. The SDRs
reported in the case of no mixture transformations are 9.88 and 9.87 for the wider model. These
SDR scores correspond to the L2freq and CSimLoss losses respectively. However, for the narrower
models, SDRs of 10.30 and 10.21 were respectively reported for the same losses in Table 2. This
means that wider models have the potential to overfit. On the other hand, if input transformations are
taken into account, a jump in the SDR is observed. When 10 input transformations are introduced,
SDR scores of 11.05 and 10.90 are recorded with the CSimLoss and the L2freq losses, respectively.
Lower SDR performances are recorded when ensembling is implemented with mixtures of 5 and
15 transformations, respectively. This means that the local ensembling procedure is acting as a
regularizer. However, a tradeoff in terms of the number of input transformations (and so in terms of
clean speech candidates) has to be made as increasing the number of input transformations might
worsen the performance of the model and lead to overfitting.
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Figure 3: Validation curves of models with and without performing multiple input transfor-
mations. The plotted curves relate to models reported in Table 3. Models with multiple input
transformations outperform those without transformations. The former achieved higher SDR scores,
on average.

Dropping out the speech candidates using a small probability rate has a further regularization effect
on the wider model. This could be inferred from the results reported in Table 3 (See also Figure 5).
We employed different dropout rates varying from 0 to 0.4. A rate of 0.1 yielded the best result as it
caused a jump of SDR score from 11.05 to 11.34. It is important to emphasize again the importance
of having a compromise in terms of the number of transformations. For instance, for most of the
dropout rates we experimented, a number of 10 mixture transformations yielded the highest SDRs. In
all the experiments reported in Table 3, the CSimLoss clearly outperformed the L2freq (See Figure
4). In fact, regardless of the dropout rate and the number of input transformations employed, for
wider models using the L2freq training loss function, the SDR score did not cross the threshold of
10.91 dB. The highest SDR score obtained, when using the L2freq loss function, is 10.93. This value
corresponds to a narrower model with 15 input transformations (see Table 2).
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Figure 4: Validation curves of the models that yielded the highest SDRs using either the L2 spectral
loss or our CSimLoss. The Drawn curves are related to models reported in Table 3.

Figure 5: Validation curves of the models that yielded the highest SDRs for both cases where dropout
on the input mixture transformations was used and where it was not. The Drawn curves are related to
models reported in Table 3.
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A.6 STATE-OF-THE-ART TABLE

Table 4: Listing of some existing state-of-the-art methods for two speaker speech separation
Model SNR Window Size Hop Length Temporal Model Used Input SDR

Deep Clustering
(Hershey et al., 2015) Uniform [0, 5] dB 32 ms = 256 samples 8 ms = 64 samples 2 BLSTMs log |STFT(x)| 6.5

Deep attractor
(Chen et al., 2016) Uniform [0, 10] dB 32 ms = 256 samples 8 ms = 64 samples 4 BLSTMs log |STFT(x)| 10.5

Anchor Deep attractor
(Luo et al, 2017) Uniform [0, 5] dB 32 ms = 256 samples 8 ms = 64 samples 4 BLSTMs log |STFT(x)| 10.8

TasNet
(Luo & Mesgarani, 2017) Uniform [0, 5] dB Time-domain segment

size 5 ms = 40 samples None 4 BLSTMs Raw time-
domain signal 11.1

ConvTasNet
(Luo & Mesgarani, 2018) Uniform [-5, 5] dB Time-domain conv-filter

= 2 ms = 16 samples
50% overlap
1 ms = 8 samples

Temporal Convolution
Networks

Raw time-
domain signal

15.6 (claimed)
12.1 (reproduced
with [0,5] dB)

Deep Complex U-Net
(Ours, w/o extraction mechanism) Uniform [0, 5] dB 32 ms = 256 samples 16 ms = 128 samples None (No temporal

recurrent model used) STFT(x) 9.70

Deep Complex U-Net
(Ours, w/ extraction mechanism) Uniform [0, 5] dB 32 ms = 256 samples 16 ms = 128 samples None (No temporal

recurrent model used) STFT(x) 11.34

As can be seen from Table 4, state-of-the-art results in speech separation depend largely on the
following:

1. The use of a model that takes into account short and long term temporal dependencies
such as BLSTMs or Temporal Convolutional Networks (Bai et al., 2018). Almost all the
methods since (Hershey et al, 2015) that have led to improvements in state-of-the-art speech
separation have used either BLSTMs or TCN;

2. The STFT window size and hop length or the time-domain input segment size when using
the raw signal. Yu et al. (2017) demonstrated that the smaller the window size, hop length
are, the better the quality of separation. This probably explains Luo & Mesgarani (2017)
and Luo & Mesgarani (2018) selection of very short time-domain segment sizes of 5 and 2
ms for the TasNet and ConvTasNet archtiectures respectively.
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