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ABSTRACT

In many robotic applications, it is crucial to maintain a belief about the state of
a system, like the location of a robot or the pose of an object. These state es-
timates serve as input for planning and decision making and provide feedback
during task execution. Recursive Bayesian Filtering algorithms address the state
estimation problem, but they require a model of the process dynamics and the
sensory observations as well as noise estimates that quantify the accuracy of these
models. Recently, multiple works have demonstrated that the process and sensor
models can be learned by end-to-end training through differentiable versions of
Recursive Filtering methods. However, even if the predictive models are known,
finding suitable noise models remains challenging. Therefore, many practical ap-
plications rely on very simplistic noise models. Our hypothesis is that end-to-end
training through differentiable Bayesian Filters enables us to learn more complex
heteroscedastic noise models for the system dynamics. We evaluate learning such
models with different types of filtering algorithms and on two different robotic
tasks. Our experiments show that especially for sampling-based filters like the
Particle Filter, learning heteroscedastic noise models can drastically improve the
tracking performance in comparison to using constant noise models.

1 INTRODUCTION

For many real-world systems that we would like to control, we cannot directly observe the current
state directly. However, in order to stabilize a system at a goal state or make it track a trajectory,
we need to have access to state feedback. An observer provides an estimate of the current system
state from sensor measurements. Recursive Bayesian Filtering is a probabilistic approach towards
estimating a belief about the current state. The method relies on a process model that predicts how
the system behaves over time and an observation model that generates the expected observations
given the predicted state. While the approach itself is general and makes few assumptions, the
challenge is to formulate the process and observation models and to estimate the noise in these
models. Process and observation noise quantify how certain the filter is about either the prediction
or the observations. This information is used to determine how much the predicted state is updated
based on the observation.

Deep neural networks are well suited for tasks that require finding patterns or extracting information
from raw, high-dimensional input signals and compressing them into a more compact representa-
tion. They have therefore become the method of choice especially in perception problems. For many
robotics tasks like modeling dynamics, planning or tracking however, it has been shown that com-
bining prior knowledge in the form of analytical models and/or algorithmic structure with trainable
network components leads to better performance and generalizability than trying to learn the com-
plete tasks from scratch (Kloss et al., 2017; Karkus et al., 2017; Jonschkowski et al., 2018; Tamar
et al., 2016; Okada et al., 2017; Jonschkowski & Brock, 2016; Haarnoja et al., 2016; Karkus et al.,
2018).

Specifically, (Jonschkowski & Brock, 2016; Haarnoja et al., 2016; Jonschkowski et al., 2018; Karkus
et al., 2018) have presented differentiable Bayesian Filtering algorithms. The authors focus on
learning the observation and dynamics models end-to-end through the filters and demonstrate that
the recursive filtering structure improves prediction results over using recurrent neural networks that
were trained for the same task.
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In many robotic applications, it is possible to formulate the process and observation model based on
first-order principles. However, finding appropriate values for the process and observation noise is
often difficult and despite of much research on identification methods (e.g. (Bavdekar et al., 2011;
Valappil & Georgakis, 2000)) they are often tuned manually. To reduce the tedious tuning effort, the
noise models are typically assumed to be a Gaussian with zero mean and constant covariance. Many
real systems can however be better modeled with heteroscedastic noise models, where the level of
uncertainty depends on the state of the system and/or possible control inputs. Taking heterostochas-
ticity into account has been demonstrated to improve filtering performance in many robotic tasks
(Bauza & Rodriguez, 2017; Kersting et al., 2007).

In this work, we propose a method to learn heteroscedastic noise models from data by optimizing the
prediction likelihood end-to-end through differentiable Bayesian Filters. In addition to differentiable
Extended Kalman Filters and Particle Filters, which have been proposed in related work, we also
propose two different versions of the Unscented Kalman Filter.

In our experiments we focus on learning the noise models and therefore assume that observation and
process models are known or at least pretrained. We evaluate the performance of the different filters
and noise models on two different real-world robotic problems: (i) Visual Odometry for an driving
car (Haarnoja et al., 2016; Jonschkowski et al., 2018; Geiger et al., 2012) which has simple smooth
dynamics and a low-dimensional state, and (ii) Visual tracking of an object that is pushed by a robot
(Yu et al., 2016; Kloss et al., 2017). Planar pushing has challenging, discontinuous dynamics and
was shown to have a heteroscedastic noise distribution (Bauza & Rodriguez, 2017). Furthermore,
the dimensionality of the state is double of the Visual Odometry task.

Our experiments show that using heteroscedastic process noise models drastically improves the
tracking performance of the Particle Filter and Unscented Filter variants and facilitated learning
as compared to learning a constant process noise model. While learning the noise models can be
beneficial for all filters, the tracking performance of the EKF turned out to be least sensitive to the
noise models. In comparison to the process noise, learning the observation noise did not improve
the results much for the two tasks we evaluated.

2 BACKGROUND: BAYESIAN FILTERING

Filtering refers to the problem of estimating the state x of a stochastic system at time step t given
an initial believe x0, a sequence of observations zt and control inputs ut. The aim is to compute
p(xt|x0...t−1,u0...t, z0...t). To do so, we describe the system with a state space representation, that
consists of two equations: The process model f describes how the state changes over time and the
observation model h generates observations given the current state:

xt = f(xt−1,ut−1,qt) zt = h(xt, rt)

The random variables q and r are the process and observation noise and represent the stochasticity
of the system. This model makes the Markov assumption, i.e. the current state only depends on
the previous state, and the observation only depends on the current state. This assumption makes it
possible to compute p(xt|x0...t−1,u0...t, z0...t) recursively from p(xt−1|x0...t−2,u0...t−1, z0...t−1).
In the following, we review the most common filtering algorithms. For more details, we refer to
Thrun et al. (2005).

2.1 KALMAN FILTER

The Kalman Filter (Kalman, 1960) is a closed-form solution to the filtering problem for systems
with linear process and observation model and Gaussian additive noise.

xt = f(xt−1,ut−1,qt) = Axt−1 + But + qt zt = h(xt, rt) = Hxt + rt

Given these assumptions and a Gaussian initial belief, the belief can be represented by the mean
µ and covariance matrix Σ over the estimate. At each timestep, the filter predicts µ̂ and Σ̂ given
the process model. The innovation it is the difference between the predicted and actual observation
and is used to correct the prediction. The Kalman Gain K trades-off the process noise Q and the
observation noise R to determine the magnitude of the update.
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Prediction Step: Update Step:

µ̂t = Aµt−1 + But (1)

Σ̂t = AΣt−1A
T + Qt (2)

St = HΣ̂tH
T + Rt (3)

Kt = Σ̂tH
TS−1t (4)

it = zt −Hµ̂t (5)
µt = µ̂t + Ktit (6)

Σt = (In −KtH)Σ̂t (7)

2.2 EXTENDED KALMAN FILTER (EKF)

The EKF (Sorenson, 1985) extends the Kalman Filter to systems with non-linear process and obser-
vation models. It uses the non-linear models for predicting µ̂ and the corresponding observations ẑ
(Equations 1, 5). For computing the prediction and update of Σ and K, these models are linearized
around the current mean of the state and the Jacobians F|µt

and H|µt
replace A and H in Equations

2 - 4 and 7. This first-order approximation can be problematic for systems with strong non-linearity,
as it does not take the uncertainty about the mean into account (Van Der Merwe, 2004).

2.3 UNSCENTED KALMAN FILTER (UKF)

The UKF (Simon J. Julier, 1997; Van Der Merwe, 2004) was proposed to address the aforementioned
problem of the EKF. Its core idea is to represent a Gaussian random variable by a set of specifically
chosen points in state space, the so called sigma points X . If this random variable undergoes a
nonlinear transformation, we can calculate its new statistics from the transformed sigma points. This
method is called the Unscented Transform (Simon J. Julier, 1997). For example, in the prediction
step of the UKF, the non-linear transform is the process model (Equation 10) and the new mean and
covariance are computed in Equations 11 and 12

X 0 = µ X i = µ± (
√

(n+ λ)Σ)i ∀i ∈ {1...n} (8)

w0 =
λ

λ+ n
wi =

0.5

λ+ n
∀i ∈ {1...2n} (9)

X̂t = f(Xt−1,ut) (10)

µ̂t =
∑
i

wiX̂ it (11)

Σ̂t =
∑
i

wi(X̂ it − µ̂t)(X̂ it − µ̂t)
T + Qt (12)

By applying the non-linear prediction step separately to each sigma point and then fitting a new
Gaussian to the transformed points (Equations 11, 12), the UKF conveys the non- linear transforma-
tion of the covariance more faithfully than the EKF and is thus better suited for strongly non-linear
problems (Thrun et al., 2005).

The parameter λ controls the spread of the sigma points and how strongly the original mean X 0 is
weighted in comparison to the other sigma points. In practice, we found λ difficult to tune since
placing the sigma points too far from the mean increases prediction uncertainty and can even desta-
bilize the filter. Simon J. Julier (1997) suggested to chose λ such that λ + n = 3. This however
results in negative values of λ if n > 3, for which the estimated covariance matrix is not guaran-
teed to be positive semidefinite anymore (Simon J. Julier, 1997). In addition, X 0, which represents
the original mean, is weighted negatively in this case, which seems counterintuitive and can cause
divergence of the estimated mean.

2.4 MONTE CARLO UNSCENTED KALMAN FILTER (MCUKF)

The UKF represents the belief over the state with as few sigma points as possible. However, as
described above, finding the correct scaling parameter λ can be difficult, especially if the state is high
dimensional. Instead of relying on the unscented transform to calculate the mean and covariance of
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the state at the next timestep, we can also resort to Monte Carlo methods, as proposed by Wüthrich
et al. (2016). In practice, this means that we replace the carefully constructed sigma points and their
weights in Equations 8, 9 with samples from the current estimated state distribution, which all have
uniform weights. The rest of the UKF algorithm stays the same, but more samples are necessary to
represent the distribution accurately.

2.5 PARTICLE FILTER (PF)

In contrast to the different variants of the Kalman Filter explained before, the Particle Filter (Gor-
don et al., 1993) does not assume a parametric representation of the state distribution. Instead, it
represents the state with a set of particles. The particle-based representation allows the filter to track
multiple hypotheses about the state at the same time and makes it a popular choice for tasks like
localization or visual object tracking (Thrun et al., 2005).

An initial set of particles X0 is drawn from some prior belief and initialized with uniform weights.
At each recursion step, new particles are generated by sampling process noise and applying the
process model to the previous particles:

Xt = f(Xt−1,ut,qt) (13)

For each observation zt, we then evaluate the likelihood p(zt|xit) of a particle xit having generated
this observation. Based on this, the weight wi of each particle is updated: xi: wit = wit−1p(zt|xit).

A common problem of this filter is particle deprivation: Over time, many particles will receive a
very low likelihood p(zt|xit), and the state would be represented by too few particles with high
weights. To prevent this, the particle filter algorithm uses resampling, where a new set of particles
with uniform weights is drawn (with replacement) from the old set, according to the weights. This
step focuses the particle set on regions of high likelihood and is usually applied after each timestep.

3 RELATED WORK

DIFFERENTIABLE FILTERING

Haarnoja et al. (2016) proposed the BackpropKF, a differentiable implementation of the Kalman
Filter. While the observation and process model were assumed to be known, the differentiable
implementation enabled the authors to train a neural network through the filter to preprocess the
input images. This network can be viewed as a trainable part of the sensor which extracts the
relevant information from the high-dimensional raw input data and also predicts the observation
noise R dependent on the images. This heteroscedastic observation noise model was shown to be
useful in situations where the desired information could not be extracted from the image, e.g. when a
tracked object is occluded. BackpropKF outperformed an LSTM model that was trained to perform
the same tasks due to the prior knowledge encoded in the Filtering algorithm and the given models.

Jonschkowski & Brock (2016) presented a differentiable Histogram Filter for discrete localization
tasks in one or two dimensions. For this low-dimensional problem , both, the observation and the
process model, were trained through the filter in a supervised or unsupervised manner. Experiments
showed that optimizing the models end-to-end through the filter improved results on the metric that
was optimized during training (MSE or localization accuracy) in comparison to filtering with models
that were trained in isolation.

Jonschkowski et al. (2018); Karkus et al. (2018) proposed differentiable Particle Filters for local-
ization and tracking of a mobile robot. In each work, a neural network was trained to predict the
likelihood p(zt|xit) of each particle given an image and a map of the environment. While (Karkus
et al., 2018) used a given process model, Jonschkowski et al. (2018) learned the process model
and the distribution from which the process noise is sampled. They however did not evaluate their
method when only the process model or only the noise was learned and it is thus not clear how
each of these two components individually affected the overall error rate of the filter. Karkus et al.
(2018) additionally introduced soft resampling and thereby enabled backpropagation through more
than one time step.

Related work demonstrated that (i) integrating algorithmic structure with learning leads to better
results than training unconstrained networks and that (ii) it is possible and beneficial to train the
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components of the filters end-to-end instead of in isolation. Each work focused on creating a differ-
entiable version of a particular filtering algorithm.

In this work, we propose to learn heteroscedastic noise models and analyze the benefit of these
models within different filtering algorithms and for two different applications.

All previous work described above was evaluated on tracking and visual odometry problems with
low-dimensional states and observations (at most five dimensions) and smooth, although non-linear
dynamics models. In contrast to this, we additionally evaluate the methods on a planar pushing
task which has challenging non-linear and discontinuous dynamics due to physical contact and a
10-dimensional state space.

VARIATIONAL INFERENCE

Variational methods provide an alternative way of learning the parameters of a probabilistic gener-
ative model and performing inference on its latent states. The main idea of variational inference is
to approximate the intractable posterior distribution pθ(x|z) by an approximate distribution qφ(x|z)
that is easier to compute, e.g. because it factorizes over variables. The parameters θ of the true
generative distribution p (i.e. the model parameters) can be optimized jointly with the parameters φ
of the approximate distribution q by maximizing the evidence lower bound (ELBO).

Fraccaro et al. (2017) combine a locally linear gaussian state space model (LGSSM) with a vari-
ational autoencoder (Kingma & Welling, 2013; Rezende et al., 2014) that learns to encode high-
dimensional sensory input data into a low-dimensional latent representation in an unsupervised way.
This latent encoding is used as observations to the LGSSM. In addition, an LSTM network predicts
the parameters of the process model from the history of latent encodings. Watter et al. (2015) fol-
low a similar approach. Their method predicts a latent representation as well as the parameters of
a a locally linear gaussian process model from the observations using variational autoencoders. A
regularization term enforces that the predicted and inferred representation match for each timestep.

In contrast to the previous works, where the encoding from observations into latent space is learned
directly, Karl et al. (2017) train a variational autoencoder to only predict the parameters of the
process model and the process noise from the observations. This enforces that the learned latent
state contains all information necessary to predict the next state, without relying on the observations
at the next timestep.

All of the methods discussed here focus on unsupervised learning of observation and process models
in systems with unknown state representation. In contrast, in our work we leverage prior knowledge
about the process model and the state representation obtained from first-order principles. This en-
ables supervised learning and is thought to improve the generalization ability of the learned parts
Kloss et al. (2017). Unsupervised training by backpropagation through filtering algorithms is possi-
ble as well, as was demonstrated in (Jonschkowski & Brock, 2016).

The main conceptual difference between variational methods and learning in differentiable filters
is that variational methods learn to perform inference in state space models by optimizing an ap-
proximate posterior distribution. Bayesian filters, on the other hand, provide fixed algorithms for
approximating the posterior, which have been shown to work well in practice for many problems.
Using these algorithmic priors intuitively makes learning in differentiable filters easier, but restricts
the class of models that can be learned. Variational methods solve a more difficult learning problem,
but can fit the training data more freely. How big this difference really is, however, depends on how
the approximate posterior and the generative model in the variational approach are structured. An
in-depth analysis of the effects of the two approaches on training and the learned models has, to our
knowledge, not yet been attempted and would be an interesting direction for future work.

4 METHODS

We implement the filtering methods presented in Section 2 as recurrent neural networks in tensorflow
(Abadi et al., 2015). In this section, we describe how the learnable noise models are parametrized
and used in the filters. For more details about the implementation please refer to the Appendix 7.1.
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4.1 PERCEPTION NETWORKS AND OBSERVATION NOISE

In state space models, the observation model is a generative model that predicts observations from
the state zt = h(x). In practice, it is however often hard to find such a model that directly predicts
the potentially high-dimensional raw sensory signals without making strong assumptions.

We therefore use the method proposed by Haarnoja et al. (2016) and train a discriminative neural
network o with parameters wo to preprocess the raw sensory data D and thus create a more compact
representation of the observations z = o(D,wo).

In our experiments, the perception network directly extracts some of the components of the state
x from D, such that the actual observation model h becomes a simple selection operation. Be-
sides from z, the perception networks can also predict the diagonal entries of the observation noise
covariance matrix R.

We pretrain the perception networks for all experiments to predict z, but not R. Since z is a subset
of the components of x, this requires no additional data annotation. In experiments where R is
learned, we initialize the prediction to reasonable values using a trainable bias, otherwise we use a
fixed diagonal matrix as R.

4.2 PROCESS NOISE

For learning the process noise, we consider two different conditions: constant and heteroscedastic.
In all cases, we assume that the process noise at time t can be described by a zero-mean Gaussian
distribution with diagonal covariance matrix Qt. The constant noise model consists of one trainable
variable wq that represents the diagonal entries of Q.

In the heteroscedastic case, the diagonal elements are predicted from the current state xt and (if
available) the control input ut, by a 3-layer MLP g with weights wg: diag(Q) = g(xt,ut,wg). In
the UKF and MCUKF, we predict a separate Qi for every sigma point and then compute Q as their
weighted mean.

In all variants of the Kalman Filter, the process noise enters the prediction step in the update of
the covariance matrix Σ (Equations 2, 12) and influences the update step through the Kalman Gain
(Equation 4). In the Particle Filter, it is used for sampling particles from the process model (Equation
13). Following Jonschkowski et al. (2018), we implement this step with the reparametrization trick
(Kingma & Welling, 2013):

∀xit−1 ∈ Xt−1 sample ni ∼ N(0, 1) qit =
√

Qin
i xit = f(xit−1,ut,q

i
t) (14)

4.3 TRAINING

We train the noise models end-to-end trough the filters using the Adam optimizer (Kingma & Ba,
2014) and backpropagation through time. The loss consists of three components, (i) the negative log
likelihood of the true state given the believe, (ii) the Euclidean error between the ground truth state
and the predicted mean and (iii) a regularization term on the weights of the trainable noise models.

L(l0...T ,µ0...T ,Σ0...T ,w) =

λ1

T∑
t=0

1

2
((lt − µt)

TΣ−1t (lt − µt) + log(|Σt|)) + λ2

T∑
t=0

‖ (lt − µt) ‖2 +λ3 ‖ w ‖2 (15)

Here l0...T is the ground truth state sequence, µ0...T and Σ0...T denote the sequence of prediction
mean and covariance respectively. w contains the weights of the trainable noise models (which
influence the prediction of µ and Σ) like wo or wg . The λi are scaling factors that can be chosen
dependent on the magnitude of the loss components.

The likelihood loss encourages the network to predict noise values that minimize the overall pre-
dicted covariance (i.e. the uncertainty about the predicted state) while at the same time penalizing
high confidence predictions with large errors. In practice, we found that during learning, the mod-
els often optimized the likelihood by only increasing the predicted variance instead of minimizing
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the prediction error. Therefore, we added the second component of the loss to enforce low overall
prediction errors.

Both the MCUKF and the Particle Filter approximate the state by sampling and require a potentially
large number of sigma points/particles for accurate prediction. During training, we have to limit the
number of samples to 100, as memory consumption and computation time increase with the number
of samples. For testing, we can use much higher numbers of particles/sigma points.

5 EXPERIMENTS

It has been shown before that using the algorithmic structure of Bayesian Filters to enable end-to-
end learning is very beneficial for learning the process and observation models of the filters. Here
we evaluate how end-to-end learning of heteroscedastic noise models affects the performance of the
different filtering algorithms. These noise models quantify the accuracy of the process and observa-
tion models. For this, we test each filter under five conditions: Without learning, only learning the
observation noise R, learning only heteroscedastic process noise Qh and learning both with con-
stant or heteroscedastic process noise (R + Q, R + Qh). As the influence of modeling the noise
can depend on the task, we perform experiments on two different applications.

5.1 KITTI VISUAL ODOMETRY

As a first application we chose the Kitti Visual Odometry task (Geiger et al., 2012) that was also
evaluated in (Haarnoja et al., 2016) and (Jonschkowski et al., 2018). The aim is to estimate the
position and orientation of a driving car given a sequence of rgb images from a front facing camera
and the true initial state.

The state is 5-dimensional and includes the position p and orientation θ of the car as well as the cur-
rent linear and angular velocity v and θ̇. As the control inputs are unknown, the estimated velocities
are predicted by sampling random accelerations a, θ̈, according to the process noise for v and θ̇. The
position and heading estimate are update by Euler integration (see Appendix 7.2.1).

While the dynamics model is simple, the challenge comes from the fact that the drivers actions are
not known and the absolute position and orientation are not observable. The filters can therefore
only rely on estimating the angular and linear velocity from pairs of input images to update the state,
but the uncertainty about the position and heading will inevitably grow due to missing feedback.

We pretrain a neural network to extract this information from the current input image and the differ-
ence image between the current and previous one. The network architecture is the same as was used
in (Haarnoja et al., 2016; Jonschkowski et al., 2018), we only replace the response normalization
layers with tensorflow’s standard batch normalization layers. Since both related work allowed for
finetuning of the perception network trough the filter, we do the same here for better comparability
of results. As in (Jonschkowski et al., 2018), we test the Particle Filter using 1000 particles and also
use 1000 sigma points for the MCUKF.

The process and observation noise are initialized to the same values in every condition. For the
observation noise, we look at the average error of the perception network at the end of the pretraining
phase. To set the process noise, we use the ground truth standard deviation of the velocities to
initialize the terms for linear and angular velocity. The terms for position and heading are initialized
to identity. See the Appendix 7.2.1 for exact values.

5.1.1 DATA

The Kitti Visual Odometry dataset consists 11 trajectories of varying length (from 270 to over 4500
steps) with ground truth annotations for position and heading and image sequences from two dif-
ferent cameras collected at 10 Hz. We use the two shortest sequences for validation and perform
a 9-fold cross-validation on the remaining sequences. We use both image sequences from each
trajectory and further augment the data by adding the mirrored sequences as well. For training,
we extract non-overlapping sequences of length 50 with a different random starting point for each
image-sequence. The sequences for validation and testing consist of 100 timesteps.
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No learning R Qh R+Q R+Qh

Translational error [m/m]

EKF 0.22± 0.13 0.19± 0.13 0.19± 0.11 0.20± 0.13 0.19± 0.12
UKF 0.39± 0.14 0.29± 0.15 0.41± 0.17 0.26± 0.14 0.24± 0.16
MCUKF 0.99± 0.04 1.01± 0.02 0.36± 0.14 0.76± 0.09 0.44± 0.25
PF 0.81± 0.95 0.73± 0.40 0.40± 0.25 0.26± 0.17 0.3± 0.22

Rotational error [deg/m]

EKF 0.11± 0.10 0.17± 0.19 0.10± 0.10 0.11± 0.08 0.10± 0.13
UKF 0.26± 0.08 0.29± 0.35 0.21± 0.11 0.14± 0.06 0.16± 0.12
MCUKF 1.17± 0.92 1.24± 0.56 0.30± 0.28 0.48± 0.42 0.27± 0.20
PF 0.95± 0.89 0.93± 0.85 0.29± 0.26 0.86± 1.31 0.20± 0.20

Table 1: Kitti Visual Odometry task. Evaluation of four non-linear filters under five different noise
learning conditions: No learning, learning constant observation noise R, learning heteroscedastic
process noise Qh, learning constant observation and process noise R + Q, learning constant obser-
vation noise and heteroscedastic process noise R + Qh. In each condition, the perception network
was pretrained offline and finetuned through the filters. We evaluate the models on different trajec-
tories with 100 timesteps. As in (Jonschkowski et al., 2018; Haarnoja et al., 2016) we report mean
and std of the end-point- error in position and orientation normalized by the distance between start
and end point.

5.1.2 RESULTS

Table 1 contains the average normalized end-point-errors for the different filters and noise learning
conditions. On this task, the EKF outperforms the other filters even without learning the noise
models and does not gain a lot from leaning them.

The Particle Filter as well as the MCUKF perform badly without learning or when training the ob-
servation noise R alone. While learning a constant process noise Q improved their results, learning
a heteroscedastic process noise model lead to much bigger improvements for the MCUKF and for
the PF when predicting the heading of the car.

This does not necessarily mean that the task follows a heteroscedastic noise model, especially since
the EKF and UKF do not show big differences between constant and heteroscedastic noise. In-
stead, it seems like the heteroscedastic process noise model facilitates the training process: When
the process noise is trained with a heteroscedastic process noise model, we observe that it quickly
converges towards zero for position and orientation, which is the best choice for this task. In the
constant noise setting, this convergence is much slower and the models do not fully converge during
the training.

While our EKF results are close to those reported in Haarnoja et al. (2016) (translation: 0.21mm ,
rotation: 0.08degm ), our results for the Particle Filter are notably worse than the results reported by
Jonschkowski et al. (2018) (translation: 0.15mm , rotation: 0.05degm ). This could be due to differences
in the implementation of the observation model (Jonschkowski et al. (2018) use a model that directly
predicts the likelihood of each particle instead of a distribution over velocities), the different initial
values for the process noise or the soft resampling we use (see Appendix 7.1.3).

For this particular task, the MCUKF turns out to be a bad choice: Without learning a suitable
process noise model, it mostly fails to predict any movement of the car. This is caused by high
uncertainty about the orientation of the car, both due to the bad initialization of the process noise
and the accumulating uncertainty during tracking: If the sampled sigma points are too different
in estimated orientation, their movement cancels each other out when calculating the mean. The
standard UKF performs better, because of the symmetry in the sigma point construction (see Eq. 11)
and because it keeps the previous mean as a sigma point that is weighted higher than the remaining
points and thus enforces movement in the correct direction.

In general, it is not surprising that the EKF performs best on this task: First, the process model is
smooth and not highly non-linear, such that the EKF provides a good approximation of the posterior.
Second, the main difference to the other filters is that the PF and the UKF variants generate additional
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uncertainty about the position and heading of the car by sampling particles or constructing sigma
points. This uncertainty would usually be resolved by observations, such that more weight can be
given to the particles or sigma points that are closer to the true state. In visual odometry, however,
there are no observations of heading and position and there is thus nothing to gain from exploring
values that deviate from the estimated mean.

5.2 PLANAR PUSHING

In the visual odometry problem, the main challenges were perception and dealing with the inevitably
increasing uncertainty. Our second experiment in contrast addresses a task with more complex
dynamics: quasi-static planar pushing. Apart from having non-linear and discontinuous dynamics
(when the pusher makes or breaks contact with the object), Bauza & Rodriguez (2017) also showed
that the noise in the system can be best captured by a heteroscedastic noise model.

The state we try to estimate has 10 dimensions: the 2d position p and orientation θ of the object,
two friction-related parameters l and m, the 2d contact point between pusher and object r and the
normal to the object’s surface there n as well as a variable s that indicates if the pusher is in contact
with the object or not.

For predicting the next state, we use an analytical model of quasi-static planar pushing (Lynch et al.,
1992; Kloss et al., 2017). It predicts the linear and angular velocity of the object (v, ω) given the
pusher velocity u and the current state. Details can be found in the Appendix 7.2.2.

We use coordinate images (like a depth image, but with all 3 coordinates as channels) of the scene at
time t− 1 and t as input, and train a neural network to extract the position of the object, the contact
point and normal as well as if the pusher is in contact with the object or not. Besides from the
friction-related parameters, the orientation of the object, θt, is the only state component that cannot
be estimated directly from the input images. As absolute orientation of an object is not defined
(without giving a reference for each object), we cannot extract it from the images. Instead, we train
the network to observe the change in orientation ω between the two images (up to symmetries).

In contrast to the visual odometry task in the previous experiment, we do not assume that the initial
state is correct. All models are thus evaluated on five different initial conditions with varying error
and we report the average error and standard deviation across these five setting. We also do not
finetune the perception model in this experiment. We again use 100 sigma points or particles during
training for the MCUKF and PF. During test-time, the particle filter uses 1000 particles while we
limit the MCUKF to 500 sigma points.

5.2.1 DATA

The MIT Push dataset (Yu et al., 2016) consist of more than a million real robot push sequences to
eleven different objects on four different surface materials. For each sequence the original dataset
contains the object position, the position of the pusher as well as force recordings. We use the tools
described by Kloss et al. (2017) to get additional annotations for the remaining state components
and for rendering depth images. In contrast to (Kloss et al., 2017) our images also show the robot
arm and are taken from a more realistic camera angle.

We use data from pushes with a velocity of 50 mm
s and render images with a frequency of 18 Hz.

This results in very short sequences of about 15 images per push. We extend these sequences to 100
steps by chaining multiple pushes and adding in between pusher movement when necessary. We use
subsequences of ten steps for training and the full 100 steps for testing.

5.2.2 RESULTS

Without learning In the first two columns of Table 2, we compare the tracking performance of the
different filters without learning any of the noise models. For the first column, we set the diagonal
values of Q to 0.01 and those of R to 100 such that the filters place too high confidence in the
process model and too low confidence in the observations. In the second condition, we used the
average prediction error of the analytical model and the preprocessing network on the ground truth
data to set Q and R to realistic values.

9



Under review as a conference paper at ICLR 2019

No learning 1 No learning 2 R Qh R+Q R+Qh

Translational error [mm]

EKF 11.8± 0.54 3.9± 0.02 3.7± 0.01 3.9± 0.01 3.8± 0.01 3.9± 0.02
UKF 9.3± 0.31 3.8± 0.01 3.8± 0.02 3.8± 0.02 3.8± 0.01 3.9± 0.003
MCUKF 9.2± 0.33 3.8± 0.01 3.7± 0.01 3.8± 0.01 3.7± 0.01 3.8± 0.01
PF 56.5± 0.11 7.4± 0.30 20.2± 0.62 3.3± 0.23 7.0± 0.21 3.0± 0.20

Rotational error [deg]

EKF 18.9± 0.57 9.3± 0.3 9.9± 0.21 9.4± 0.39 8.4± 0.24 9.3± 0.33
UKF 20.6± 1.11 9.4± 0.28 10.8± 0.22 9.34± 0.26 9.5± 0.17 6.1± 0.14
MCUKF 21.4± 1.4 10.1± 0.43 9.5± 0.38 7.6± 0.26 8.4± 0.2 6.5± 0.21
PF 28.4± 0.07 21.1± 1.1 16.4± 0.46 8.8± 0.18 12.2± 0.45 10.1± 0.37

Table 2: Planar Pushing task. Evaluation of four non-linear filters under five different noise learning
conditions: No learning 1 (with unrealistic noise), No learning 2 (with realistic noise) , learning con-
stant observation noise R, learning heteroscedastic process noise Qh, learning constant observation
and process noise R + Q, learning constant observation noise and heteroscedastic process noise
R + Qh. Mean and standard deviation of tracking errors on the planar pushing task averaged over
five different initial conditions. Tracking errors are mean squared error in position and orientation
of the object averaged over all timesteps in the sequence.

While all filters perform worse on the unrealistic noise setting, the Particle Filter is affected the
most. This is presumably because without well-tuned noise models, it samples many particles far
away from the true state and cannot discriminate well between likely and unlikely particles given
the observations.

Learning the noise models The remaining columns of Table 2 show the results when learning
the different combinations of noise models. The process and observation noise are initialized to the
realistic values from the no learning setting for every condition. We can see that the performance
of the Extended Kalman Filter again remains mostly constant over all conditions and also does not
improve much over the model with well-tuned noise.

Both the UKF and the MCUKF do not show much difference for tracking the position of the object.
We see a slightly improved performance for tracking the orientation of the object when a constant
process noise model is trained and a stronger improvement with the heteroscedastic Qh. This is
consistent with the results in the previous experiment, as the orientation of the object can again not
be observed directly and it is thus not desirable to vary it much when creating the sigma points.
Overall, the traditional UKF with trained R and heteroscedastic Q performs best, but the MCUKF
is similar and could potentially perform better if more sigma points were sampled.

In this experiment, the Particle Filter profits most from learning: In the two conditions with het-
eroscedastic process noise, its tracking performance improves dramatically and even outperforms
the other filters on the position metric. The improvement over the untrained setting is much smaller
when Q is constrained to be constant. Why is learning a heteroscedastic process noise model so
important for the PF? We believe that learning a separate Q for each particle helps the filter to steer
the particle set towards more likely regions of the state space. It can for example get rid of particles
that encode a state configuration that is not physically plausible and will therefore lead to a bad
prediction from the analytical model by sampling higher noise and thus decreasing the likelihood of
the particle.

Training the observation noise R did not have a very big effect in this experiment, but inspecting the
learned diagonal values showed that all filters learned to predict higher uncertainty for the y coordi-
nate of positions, which makes sense as the y axis of the world frame points towards the background
of the image and perspective transform thus reduces the accuracy in this direction. In contrast to
the results in (Haarnoja et al., 2016), we did not see any evidence that the heterostochasticity of the
observation noise was helpful. This can probably be explained by the absence of complete occlu-
sions of the object in our dataset. We could also not identify any other common feature of scenes
for which our prediction model produced high prediction errors. It is therefore likely that a constant
observation noise model would have been sufficient in this setting.
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6 CONCLUSIONS

We proposed to optimize the process and observation noise for Bayesian Filters through end-to-end
training and evaluated the method with different filtering algorithms and on two robotic applications.
Our experiments showed that learning the process noise is especially important for filters that sample
around the mean estimate of the state, like the Particle Filter but also the Unscented Kalman Filters.
The Extended Kalman Filter in contrast proved to be most robust to suboptimal choices of the noise
models. While this makes it a good choice for problems with simple and smooth dynamics, our
experiments on the pushing task demonstrated that the (optimized) Unscented Filters can perform
better on problems with more complex and even discontinuous dynamics.

Training a state-dependent process noise model instead of a constant one improves the prediction
accuracy for dynamic systems that are expected to have heteroscedastic noise. In our experiments,
it also facilitated learning in general and lead to faster convergence of the models.

We also used a heteroscedastic observation noise model in all our experiments. But different from
the results in (Haarnoja et al., 2016), we could not see a large benefit from it: Inspection on the
pushing task showed that larger errors in the prediction of the preprocessing networks were not
associated with higher observation noise. Identifying inputs that will lead to bad predictions is a
difficult task if no obvious problems like occlusions are present to explain such outliers. Developing
better methods for communicating uncertainty about the predictions of a neural network would thus
be an impotent next step to further improve the performance of differentiable Bayesian Filters.
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7 APPENDIX

7.1 IMPLEMENTATION DETAILS

7.1.1 EKF

The basic steps of the Extended Kalman Filter can be directly implemented in Tensorflow without
any modifications. The only aspect of interest is how to compute the Jacobians of the process
and observation model. Tensorflow implements auto differentiation, but has (as of now) no native
support for computing Jacobians. While it can be done, it requires looping over the dimensions
of the differentiated variable one by one, which we found to be relatively slow, especially during
graph-construction. We therefore recommend to manually derive the Jacobians where applicable.

7.1.2 UKF AND MCUKF

Like for the EKF, implementing the prediction and update step of the UKF in tensorflow is straight
forward. For constructing the sigma points, it is necessary to compute the matrix square root of the
estimated covariance Σ. This is commonly done using the Cholesky Decomposition, which is also
available in tensorflow. In practice, the Cholesky decomposition however often failed. Instead, we
used the more robust singular value decomposition.

For the MCUKF, we sample the sigma points from a Gaussian distribution with the same mean and
covariance as the current estimate using tensorflow’s distribution tools. Internally, this also relies on
the Cholesky decomposition and thus requires Σ to be positive semidefinite at all times.

7.1.3 PF

Our particle Filter implementation is very similar to the variant proposed by Jonschkowski et al.
(2018) that is available online1. We combine it with the differentiable resampling technique pro-
posed by Karkus et al. (2018) to enable backpropagation through the weights.

Another difference is that we do not train a network to directly predict the likelihood of an observa-
tion given a particle. Instead, we use the same preprocessing network as for the other filtering types,
which outputs the observations z and the estimated covariance matrix of the observation model R.
Given these, we compute the probability of z under a gaussian distribution defined by the predicted
observations for each particle and R. This approach might be more challenging to train (as the like-
lihoods become very small if the observation noise is too low) but allows for a better comparison
with the other filters.

7.1.4 STABILITY

A particular difficulty in training differentiable filters in tensorflow is to ensure that the estimated
covariance matrices are positive semidefinite at any time, even if the filters diverge. This ensures for
example that they can be inverted for computing likelihoods or the Kalman Gain, which will other-
wise result in an error that stops the training. We employ the method described in Higham (1988) to
reset the covariance matrices to the nearest positive semidefinite matrix after every iteration.

1https://github.com/tu-rbo/differentiable-particle-filters
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Figure 1: Examples of rendered rgb images for the pushing task.

7.2 EXPERIMENTAL DETAILS

7.2.1 KITTI VISUAL ODOMETRY TASK

The process model for the visual odometry task is defined as(
px
py

)
t

=

(
px
py

)
t−1

+ ∆tvt−1

(
sin(θt−1)
cos(θt−1)

)
vt = vt−1 + ∆tat

θt = θt−1 + ∆tθ̇t−1 θ̇t = θ̇t−1 + ∆tθ̈t

For the architecture of the preprocessing network, we refer to Haarnoja et al. (2016). We initialize
the process noise with diagonal values of

diag(Q) = (1 1 1 11. 0.0225)

and the observation noise with
diag(R) = (4. 1)

7.2.2 PLANAR PUSHING TASK

Data Figure 1 shows two examples of the rendered images we use in the pushing task. While we
actually use coordinate images as input, we show rgb images here for better visibility.

Preprocessing Network The architecture of the preprocessing network that infers z from the raw
input images is shown in Figure 2. It is similar to the network described in (Kloss et al., 2017) for
inferring object position p, contact point r, contact normal n and the contact indicator s from the
scene. We add the left part that computes ω, the difference in object rotation between the current
and the previous image. For this, we extract patches around the predicted object position in both
images and feed both into a convolutional and fully-connected network to infer ω.

Process Model Given the output of the analytical model (vt, ωt), we formulate the process model
f(xt,ut) as

pt+1 = pt + vt rt+1 = rt + ut

θt+1 = θt + ωt nt+1 = R(ωt)nt

lt+1 = lt st+1 = st

mt+1 = mt

Here, we make the simplifying assumption that the pusher will not make or break contact and that
s is thus constant. To predict the next contact point, we update it with the movement of the pusher.
The accuracy of this prediction is bounded by the radius of the pusher, which is rather small in our
case. For predicting the next normal at the contact point, we assume that the position of the contact
point on the object does not change and the normal thus remains constant in the object coordinate
frame. Given this assumption, the only thing we need to do is to adapt the orientation of the normal
to the rotation of the object, where R(ωt) denotes a rotation matrix that rotates n by ωt.
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Figure 2: The preprocessing network for extracting the observations for the pushing task and their
associated uncertainty from two input corrdinate images.

Using empirical data from the analytical model and the preprocessing model, we initialize the pro-
cess noise with diagonal values of

diag(Q) = (4 4 4 0.01 0.01 1. 1. 0.0625 0.0625 0.5)

and the observation noise with

diag(R) = (16. 16. 0.5625 4. 4. 0.25 0.25 0.09)
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