
Under review as a conference paper at ICLR 2020

CLUSTERED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Exploration strategy design is one of the challenging problems in reinforcement
learning (RL), especially when the environment contains a large state space or
sparse rewards. During exploration, the agent tries to discover novel areas or
high reward (quality) areas. In most existing methods, the novelty and quality in
the neighboring area of the current state are not well utilized to guide the explo-
ration of the agent. To tackle this problem, we propose a novel RL framework,
called clustered reinforcement learning (CRL), for efficient exploration in RL.
CRL adopts clustering to divide the collected states into several clusters, based
on which a bonus reward reflecting both novelty and quality in the neighboring
area (cluster) of the current state is given to the agent. Experiments on several
continuous control tasks and several Atari-2600 games show that CRL can out-
perform other state-of-the-art methods to achieve the best performance in most
cases.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 1998) studies how an agent can maximize its cumu-
lative reward in an unknown environment, by learning through exploration and exploitation. A key
challenge in RL is to balance the relationship between exploration and exploitation. If the agent
explores novel states excessively, it might never find rewards to guide the learning direction. Other-
wise, if the agent exploits rewards too intensely, it might converge to suboptimal behaviors and have
fewer opportunities to discover more rewards from exploration.

Although reinforcement learning, especially deep RL (DRL), has recently attracted much attention
and achieved significant performance in a variety of applications, such as game playing (Mnih et al.,
2015; Silver et al., 2016) and robot navigation (Zhang et al., 2016), exploration techniques in RL
are far from satisfactory in many cases. Exploration strategy design is still one of the challenging
problems in RL, especially when the environment contains a large state space or sparse rewards.
Hence, it has become a hot research topic to design exploration strategy, and many exploration
methods have been proposed in recent years.

Some heuristic methods for exploration, such as ε-greedy (Silver et al., 2016; Sutton & Barto, 1998),
uniform sampling (Mnih et al., 2015) and i.i.d./correlated Gaussian noise (Lillicrap et al., 2016;
Schulman et al., 2015), try to directly obtain more different experiences during exploration. For
hard applications or games, these heuristic methods are insufficient enough and the agent needs
exploration techniques that can incorporate meaningful information about the environment.

In recent years, some exploration strategies try to discover novel state areas for exploring. The di-
rect way to measure novelty is to count the visited experiences. In (Bellemare et al., 2016; Ostrovski
et al., 2017), pseudo-counts are estimated from a density model. Hash-based method (Tang et al.,
2017) counts the hash codes of states. There also exist some work using the counts of state-action
pairs to design their exploration techniques, such as explicit explore or exploit (E3) (Kearns &
Singh, 2002), R-Max Brafman & Tennenholtz (2002), UCRL (Auer & Ortner, 2006), UCAGG (Ort-
ner, 2013). Besides, the state novelty can also be measured by empowerment (Klyubin et al., 2005),
the agent’s belief of environment dynamics (Houthooft et al., 2016), prediction error of the system
dynamics model (Pathak et al., 2017; Stadie et al., 2015), prediction by exemplar model (Fu et al.,
2017), and the error of predicting features of states (Burda et al., 2018). All the above methods
perform exploration mainly based on the novelty of states without considering the quality of states.
Furthermore, there are some methods to estimate the quality of states. Kernel-based reinforcement

1



Under review as a conference paper at ICLR 2020

learning (Ormoneit & Sen, 2002) uses locally weighted averaging to estimate the quality (value)
of states. UCRL (Auer & Ortner, 2006) and UCAGG (Ortner, 2013) compute average rewards for
choosing optimistic values. The average reward can be regarded as an estimation of the quality
of states to guide the exploring direction, but there are no methods using the quality of states as
an exploration technique. Furthermore, in most existing methods, the novelty and quality in the
neighboring area of the current state are not well utilized to guide the exploration of the agent.

To tackle this problem, we propose a novel RL framework, called clustered reinforcement
learning (CRL), for efficient exploration in RL. The contributions of CRL are briefly outlined as
follows:

• CRL adopts clustering to divide the collected states into several clusters. The states from
the same cluster have similar features. Hence, the clustered results in CRL provide a pos-
sibility to share meaningful information among different states from the same cluster.

• CRL proposes a novel bonus reward, which reflects both novelty and quality in the neigh-
boring area of the current state. Here, the neighboring area is defined by the states which
share the same cluster with the current state. This bonus reward can guide the agent to
perform efficient exploration, by seamlessly integrating novelty and quality of states.

• Experiments on several continuous control tasks with sparse rewards and several hard ex-
ploratory Atari-2600 games (Bellemare et al., 2013) show that CRL can outperform other
state-of-the-art methods to achieve the best performance in most cases. In particular, on
several games known to be hard for heuristic exploration strategies, CRL achieves signifi-
cantly improvement over baselines.

2 RELATED WORK

Recently, there are some exploration strategies used to discover novel state areas. The direct way to
measure the novelty of states is to count the visited experiences, which has been applied in several
methods. In the tabular setting and finite Markov decision processes (MDPs), the number of state-
action pairs is finite which can be counted directly, such as model-based interval estimation with
exploratory bonus (MBIE-EB) (Strehl & Littman, 2008), explicit explore or exploit (E3) (Kearns &
Singh, 2002) and R-Max (Brafman & Tennenholtz, 2002). MBIE-EB adds the reciprocal of square
root of counts of state-action pairs as the bonus reward to the augmented Bellman equation for
exploring less visited ones with theoretical guarantee. E3 determines the action based on the counts
of state-actions pairs. If the state has never been visited, the action is chosen randomly and if the
state has been visited for some times, the agent takes the action that has been tried the fewest times
before. R-Max uses counts of states as a way to check for known states.

In the continuous and high-dimensional space, the number of states is too large to be counted di-
rectly (Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017; Abel et al., 2016). Bellemare
et al. (2016) and Ostrovski et al. (2017) use a density model to estimate the state pseudo-count quan-
tity, which is used to design the exploration bonus reward. Tang et al. (2017) counts the number of
states by using the hash function to encode states and then it explores by using the reciprocal of
visits as a form of reward bonus, which performs well on some hard exploration Atari-2600 games.
Abel et al. (2016) records the number of cluster center and action pairs and makes use of it to select
an action from the Gibbs distribution. These count-based methods encourage the agent to explore
by making use of the novelty of states and do not take quality into consideration.

Furthermore, there are some methods to estimate the quality of states. Average reward, in
kernel-based reinforcement learning (Ormoneit & Sen, 2002), UCRL (Auer & Ortner, 2006) and
UCAGG (Ortner, 2013), can be regarded as the quality of states. Kernel-based reinforcement
learning (Ormoneit & Sen, 2002) is proposed to solve the stability problem of TD-learning by us-
ing locally weighted averaging to estimate the value of state. UCRL (Auer & Ortner, 2006) and
UCAGG (Ortner, 2013) use average reward to choose optimistic values. Besides, the value of clus-
ter space can also indicate the quality of states. Singh et al. (1994) uses the value of cluster space
with Q-learning and TD(0) by soft state aggregation and provides convergence results. But these
methods do not use the quality of states to explore more areas.

2



Under review as a conference paper at ICLR 2020

To the best of our knowledge, the novelty and quality in the neighboring area of the current state
have not been well utilized to guide the exploration of the agent in existing methods, especially in
the high dimensional state space. This motivates the work of this paper.

3 NOTATION

In this paper, we adopt similar notations as those in (Tang et al., 2017). More specifically, we
model the RL problem as a finite-horizon discounted Markov decision process (MDP), which can be
defined by a tuple (S,A,P, r, ρ0, γ, T ). Here, S ∈ Rd denotes the state space,A ∈ Rm denotes the
action space,P : S×A×S → R denotes a transition probability distribution, r : S×A → R denotes
a reward function, ρ0 is an initial state distribution, γ ∈ (0, 1] is a discount factor, and T denotes the
horizon time. In this paper, we assume r ≥ 0. For cases with negative rewards, we can transform
them to cases without negative rewards. The goal of RL is to maximize Eπ,P

[∑T
t=0 γ

tr (st, at)
]

which is the total expected discounted reward over a policy π.

4 CLUSTERED REINFORCEMENT LEARNING

This section presents the details of our proposed RL framework, called clustered reinforcement
learning (CRL). The key idea of CRL is to adopt clustering to divide the collected states into several
clusters, and then design a novel cluster-based bonus reward for exploration.

4.1 CLUSTERING

Intuitively, both novelty and quality are useful for exploration strategy design. If the agent only
cares about novelty, it might explore intensively in some unexplored areas without any reward. If the
agent only cares about quality, it might converge to suboptimal behaviors and have low opportunity
to discover unexplored areas with higher rewards. Hence, it is better to integrate both novelty and
quality into the same exploration strategy.

We find that clustering can provide the possibility to integrate both novelty and quality together.
Intuitively, a cluster of states can be treated as an area. The number of collected states in a cluster
reflects the count (novelty) information of that area. The average reward of the collected states
in a cluster reflects the quality of that area. Hence, based on the clustered results, we can design
an exploration strategy considering both novelty and quality. Furthermore, the states from the same
cluster have similar features, and hence the clustered results provide a possibility to share meaningful
information among different states from the same cluster. The details of exploration strategy design
based on clustering will be left to the following subsection. Here, we only describe the clustering
algorithm.

In CRL, we perform clustering on states. Assume the number of clusters isK, and we have collected
N state-action samples {(si, ai, ri)}Ni=1 with some policy. We need to cluster the collected states
{si}Ni=1 into K clusters by using some clustering algorithm f : S → C, where C = {Ci}Ki=1 and
Ci is the center of the i-th cluster. We can use any clustering algorithm in the CRL framework.
Although more sophisticated clustering algorithms might be able to achieve better performance, in
this paper we just choose k-means algorithm (Coates & Ng, 2012). K-means is one of the simplest
clustering algorithms with wide applications. The detail of k-means is omitted here, and readers can
find it in most machine learning textbooks.

4.2 CLUSTERING-BASED BONUS REWARD

As stated above, clustering can provide the possibility of integrating both novelty and quality to-
gether for exploration. Here, we propose a novel clustering-based bonus reward, based on which
many policy updating algorithms can be adopted to get an exploration strategy considering both
novelty and quality.

Given a state si, it will be allocated to the nearest cluster by the cluster assignment function φ(si) =
argmin

k
‖si − Ck‖. Here, 1 6 k 6 K and ‖si − Ck‖ denotes the distance between si and the k-th

3



Under review as a conference paper at ICLR 2020

cluster center Ck. The sum of rewards in the k-th cluster is denoted as Rk, which can be computed
as follows:

Rk =

N∑
i=1

riI(φ(si) = k), (1)

where I(·) is an indicator function. Rk is also called cluster reward of cluster k in this paper. The
number of states in the k-th cluster is denoted as Nk, which can be computed as follows:

Nk =

N∑
i=1

I(φ(si) = k). (2)

Intuitively, a larger Nk typically means that the area corresponding to cluster k has more visits (ex-
ploration), which implies the novelty of this area is lower. Hence, the bonus reward should be in-
versely proportional toNk. The average reward of cluster k, denoted as Rk

Nk
, can be used to represent

the quality of the corresponding area of cluster k. Hence, the bonus reward should be proportional
to Rk

Nk
.

With the above intuition, we propose a clustering-based bonus reward b : S → R to integrate both
novelty and quality of the neighboring area of the current state s , which is defined as follows:

b(s) = β
max(η,Rφ(s))

Nφ(s)
, (3)

where β ∈ R+ is the bonus coefficient and η ∈ R+ is the count (novelty) coefficient. Typically, η is
set to be a small number relative to a true reward 1.

In general, as long as there exist one or two states with positive rewards in cluster φ(s), Rφ(s) will
larger than η. Hence, if b(s) = βη

Nφ(s)
, it is highly possible that all states in cluster φ(s) have zero

reward. Hence, when Rφ(s) = 0 which means no rewards have been got for cluster φ(s), the bonus
reward should be determined by the count of the cluster. From Equation (3), a larger Nφ(s) will
result in a smaller bonus reward b(s). This will guide the agent to explore novel area corresponding
to clusters with less visits (exploration), which is reasonable. For two clusters with the same cluster
reward, the cluster with smaller number of states (higher novelty) will be more likely to be explored,
which is reasonable. For two clusters with the same number of states, the cluster with higher cluster
reward (higher quality) will be more likely to be explored, which is also reasonable.

Hence, the clustering-based bonus reward function defined in Equation (3) is intuitively reasonable,
and it can seamlessly integrate both novelty and quality into the same bonus function. Finally, the
agent will adopt {(si, ai, ri + bi)}Ni=1 to update the policy (perform exploration). Many policy
updating algorithms, such as trust region policy optimization (TRPO) (Schulman et al., 2015), can
be adopted.

Algorithm 1 briefly presents the learning framework of CRL. We can see that CRL is actually a gen-
eral framework, and we can get different RL variants by taking different clustering algorithms and
different policy updating algorithms. Please note that ri + bi is only used for training Algorithm 1.
But the performance evaluation (test) is measured without bi, which can be directly compared with
existing RL methods without extra bonus reward.

5 EXPERIMENTS

We use several continuous control tasks and several Atari-2600 games to evaluate CRL and base-
lines. We want to investigate and answer the following research questions:

• Is the count-based exploration sufficient to encourage the agent to achieve the final goal of
tasks?

• Can CRL improve performance significantly across different tasks compared with other
methods?

1In our experiments, the true rewards are either zero or positive integers.

4



Under review as a conference paper at ICLR 2020

Algorithm 1 Framework of Clustered Reinforcement Learning (CRL)
Initialize the number of clusters K, bonus coefficient β, count coefficient η
for iteration j = 1, . . . , J do

Collect a set of state-action samples {(si, ai, ri)}Ni=1 with policy πj ;
Cluster the state samples with f : S → C, where C = {Ci}Ki=1 and f is some clustering
algorithm;
Compute the cluster assignment for each state φ(si) = argmin

k
‖si−Ck‖,∀i : 1 6 i 6 N, k :

1 6 k 6 K;
Compute sum of rewards Rk using Equation (1) and the number of states Nk using Equa-
tion (2), ∀k : 1 6 k 6 K;
Compute the bonus b(si) using Equation (3);
Update the policy πj using rewards {ri + b(si)}Ni=1 with some policy updating algorithm;

end for

(a) MountainCar (b) CartpoleSwingup

Figure 1: Snapshots of two MuJoCo games.

5.1 EXPERIMENTAL SETUP

5.1.1 ENVIRONMENTS

MuJoCo. The rllab benchmark (Duan et al., 2016) consists of various continuous control tasks to test
RL algorithms. We select MountainCar and CartpoleSwingup to compare our methods with other
baselines. The experimental setups of MountainCar and CartPoleSwingup using sparse rewards can
be found in Houthooft et al. (2016). In MountainCar, S ⊆ R3,A ⊆ R1. The agent receives a reward
of +1 when the car escapes the valley from the right side, otherwise the agent receives a reward of
0. In CartpoleSwingup, S ⊆ R4,A ⊆ R1. The agent receives a reward of +1 when the cosine of
pole angle is larger than 0.8, otherwise the agent receives a zero return at other positions. Figure 1
shows one snapshot for each task.

Arcade Learning Environment. The Arcade Learning Environment (ALE) (Bellemare et al., 2013)
is a commonly used benchmark for RL algorithms because of its high-dimensional state space and
wide variety of video games. We select a subset of Atari games2: Freeway, Frostbite, Gravitar,
Solaris and Venture. Figure 2 shows a snapshot for each game. For example, in Freeway, the agent
need to avoid the traffic, cross the road and get the reward. These games are classified into hard
exploration category, according to the taxonomy in (Bellemare et al., 2016).

5.1.2 BASELINES

CRL is a general framework which can adopt many different policy updating (optimization) al-
gorithms to get different variants. In this paper, we only adopt trust region policy optimiza-

2The Montezuma game evaluated in Tang et al. (2017) is not adopted in this paper for evaluation, because
this paper only uses raw pixels which are not enough for learning effective policy on Montezuma game for most
methods including CRL and other baselines. We can use advanced feature to learn effective policy, but this is
not the focus of this paper.

5



Under review as a conference paper at ICLR 2020

(a) Freeway (b) Frostbite (c) Gravitar (d) Solaris (e) Venture

Figure 2: Snapshots of five hard exploration Atari-2600 games.

tion (TRPO) (Schulman et al., 2015) as the policy updating algorithm for CRL, and leave other
variants of CRL for future work. We will denote our method as CRLTRPO in the following content.
The baselines for comparison include TRPO and TRPO-Hash (Tang et al., 2017). For continuous
control problem, we choose VIME as a baseline.

TRPO (Schulman et al., 2015) is a classic policy gradient method, which uses trust region to guaran-
tee stable improvement of policy and can handle both discrete and continuous action space. Further-
more, this method is not too sensitive to hyper-parameters. TRPO adopts a Gaussian control noise
as a heuristic exploration strategy.

TRPO-Hash (Tang et al., 2017) is a hash-based method, which is a generalization of classic count-
based method for high-dimensional and continuous state spaces. The main idea is to use locality-
sensitive hashing (LSH) (Andoni & Indyk, 2006) to encode continuous and high-dimensional data
into hash codes, like {−1, 1}h. Here, h is the length of hash codes. TRPO-Hash has several variants
in (Tang et al., 2017). For fair comparison, we choose SimHash (Charikar, 2002) (TRPO-Hash) as
the hash function and pixels as inputs for TRPO-Hash in this paper, because our CRL also adopts
pixels rather than advanced features as inputs. TRPO-Hash is trained by using the code provided by
its authors.

VIME (Houthooft et al., 2016) is a curiosity-driven exploration strategy, which seeks out unexplored
state-action region by maximizing the information gain of agent’s belief of environments. VIME
is also trained by using the code provided by its authors. Here, we select VIME to compare with
our method in continuous control problem because this method only supports continuous state and
action space.

5.2 PERFORMANCE ON MUJOCO

Figure 3 shows the results of TRPO, TRPO-Hash, VIME and CRLTRPO in MountainCar and Cart-
poleSwingup. We can find that our CRLTRPO achieves the best performance on both MountainCar
and CartpoleSwingup. In MountainCar, our method is the first one to reach the goal state and master
a good policy. Our method outperforms all other methods with a large margin. The goal of TRPO-
Hash is to help the agent explore more novel states. But TRPO-Hash might go through all states
until reaching the goal state, which is the disadvantage of count (novelty) based exploration. We
find that at the end of training, TRPO-Hash fails to achieve the goal that our method and VIME
have achieved. The reason why TRPO-Hash fails is that the novelty of states diverts the agent’s
attention. The worst case is that the agent collects all states until it finds the goal. This disadvantage
of count-based methods might become more serious in the high-dimensional state space since it is
impossible to go through all states in the high-dimensional state space. Therefore, strategies with
only count-based exploration are insufficient.

5.3 PERFORMANCE ON ATARI-2600

For the video games of Atari-2600, we compare CRLTRPO with other baselines. The agent is
trained for 500 iterations in all experiments with each iteration consisting of 0.4M frames. The
agent selects an action every 4 frames, so every iteration consists of 0.1M steps (0.4M frames). The

6



Under review as a conference paper at ICLR 2020

(a) MountainCar (b) CartpoleSwingup

Figure 3: Mean average return of different algorithms on MountainCar and CartpoleSwingup over 5 random
seeds. The solid line represents the mean average return and the shaded area represents one standard deviation.

Table 1: The mean average undiscounted return after training for 50M time steps (200M frames).
Freeway Frostbite Gravitar Solaris Venture

TRPO 17.55 1229.66 500.33 2110.22 283.48
TRPO-Hash 22.29 2954.10 577.47 2619.32 299.61
CRLTRPO 26.68 4558.52 541.72 2976.23 723.94

Double-DQN 33.3 1683 412 3068 98.0
Dueling network 0.0 4672 588 2251 497

A3C+ 27.3 507 246 2175 0
pseudo-count 29.2 1450 - - 369

last frames of every 4 frames are used for clustering and counting. The performance is evaluated
over 5 random seeds. The seeds for evaluation are the same for all methods.

We summarize all results in Table 1. Please note that TRPO and TRPO-Hash are trained with the
code provided by the authors of TRPO-Hash. All hyper-parameters are reported in the supple-
mentary material. We also compare our methods to double-DQN (van Hasselt et al., 2016), dueling
network (Wang et al., 2016), A3C+ (Bellemare et al., 2016), double DQN with pseudo-count (Belle-
mare et al., 2016), the results of which are from (Tang et al., 2017). Furthermore, we show the
training curves of our methods, TRPO and TRPO-Hash in Figure 4.

CRLTRPO achieves significantly improvement over TRPO and TRPO-Hash on Freeway, Frostbite,
Solaris and Venture. Please note that DQN-based methods reuse off-policy experience. Hence,
DQN-based methods have better performance than TRPO without any exploration techniques in
most cases. But our methods can still outperform DQN-based methods in most cases.

6 CONCLUSION

In this paper, we propose a novel RL framework, called clustered reinforcement learning (CRL),
for efficient exploration. By using clustering, CRL provides a general framework to adopt both
novelty and quality in the neighboring area of the current state for exploration. Experiments on
several continuous control tasks and several hard exploration Atari-2600 games show that CRL can
outperform other state-of-the-art methods to achieve the best performance in most cases.

7



Under review as a conference paper at ICLR 2020

(a) Freeway (b) Frostbite (c) Gravitar

(d) Solaris (e) Venture

Figure 4: Mean average return of different algorithms on Atari-2600 over 5 random seeds. The solid line
represents the mean average return and the shaded area represents one standard deviation.

A APPENDIX

A.1 HYPER-PARAMETER SETTING IN MUJOCO

In MuJoCo, the hyper-parameter setting of TRPO, TRPO-Hash, CRLTRPO is shown in Table 2.
The hyper-parameter setting of VIME can be found in (Houthooft et al., 2016). The performance is
evaluated over 5 random seeds. The seeds for evaluation are the same for all methods.

Table 2: Hyper-parameter setting in MuJoCo.
TRPO TRPO-Hash CRLTRPO

TRPO batchsize 5000
TRPO stepsize 0.01
Discount factor 0.99

Policy hidden units (32, 32)
Baseline function Linear

Iteration 30
Max length of path 500
Bonus coefficient - 0.01 1

Others - Simhash dimension: 32 #cluster centers: 16
- - η = 0.1

A.2 HYPER-PARAMETER SETTING IN ATARI-2600

The hyper-parameter settings in TRPO, TRPO-Hash and CRLTRPO are shown in Table 3. The
performance is evaluated over 5 random seeds. The seeds for evaluation are the same for all methods.

8



Under review as a conference paper at ICLR 2020

Table 3: Hyper-parameter setting of Atari-2600 in Table 1
TRPO TRPO-Hash CRLTRPO

TRPO batchsize 100K
TRPO stepsize 0.001
Discount factor 0.99

Iteration 500
Max length of path 4500

Policy structure 16 conv filters of size 8× 8, stride 4
32 conv filters of size 4× 4, stride 2
fully-connect layer with 256 units

linear transform and softmax to output action probabilities
Input pre-processing grayscale; downsampled to 42× 42

each pixel rescaled to [−1, 1];
4 previous frames are concatenated to form the input state

Bonus coefficient - 0.01 0.01
Others - SimHash dimension: 64 Number of clusters: 16

η = 0.1

REFERENCES

David Abel, Alekh Agarwal, Fernando Diaz, Akshay Krishnamurthy, and Robert E. Schapire.
Exploratory gradient boosting for reinforcement learning in complex domains. CoRR,
abs/1603.04119, 2016.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions. In FOCS, pp. 459–468, 2006.

Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted reinforcement
learning. In NeurIPS, pp. 49–56, 2006.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. JAIR, 47:253–279, 2013.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi
Munos. Unifying count-based exploration and intrinsic motivation. In NeurIPS, pp. 1471–1479,
2016.

Ronen I. Brafman and Moshe Tennenholtz. R-MAX - A general polynomial time algorithm for
near-optimal reinforcement learning. JMLR, 3:213–231, 2002.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network
distillation. CoRR, abs/1810.12894, 2018.

Moses Charikar. Similarity estimation techniques from rounding algorithms. In STOC, pp. 380–388,
2002.

Adam Coates and Andrew Y. Ng. Learning feature representations with k-means. In Neural Net-
works: Tricks of the Trade - Second Edition, pp. 561–580. 2012.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In ICML, pp. 1329–1338, 2016.

Justin Fu, John D. Co-Reyes, and Sergey Levine. EX2: exploration with exemplar models for deep
reinforcement learning. In NeurIPS, pp. 2574–2584, 2017.

9



Under review as a conference paper at ICLR 2020

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. VIME:
variational information maximizing exploration. In NeurIPS, pp. 1109–1117, 2016.

Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49(2-3):209–232, 2002.

Alexander S. Klyubin, Daniel Polani, and Chrystopher L. Nehaniv. Empowerment: a universal
agent-centric measure of control. In CEC, pp. 128–135, 2005.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR,
2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Dirk Ormoneit and Saunak Sen. Kernel-based reinforcement learning. Machine Learning, 49(2-3):
161–178, 2002.

Ronald Ortner. Adaptive aggregation for reinforcement learning in average reward markov decision
processes. Annals OR, 208(1):321–336, 2013.

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based explo-
ration with neural density models. In ICML, pp. 2721–2730, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In ICML, pp. 2778–2787, 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, pp. 1889–1897, 2015.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Satinder P. Singh, Tommi S. Jaakkola, and Michael I. Jordan. Reinforcement learning with soft state
aggregation. In NeurIPS, pp. 361–368, 1994.

Bradly C. Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. CoRR, abs/1507.00814, 2015.

Alexander L. Strehl and Michael L. Littman. An analysis of model-based interval estimation for
markov decision processes. JCSS, 74(8):1309–1331, 2008.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive com-
putation and machine learning. MIT Press, 1998.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based exploration for deep
reinforcement learning. In NeurIPS, pp. 2750–2759, 2017.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI, pp. 2094–2100, 2016.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning. In ICML, pp. 1995–2003, 2016.

Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, and Pieter Abbeel. Learning deep
neural network policies with continuous memory states. In ICRA, pp. 520–527, 2016.

10


	Introduction
	Related Work
	Notation
	Clustered Reinforcement Learning
	Clustering
	Clustering-based Bonus Reward

	Experiments
	Experimental Setup
	Environments
	Baselines

	Performance on MuJoCo
	Performance on Atari-2600

	Conclusion
	Appendix
	Hyper-parameter setting in MuJoCo
	Hyper-parameter setting in Atari-2600


