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ABSTRACT

Attention mechanisms have advanced the state of the art in several machine learning
tasks. Despite significant empirical gains, there is a lack of theoretical analyses
on understanding their effectiveness. In this paper, we address this problem by
studying the landscape of population and empirical loss functions of attention-
based neural networks. Our results show that, under mild assumptions, every local
minimum of a two-layer attention model has low prediction error, and attention
models require lower sample complexity than models not employing attention.
Additionally for the popular self-attention, our theoretical results provide several
guidelines for designing attention mechanisms. Our findings are validated with
satisfactory experimental results on MNIST and IMDB reviews dataset.

1 INTRODUCTION

Significant research in machine learning has focused on designing network architectures for superior
performance, faster convergence and better generalization. Attention mechanisms are one such design
choice that is widely used in many natural language processing and computer vision tasks. Inspired
by human cognition, attention mechanisms advocate focusing on the relevant regions of input data to
solve a desired task rather than ingesting the entire input.

Several variants of attention mechanisms have been proposed, and they have advanced the state of the
art in machine translation (Bahdanau et al., 2014; Luong et al., 2015; Vaswani et al., 2017), image
captioning (Xu et al., 2015), video captioning (Pu et al., 2018), visual question answering (Lu et al.,
2016), generative modeling (Zhang et al., 2018), etc. In computer vision, spatial/ spatio-temporal
attention masks are employed to focus only on the relevant regions of images/ video frames for the
underlying downstream task (Mnih et al., 2014). In natural language tasks, where input-output pairs
are sequential data, attention mechanisms focus on the most relevant elements in the input sequence
to predict each symbol of the output sequence. Hidden state representations of a recurrent neural
network are typically used to compute these attention masks. The most popular implementation of
this paradigm is self-attention (Vaswani et al., 2017), which uses correlation among the elements of
the input sequence to learn an attention mask.

Substantial empirical evidence demonstrating the effectiveness of attention mechanisms motivates
us to study the problem from a theoretical lens. In this work, we attempt to understand the loss
landscape of neural networks employing attention. Analyzing the loss landscape and optimization of
neural networks is an open area of research, and is a challenging problem even for two-layer neural
networks (Poggio & Liao, 2017; Rister & Rubin, 2017; Soudry & Hoffer, 2018; Zhou & Feng, 2017;
Mei et al., 2018b; Soltanolkotabi et al., 2017; Ge et al., 2017; Nguyen & Hein, 2017a; Arora et al.,
2018). Convergence of gradient descent for two-layer neural networks has been studied in (Allen-Zhu
et al., 2019; Mei et al., 2018b; Du et al., 2019). Ge et al. (2017) shows that there is no bad local
minima for two-layer neural nets under a specific loss landscape design. Unfortunately, these results
cannot directly be applied to attention mechanisms, as attention modifies the network structure and
introduces additional parameters which are jointly optimized with the model. To the best of our
knowledge, our work presents the first theoretical analysis on attention-based models.

Our main result shows that, under some mild conditions, every stationary point of attention models
achieve a low prediction error. We perform an asymptotic analysis where we show that expected
prediction on error goes to 0 as n→∞. We also show that attention models achieve lower sample
complexity than the models not employing attention. We then discuss how the result can be extended
to recurrent attention and multi layer cases, and discuss the effect of regularization. In addition, we
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show how attention further helps improve the loss landscape by studying three properties: number of
linear regions, flatness of local minima and small sample size training. We validate our theoretical
results with experiments on MNIST and IMDB reviews dataset.

2 ATTENTION MODELS

Attention mechanisms are modules that help neural networks focus only on the relevant regions
of input data to make predictions. To study such behavior, we analyze different types of attention
models. We start with a naive global attention model. Then we analyze the most popular self-attention
model and discuss the extension to recurrent attention in Appendix. In the naive global attention
model, we consider a dataset D = {xi, yi}Ni=1, xi ∈ Rp, yi ∈ R, where the output yi depends only
on certain regions of input xi, i.e., yi = f?(a? � xi), where a? is an attention mask, and f?(.) is
the ground-truth function that is used to generate the dataset and the vector a? ∈ [0, 1]p. The set of
entries {a?i |a?i 6= 0} corresponds to the relevant region of the input, while the complementary set
{a?i |a?i = 0} corresponds to the irrelevant region.

We consider a two-layer ReLU-based neural network to approximate the function f∗. The network
architecture consists of a linear layer followed by rectified linear units (ReLU) as a non-linearity
and a second linear layer. Denote the weights of the first layer by w(1), the weights of the second
layer by w(2), and the ReLU function by φ(·). Then the response function for the input x can be
written as f(x) = w(2)Tφ(〈w(1),x〉). We call the above function “baseline model" since it does
not employ any attention. To incorporate attention, we introduce the attention mask a as additional
neural network parameters. The attention model we use can be written as:

f(x) = w(2)Tφ(〈w(1),x� a〉) (1)

In this paper, we focus on the regression task which minimizes the following loss function:L =
E(x,y)∼D‖f(x)− y‖22. While we present analysis on the regression task, our theory can easily be
extended to classification tasks as well.

After a thorough analysis of global attention, we analyze a more practical self-attention setup,
which comes from the transformer model proposed in Vaswani et al. (2017). The input xi =

(x1
i , . . . ,x

p
i ) ∈ Rt×p, where xji are t-dimensional vectors. Each xi corresponds to independent

sentences for i = 1, . . . , n, and xj’s are the fixed dimensional vector embedding of each word in
sentence x. wQ,wK ∈ Rdq×t are the query and key matrices, and wV ∈ Rdv×t is the value matrix.
For each input xi, the key is calculated as: Ki = (wKxi)

T ∈ Rp×dq ; For zth vector in the input,
the query vector is computed as: Qz

i = (wQxzi )
T ∈ R1×dq for z = 1, . . . , p. The value matrix

V = wV xi ∈ Rdv×p. Then the self-attention w.r.t to the zth vector in the input xi is computed as:

a
self(z)
i (xzi ,w

Q,wK) = softmax(
QiK

T
i√

dk
) (2)

for z = 1, . . . , p. And aselfi = (a
self(1)
i , . . . ,a

self(p)
i ). This self-attention vector represents the

interaction between different words in each sentence. The value vector for each word in the sentence
xzi can be calculated as V z

i = V a
self(z)
i ∈ Rdv . This value vector is then passed to a 2-layer MLP

parameterized by w(1) ∈ Rpdv×d and w(2) ∈ Rd×1, resulting in the following generative model:

yi = w(2)?Tφ(〈w(1)?, vec(wV xia
self
i )〉) + εi (3)

where vec(·) represents the vectorization of a matrix. We also discuss the extension to recurrent
attention model and multi-layer self-attention model in Appendix due to the page limit.

Note that naive global attention is not widely used in practice, because here we assume the attention
mask is globally fixed for all points, but not a function of input. In real world application, the attention
weights depend on the input, such as the self-attention framework we just introduced. Despite the
limitation of naive global attention model, it is a fundamental building block of attention models, and
needed to be analyzed first for two following reasons.

First, this fixed attention shares the core idea of attention: There is a specific intrinsic structure in
data, and this intrinsic structure requires that we should assign different weights to different input
features accordingly. And this weight assigning strategy should be learned from data. In naive
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global attention, attention weights a are parameters themselves; In the self-attention model, the
attention weights a depend on a function parameterized by value/key/query matrices, and we learn
these matrices as attention parameters. And for both global and self-attention, we jointly learn the
network weights(w(1),w(2)) and attention parameters(a in global attention, value/key/query matrices
in self-attention) at the same time. Therefore this naive global attention is a good starting point for
analyzing attention mechanisms.

Second, we can gain helpful insights on attention by analyzing the global attention case. The number
of non-zero elements of a in global attention represents both the size of attention parameters and
the sparsity level of attention. In the standard self-attention model, size of attention parameters
is determined by the size of value/key/query matrices. And the sparsity level is how many words
we allow one word to attend to. By studying the effect of this quantity, we can have a better
understanding of how the sparsity and parameter size of attention affect the model performance and
sample complexity. The detailed discussions can be found in Section 3.

3 LOSS LANDSCAPE ANALYSES ON ATTENTION MODELS

In Section 3.1, we analyze the loss landscape for the the naive global attention model, which is
defined as

min
w(1),w(2),a∈S

1

2n

n∑
i=1

(w(2)Tφ(〈w(1),xi � a〉)− yi)2 (4)

where w(1) ∈ Rp∗d, w(2) ∈ Rd, a ∈ Rp, and S is the parameter space of a. Section 3.2 extends
the loss landscape analysis to the self-attention model with a = f(x). Section 3.3 discusses the
extension to recurrent attention model. Section 3.4 discusses the effect of regularization and how the
result can be extended to multi-layer networks.

To approximate the non-differentiable ReLU φ, we use the softplus activation function φτ (x), i.e.,

φτ (x) =
1

τ
log(1 + eτx)

Note φτ converges to ReLU as τ →∞ (Glorot et al., 2011). Theoretical results with φτ (x) will hold
for any arbitrarily large τ . For ease of notation, we still use φ(x) to denote the softplus function.

3.1 ASYMPTOTIC PROPERTY OF NAIVE GLOBAL ATTENTION MODEL

We first analyze the asymptotic prediction error of local minimum with large sample size. Let the
covariance matrix of φ(w(1),x� a) be (Σφ)ij = cov(φi(〈w(1),x� a〉), φj(〈w(1),x� a〉)) and
h(x·k) = x·kak(w(2) � φ′(〈w(1)T ,x � a〉), where x·k represents kth feature in x, and ak is the
attention mask for x·k. φ

′
(〈w(1)T ,x� a〉 is the first order derivative with respect to the value in φ(·)

and it belongs to Rd. Let u = (w(2)φ(〈w(1),x� a〉)− E(y|x)). Before proceeding, we introduce
several necessary assumptions:

(A1) xi are i.i.d with ‖xi‖∞ < Cx for i = 1, 2, ..., n.

(A2) There exist C1, C2 such that ‖w(1)‖F < C1 and ‖w(2)‖2 < C2 for any w(1), w(2) in S.

(A3) The output y can be specified by the two-layer neural network up to an independent sub-
Gaussian error with variance σ2, i.e., there exists a set of parameter (a?,w(1)?,w(2)?), such that
yi = w(2)?Tφ(〈w(1)?,xi � a?〉) + εi, where εi ∼ subG(0, C2

3 ) for i=1,2,...n, with xi ⊥⊥ εi. And
‖E(φ(〈w(1)?,xi � a?〉))‖2 ≤ C4

(A4) ‖a‖0 ≤ s0 such that s0 ≤ p, which represents the sparsity of the attention model, and
0 ≤ ai ≤ 1 for any i = 1, · · · , p.

(A5) λmin(Σφ) ≥ Cφ, and when the estimation of φ is inaccurate, i.e, E(‖φ(〈w(1),x � a〉 −
φ?(〈w(1),x� a〉)‖2) ≥ O(γ), then there exists a feature x·k and for the tth element of ht(x·k), it
satisfies sd(ht(x·k)) = O(1) and cor(u, ht(x·k)) = O(1) for w(2) in the form of Σ−1φ r + o(γ).

(A6) E(w(2)φ(〈w(1),x� a〉))− E(y) = o(γ/
√
s0).
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(A7) The sum of the weights ‖a‖1 = 1.

These assumptions are mild when the dimension of x is large. The justification of these assumptions
are provided in the appendices. Given these assumptions, we show in Theorem 1 that the sample
complexity required to converge to a good minimum is reduced with attention mechanism.
Theorem 1. Under (A1) to (A6), for any γ > 0, suppose

n &
s20C

2
1C

2
xη

2

γ2
log(

s0η

γ
)(pd+ p+ d)

where η = C1C2Cx. Then with probability tending to 1, any stationary point (ã, w̃(1), w̃(2)) of the
objective function (4) satisfies the following prediction error bound:

E(w̃(2)Tφ(〈w̃(1),x� ã〉)− E(y|x))2 . γ2

Remark: The sample complexity bound of Theorem 3 provides helpful insight for understanding
attention mechanisms. With the sparsity structure of attention mask a, attention mechanisms constrain
the parameters in a smaller space, thus reducing the variance and the covering number. This
leads to lower sample complexity compared to the baseline model not employing attention. It is
straightforward to calculate the sample complexity bound for the baseline model. To achieve the
same error bound, we substitute s0 with p in the bound, and this results in a much larger value. When
s0 is fixed, we can see up to a log term, prediction error γ is proportion to n−1/2, which is the optimal
rate of convergence in regression. This shows that the bound is tight in this aspect.

Next, we extend Theorem 1 to the attention model with an additional sum-to-one constraint (A7).
The discussion of the following Corollary 1 is provided in the appendix.

Corollary 1. Under (A1) to (A7), for any γ > 0, suppose n & C2
1C

2
xη

2

γ2 log( ηγ )(pd+ p+ d), where
η = C1C2Cx. Then with probability tending to 1, any stationary point (ã, w̃(1), w̃(2)) of the objective
function (4) satisfies the following prediction error bound:E(w̃(2)Tφ(〈w̃(1),x� ã〉)− E(y|x))2 .
γ2.

3.2 ASYMPTOTIC PROPERTY OF SELF-ATTENTION MODEL

In this section, we extend our previous analysis to the self-attention model. In self-attention, the
attention mask is no more fixed globally, but instead a function of the input. We begin by analyzing a
self-attention model with a known attention function f(·), in which the weight a is not optimized
together with w. Similar bound can be derived for the following model:

min
w(1),w(2)∈S

1

2n

n∑
i=1

(w(2)Tφ(〈w(1),xi � f(x)〉)− yi)2 (5)

Proposition 1. Under (A1) to (A6), suppose that a = f(x). For any γ > 0, given the sample
size n & s20C

2
1C

2
xη

2

γ2 log( s0ηγ )(pd + d), where η = C1C2Cx, with probability converging to 1, any
stationary point (w̃(1), w̃(2)) of the objective function equation 5 satisfies that: E(w̃(2)Tφ(〈w̃(1),x�
ã〉)− E(y|x))2 . γ2.

Proposition 1 implies that if the self-attention mask can be precisely computed, global attention
results can be extended to self-attention ones. However, the function f(·) is not necessary known,
and needs to be learnt in real world applications. Therefore the self-attention setup as we introduced
in section 2 is more desired in real-world setting. Denoting w = (w(1),w(2),wQ,wK ,wV ), the
two-layer self-attention model can be estimated by:

min
w

1

2n

n∑
i=1

(w(2)Tφ(〈w(1), vec(wV xia
self
i )〉)− yi)2 (6)

We now introduce necessary assumptions for analyzing self-attention model.

(A8) There exist C5,C6 and C7 such that ‖wQ‖F ≤ C5, ‖wK‖F ≤ C6, ‖wV ‖F ≤ C7.

4



Under review as a conference paper at ICLR 2020

(A9) The output y can be predicted by the two-layer network (3) with an independent sub-Gaussian
error with variance σ2, i.e, there exists a set of parameters (a?,w(1)?,w(2)?) such that yi =

w(2)?Tφ(〈w(1)?, vec(wV xia
self(z)
i )〉) + εi, where aself is calculated by (2); εi ∼ subG(0, C2

4 ) for
i = 1, 2, ...n, with xi ⊥⊥ εi.
(A10) We assume (A5) and (A6) holds, substituting xi � a with vec(wV xia

self
i ), and ht(x·k) =

(vec(wV xia
self
i ))·k(w(2)T )� φ′(w(1),xi � a)), where (vec(wV xia

self
i ))·k is the k-th element

of the value matrices.

The assumption (A9) states that self-attention model can correctly predict the conditional mean
E(yi|xi). Note that (A9) encompasses a more expressive class of models than (A3), which includes
the models used in practice such as the transformers. (A10) is parallel to (A5) and (A6). Under these
assumptions, we can obtain its sample complexity as given by following theorem:
Theorem 2. Under (A1), (A2), and (A8) to (A10), for any γ > 0, given the sample size:

n &
η2C2

1C
2
x

γ2
log(

C5C6C7η

γ
)(pdvd+ d+ 2dqt+ dvt)

where η = C1C2Cx, with probability tending to 1, any stationary point (w̃(1), w̃(2), w̃Q, w̃K) of
the objective function (6) satisfies that: E(w̃(2)Tφ(〈w̃(1), vec(wV xia

self
i )〉)− E(y|x))2 . γ2

Remark: Theorem 2 shows that with the help of self-attention, we can achieve consistent prediction
under more expressive class of models (assumption (A9)) which considers the interactions between
vectors in data. It is worth pointing out that both global attention model and baseline model do not
have consistency for the class of models beyond the ones stated in (A3). In other words, consistent
prediction on the data distribution generated from equation 3 using baseline and global attention
models requires introducing larger parameter space, for example, using more layers of network
or more units in each layer. Self-attention model, on the other hand, achieves the more accurate
estimation by constraining the parameter space and input space. And parallel to the sparsity level s0
in Theorem 1, a proper choice of value/query/key matrices can help reduce sample complexity. If a
sparse attention(i.e. one word should attend to all words, but only some relevant words), the sample
complexity can also be further reduced similar with Theorem 1.

3.3 EXTENSION TO RECURRENT ATTENTION NETWORK

Sample complexity analysis can be extended to recurrent neural networks. This is included in the
appendix. The key messages from our analysis include: (1) A good design of recurrent framework
can help the network converge to a good stationary point with small sample complexity, and (2) An
arbitrarily complex framework increases the sample complexity. Since in real world, the optimal
recurrent framework is unknown, careful design choice has to be made for obtaining good sample
complexity.

3.4 DISCUSSION: REGULARIZATION AND BEYOND 2 LAYERS

So far our analyses provide some theoretical justification on how attention mechanisms help learn
superior models. Furthermore, our analysis also suggests proper regularization is helpful in training
an attention model. An `1 regularization on attention weights and `2 regularization on network
weights are effective in reducing the sample complexity. We also find that imposing constraints and
regularization on network weights can help remove sharp minima, and keep flat minima with good
generalization. Detailed discussions on regularization are provided in Appendix Section D.1.

Also, Theorem 1 and 2 can be extended to multi-layer attention network, under the assumptions
parallel to (A8), (A9) and (A10): There exists a correct multi-layer self-attention network can specify
the model, and the bias and gradient with respect to network weights are not uncorrelated. Under
these assumptions, we provide sample complexity bound for multi-layer self-attention models. And
all the discussions and insights are applied to multi-layer models. Explicit assumptions, discussions
and theorems are provided in Appendix Section D.2. We avoid multi-layer setting in main context
because it leads to over-complicated derivations and assumption justifications, and will distract
readers from main idea of the paper. We believe two-layer models are representative enough to
provide theoretical evidence on why attention reduces sample complexity.
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4 ON IMPROVING THE LANDSCAPE STRUCTURE

In this section, we further investigate three additional properties on how attention mechanisms
improve the landscape of neural networks. First, we show that in global attention model, attention
mechanisms reduce unnecessary number of linear regions and maintain a low approximation error;
Second, we show that flatness properties of minima are retained when attention mechanisms are used
for both global attention and self-attention. Furthermore, our analysis indicates that for attention
models, smaller sample size suffices to converge to good minima which generalize well in prediction.
Finally, we show that the perfect in-sample prediction on small sample size is also achieved in
attention networks for both global attention and self-attention.

4.1 ON THE NUMBER OF LINEAR REGIONS

We first study how attention mechanisms affect the number of linear regions (Montufar et al., 2014)
in a wide two-layer network, where the number of units in the hidden layer is larger than the sparsity
of the attention mask matrix.
Theorem 3. Assume ‖a‖0 = s0, which is the sparsity of the mask matrix, and the number of units in
the hidden layer n1 > s0. Then the maximal number of linear regions of the function by a two-layer
fully connected neural network with ReLU activation function, is lower bounded by bn1

s0
cs0 .

Figure 1: Number of linear regions in log scale v.s.
sparsity

Remark: The theorem implies that when appro-
priate attention mechanism is used, the number
of linear regions reduces leading to a simpler
landscape, yet the approximation error remains
small. This leads to lower sample complexity
for achieving a desired prediction error. More
detailed discussion can be found in the appen-
dices. The result of Theorem 3 also applies to
the self-attention with different attention spar-
sity(i.e. allowing how many words we allow one
word to attend to).

4.2 ON FLATNESS/SHARPNESS OF MINIMA

Many recent works, such as Keskar et al. (2016),
argue that flatter local minima tend to generalize
well. However, in a recent study, Dinh et al.
(2017) observes that by scale transformation, the minima which are observationally equivalent,
can be arbitrarily sharp, and the operator norm of a Hessian matrix can also be arbitrarily large.
We will show that this fact also holds for the global attention mechanism, if no constraint on
parameter (ã, w̃(1), w̃(2)) is imposed. Here we introduce the definition of ε-flatness as in Hochreiter
& Schmidhuber (1997).
Definition 1. Given ε > 0, a minimum θ, and loss L, C(L,θ, ε) is the largest connected set
containing θ such that ∀θ′ ∈ C(L,θ, ε), L(θ

′
) ≤ L(θ) + ε, and its volume is called the ε-flatness.

In the following Theorem, we analyze the flatness of stationary point for both naive global and
self-attention model.
Theorem 4. (a) Consider the two-layer ReLU neural network with naive global attention in Section
3.1:

yi = w(2)?Tφ(〈w(1)?,xi � a?〉)
and a minimum θ = (ã, w̃(1), w̃(2)) satisfying that ã 6= 0, w̃(1) 6= 0,w̃(2) 6= 0. For any ε > 0,
C(L,θ, ε) has an infinite volume, and for any M > 0, we can find a stationary point such that the
largest eigenvalue of∇2L(θ) is larger than M;

(b) Consider the two-layer ReLU neural network with self-attention mechanism as stated in
Section 3.2:

yi = w(2)?Tφ(〈w(1)?, vec(wV xia
self
i )〉)
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and a minimum θ = (w̃(1), w̃(2),wV ,wQ,wK) satisfying that w̃i 6= 0 for i = (1), (2), V,Q,K.
For any ε > 0, C(L,θ, ε) has an infinite volume, and for any M > 0, we can find a stationary point
such that the largest eigenvalue of∇2L(θ) is larger than M.

Theorem 4 indicates that property on flatness of minima is maintained when attention mechanism is
applied, and there exist good sharp minima, coinciding with the observation in Dinh et al. (2017).
However, there is no guarantee that all sharp minima are good in generalization. Revisiting our
analysis in Section 3, the restriction on the parameter space (see (A2)) help remove these sharp
minima. Specifically, (A2) provides an upper bound on the magnitude of (a,w(1),w(2)) and (A5)
bounds the magnitude of φ(〈w(1),xi � a〉) from below. These constraints control the parameter
space and remove all sharp minima generated in Theorem 4 in which α1 or α2 goes to infinity. The
`2 bounds in (A2) can be achieved through a proper `2 regularization (See Section 3.4).

4.3 ON SMALL SAMPLE SIZE

We conclude by studying the local minima of wide neural networks in small sample regime. (Nguyen
& Hein, 2017b) proved that a two-layer neural network model can always achieve perfect empirical
estimation error when the same size is small. Here, we extend this result for global and self-attention
model. The discussion of Theorem 5 is deferred to the appendices.

Theorem 5. (a) For naive global attention model, if rank(φ(〈w̃(1),xi � a〉)i=1,2,..n) = n. Then
every stationary point (ã, w̃(1), w̃(2)) of the objective function (4), is a global minimum;

(b) For self attention model, if rank(φ(〈w̃(1), vec(wV xia
self
i )〉)i=1,2,..n) = n. Then every

stationary point (w̃(1), w̃(2), w̃V , w̃Q, w̃K) of object function (6) is a global minimum.

5 EXPERIMENTS

5.1 SAMPLE COMPLEXITY

5.1.1 GLOBAL ATTENTION MODEL

Theorem 1 proves that attention models require a lower sample complexity than baseline models,
i.e., attention models require fewer samples to achieve the same test error as baseline models. This
result is validated empirically in this experiment. To mimic the assumptions of Theorem 1, we
consider ground truth two-layer neural network G∗(x) is formed using random weights as inputs.
The network G∗ maps the input vector x ∈ R256 to 10-dimensional output. The input vector x is
randomly sampled such that each element is drawn i.i.d from N (0, 1). An attention mask a∗ is then
constructed with k randomly chosen elements as 1 and the rest as 0. The ground-truth labels are
generated from y = G∗(x� a∗).

Table 1: Experiments on sample complexity for global attention model. np denotes the number of
trainable parameters in each model. All results are averaged over 5 runs

Number of Test loss: Test loss: Test loss: regularized
training samples baseline (np = 34186) attention (np = 34442) attention (np = 34442)

10000 2.1063 0.5484 0.0143
14000 0.4109 0.0382 0.0107
16000 0.1811 0.0211 0.0100
18000 0.1072 0.0163 0.0122
20000 0.0769 0.0101 0.0098
50000 0.0511 0.0060 0.0072

To test the sample complexity, we generate multiple datasets, each containing 10k, 14k, 16k, 18k,
20k and 50k unique samples respectively using the scheme mentioned in the previous section. A
common test set of 5000 samples is created to evaluate each of the models. A regression model
is then trained on each of these datasets. All models are trained with SGD optimizer with a fixed
learning rate of 10−3. Table 1 reports test errors for baseline and attention models at 400k iterations
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as the number of training samples vary. We observe that attention models need fewer training samples
than baseline models to achieve a desired error. For instance, to attain the desired error 0.07, attention
models need 14000 samples, whereas baseline models need 20000 samples. We would like to point
out that improvements obtained by attention models is not because of increase in model parameters.
As shown in Table 1, the number of parameters in baseline and attention models are comparable.
Hence, the performance gain is solely due to the attention mechanism.

Regularization: In section 3.4, we discuss how regularizing attention vector helps obtain a better
attention model. To empirically validate this claim, we train a model with L1 regularization on the
attention vector. Same experimental setting as Section 5.1 is used, a regression model is trained
using a two-layer neural network. We add the L1 penalty on the attention vector to the objective:
Lreg =

∑
i |ai|. The results are also shown in Table 1. We observe that models trained with L1

regularization achieves better sample complexity than its unregularized counterpart. We also observe
the faster convergence when the models were regularized, as shown in the appendices.

5.1.2 SELF-ATTENTION MODEL

We extend the sample complexity experiments to self-attention model discussed in Section 3.2.
Since our model is tailored towards natural language tasks, we consider the problem of sentiment
classification on IMDB reviews dataset (Maas et al., 2011). Note that our analysis needs fixed length
sentences which hardly holds true in any NLP dataset. So, we zero-pad all our sentences to make
their length equal the maximum sentence length in the dataset (2142 for IMDB reviews). For every
input word, we first obtain their corresponding pre-trained GloVE embeddings (∈ R100) which is
then passed to the neural network. As a baseline model, we flatten the input to one large vector of
dimension 2142× 100 and pass it to a 1-hidden layer MLP with 256 hidden units. For self-attention
model, we use wQ ∈ R100×100, wK ∈ R100×100, wV ∈ R100×2142. Once the attended features
are computed per equation 2, it is passed to a 1-hidden layer MLP with 256 hidden units as the
baseline model. All models were trained using Adam optimizer with learning rate 10−3. This was
the setting that gave the best performance among optimizer and learning rate configurations we tried.
A comparison of sample complexity of baseline model and the self-attention model is provided in
Table 2. We clearly observe that self-attention model requires low sample complexity to achieve the
same error as the baseline model. To test if improvements are obtained in attention model due to
increase in model parameters, we ran the baseline model with twice the number of parameters as the
self-attention model. Even with a large parameter size, baseline model performs poorly compared to
self-attention models.

Table 2: Experiments on sample complexity for self attention model. np denotes the number of
parameters used in each model. All results are averaged over 5 runs.

Number of Test accuracy (in %)
training samples Baseline Baseline Self-attention

(np = 57335913) (np = 111744625) (np = 57365913)
875 63.38 64.38 70.52
1750 64.48 65.21 83.10
3500 63.51 64.32 86.14
5250 71.92 69.51 87.96
7000 75.49 76.32 87.10
8750 78.64 78.66 88.58

13125 79.97 79.72 88.98
17500 80.85 80.52 88.59

5.2 CONVERGENCE PLOT

This experiment studies the convergence of the empirical risk of the baseline and attention models.
A modified MNIST dataset called NoisyMNIST is constructed where the images of digits from the
MNIST dataset is embedded in noise as shown in Panel (a) of Figure 2. We consider the classification
task to predict the labels of the digit in each image. Since the ground truth label depends only on
certain regions of input, NoisyMNIST mimics the data generating process we consider in this paper.
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(a)
(b) (c)

Figure 2: Visualization of NoisyMNIST in (a) and convergence plots for baseline and attention
models on NoisyMNIST, including (b) plot of test loss and (c) plot of test accuracy over iterations.

For the baseline model, we train a two-layer neural network with 128 hidden units is using stochastic
gradient descent. For attention models, the input tensor is multiplied element-wise with a learned
attention mask a as in equation 1. The attended input is then passed to the two-layer network. The
convergence plots for baseline and attention models are plotted in Figure 2. We observe that the
attention model converges faster, and to a better minimum than the baseline model. Similar behavior
is observed for different learning rate and scale configurations as shown in the appendices.

5.3 HESSIAN PLOT

Figure 3: Top 100 eigenvalues of the Hessian matrix for
baseline and attention models.

We study the Hessian matrix of the
loss surface to validate the loss land-
scape of attention models. The same
classification setup as the previous ex-
periment is considered. The follow-
ing two-layer neural network architec-
ture was employed: 576→ 16→ 10.
The Hessian matrix of loss landscape
about the computed minimum was, re-
spectively, computed for the baseline
and attention models, and their top k
sorted eigenvalues are plotted in Fig-
ure 3. Baseline models exhibit higher
eigenvalues than attention models, so
the loss landscape of attention mod-
els are flatter than the baseline mod-
els. Since flat landscapes lead to better
generalization, models with attention
generalize better than models without attention as shown in Section 5.2.

6 CONCLUSIONS

In this paper, we study the loss landscape of two-layer neural networks on global and self attention
models, and show that attention mechanisms help reduce the sample complexity and achieve consistent
predictions in the large sample regime. Additionally, by analyzing the number of linear regions, the
loss landscape under small sample regime, and flatness of local minima, we demonstrate that attention
mechanisms produce a well behaved loss landscape that leads to a good minima. Extensive empirical
studies on NoisyMNIST dataset and IMDB reviews dataset validate our theoretical findings.
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Appendices: Understanding Attention Mechanisms
In appendices, Section A presents the extensions of our analyses to recurrent attention model; Section
B provides detailed justification of our assumptions; Section C discusses the implications of theorem
results in more detail(Theorem 1, Corollary 1, Theorem 3 and Theorem 5 in order); Section D
discusses the regularization effect in attention networks and potential extensions beyond 2 layers
and to CNN/RNN. Finally We provide proofs and additional experiment results in section E and F
separately.

A EXTENSION TO RECURRENT ATTENTION MODEL

Here we consider analyzing the representative recurrent attention framework in Bahdanau et al.
(2014). In the recurrent attention network, we still have each data point xi = (x1

i , . . . ,x
p
i ) ∈

Rt×p, corresponding to p words with t-dimensional embedding. Then the generative model can be
represented as:

yi = w(2)T 〈w(1),

t∑
j=1

a(xi)jx
j
i 〉+ εi

Analogous to NLP setting, a(xi) is a unknown function mapping xi to a t-dimensional vector, where
a(xi)j represents the effect of the jth word in the sentence for point i. To simplify the model, we
use data features themselves as their annotation, then for time stamp k = 1, . . . , T , The recurrent
attention model estimates a(xi) as follows:

sk = f(sk−1, ck−1); ekj = score(sk−1,x
j
i )

αkj =
ekj∑t
j=1 ekj

; ck =

t∑
j=1

αkjx
j
i

yk = w(2)Tφ(〈w(1), ck〉)
where score(·) is the scoring function representing how well the inputs around position j and the
output at position i match. It can be dot product or MLP. And f(·) is the function to update sk.
Suppose the parameter set inside these two functions are wa and wf with number of parameters as
da and df accordingly. Here we show that when these two functions are expressive enough, recurrent
attention network will also have sample complexity bound parallel to previous sections. Here we
introduce necessary assumptions.

(A11) The output y can be predicted by the two-layer network with an independent sub-Gaussian
error with variance σ2, i.e, there exists a set of parameters (w(1)?,w(2)?) such that yi =

w(2)?Tφ(〈w(1)?,
∑t
j=1 a(xi)jx

j
i 〉) + εi, where εi ∼ subG(0, C2

4 ) for i = 1, 2, ...n, with
xi ⊥⊥ εi.

(A12) Suppose (A5) holds when we substitute x � a with
∑t
j=1 a(xi)jx

j
i and ht(x·k) =

a(xik)xjik(w(2)T )� φ′(〈w(1),xi � a〉)).
(A13) We assume ‖wa‖2 ≤ C8 and ‖wf‖2 ≤ C9.

(A11) and (A13) are parallel to (A1) to (A5) in global attention case. They can be justified similar as
them, which is discussed in Section B of appendices.

Now we can provide following sample complexity bound extended from previous sections.
Theorem 6. Under (A1),(A2),(A11) to (A13), there exists a sufficient large T , for any γ > 0, suppose

n &
C2

1C
2
xη

2

γ2
log(

ηC8C9

γ
)(td+ d+ dw + df )

where η = C1C2Cx, such that if there exist stationary point(s), then with probability tending to 1,
any stationary point (w̃(1), w̃(2), w̃f , w̃a) satisfies the following prediction error bound:

E(w̃(2)φ(〈w̃(1),

t∑
j=1

a(xi)jx
j
i 〉)− E(y|x))2 . γ2
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Remark: This theorem provide a sample complexity bound for recurrent attention network. It holds
when such ’good stationary point’ exists. It also shows a trade-off between a complicated recurrent
attention network and the sample complexity bound. If f(·) and a(·) are properly selected, they will
be sufficient expressive to obtain good stationary points, and also the number of parameters dw and
df will not be too large. In this way. an ideal sample complexity bound to these good stationary
points can be achieved as theorem says. However, with a over complicated design in these functions,
the sample complexity bound will be large; With a over simple design, such good stationary points
don’t exist. It is parallel to a trade-off between approximation error and estimation error in learning
theory. The theory implies a good design of recurrent structure will help achieve an optimal sample
complexity in recurrent attention model.

B JUSTIFICATION OF ASSUMPTIONS (A1)–(A6)

In this section, we discuss the rationality of Assumptions (A1) to (A6). Note that (A1) to (A6) are
required to prove the main result in Theorem 3 and they have also been studied by Keskar et al.
(2016); Dinh et al. (2017); Mei et al. (2018a;b); Nguyen & Hein (2017b). In what follows, we will
show in details that (A1)–(A6) are all reasonable assumptions.

First of all, (A1) and (A2) require upper bounds on the input xi and `2 bound for network weights. It
is a standard assumption in landscape analysis (Mei et al., 2018a;b), and also it is crucial to remove
sharp minima which may not generalize well (Keskar et al., 2016; Dinh et al., 2017).(See remark
after Theorem 4). These assumptions can be achieved through regularization.

(A3) requires that this two-layer network are rich enough to specify the condition mean E(yi|xi). It
has been studied that general bounded functions with a Fourier representation on [−1, 1] can be well
approximated by the defined two-layer network(Barron & Klusowski, 2018).

(A4) requires a sparse structure on a?; otherwise, the model would be equivalent to the baseline
model, simply just choose attention masks all being 1. And ‖a‖∞ ≤ 1 requires the attention weight
ranges from 0 to 1.

(A5) is a technical condition for our analysis of stationary point. (A5) includes two parts. Both
of them hold naturally when dimensionality is large. Firstly, the lower eigenvalue bound assumes
φ(〈w(1),xi�a〉) is not degenerated. If eigenvalue assumption is violated, the model is equivalent to
a network with fewer number of units in hidden layers, and we can study this equivalent degenerated
one instead; This assumption also guarantees us to remove sharp minima(Keskar et al., 2016; Dinh
et al., 2017), same as (A1) and (A2). Secondly, (A5) assumes when φ(〈w(1),xi � a〉) is not well
estimated, there exists an ’active feature’. The correlation between this feature and bias cannot be
cancelled by the direction of a specific linear combination of φ(〈w(1),xi � a〉). Intuitively, this
assumption says that the correlation between ht(x·k) and E(y|x·k) cannot be fully explained by
a fixed linear combination if there is some systematic bias in φ(〈w(1),xi � a〉). Since there is
systematic bias, it is reasonable to assume this systematic bias cannot be uncorrelated with all the
directions spanned by ht(x). This correlation assumption between ht(x·j) and u is parallel to the
full column rank condition in (Nguyen & Hein, 2017b). Considering all active terms in ht(x·k), they
span a larger space comparing to φ(〈w(1),xi � a〉), considering d is a fixed dimension. Thus it is
a natural assumption if we have reasonable large dimensionality and the model doesn’t degenerate.
What’s more, with required large sample size, we can also straight forwardly evaluate this assumption
by checking empirical correlation, and avoid this type of bad minima through random initialization
and proper gradient descent type algorithm(Allen-Zhu et al., 2019). And it also will not affect the key
structure of our proof.

Specifically, for the sd(ht(x·k)) = O(1) part, since ht(x·k) = x·kak(w
(2)
t · φ

′
(〈w(1),xi � a〉)t),

where φ
′
(〈w(1),xi � a〉)t are O(1) with positive probability otherwise the network always predicts

zero, therefore we have sd(ht(x·k)) = O(1) as long as sd(x·k) = O(1) and ak = O(1). For the
correlation assumption cor(u, ht(x·k)) = O(1), if this assumption doesn’t hold, ‖cor(u, h(xk̇))‖2 =
o(1) for all k = 1, . . . , p. By linear combination, for any vector z = (z1, . . . , zk) with bounded
`2 norm, we have cor(u, zT (x1 � a)((w

(2)
t � φ

′
(〈w(1),x � a〉) = o(γ) for all t = 1, . . . , d. We

know for any w̄(1) ∈ Rp×d, the term w̄(1)(x� a)((w
(2)
t � φ

′
(〈w(1),x� a〉) can be represented

as the combination of term zT (x1 � a)((w
(2)
t � φ

′
(〈w(1),x � a〉). By the arbitrary choice of
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our z, it means that all the directions of z are almost not correlated with u. When p and s0 are
high-dimensional, w̄(1)(x� a)((w

(2)
t � φ

′
(〈w(1),x� a〉) spans all the directions as p→∞, thus

there must be some direction is correlated with u. Therefore it is reasonable to assume a O(1)
correlation occurs.

(A6) assumes that we fit a model with expectation close to truth. We can always achieve this by
centralization.

With these assumptions, we just make sure we remove unnecessary minima, such that we can
concentrate on analyzing the behaviour of good stationary points of our interest. Assumptions have
no influence on the main idea of our following theorem: showing the required sample complexity to
approach a good minimum is reduced with attention mechanism.

Remark: The assumptions are also related to the question that when attention mechanism should
be applied in network. (Zhou et al., 2015) shows that attention sometimes can be badly used in
certain cases, which shares the similar philosophy with our analyses. For example, our theoretical
analyses depend on the assumption (A3), that is, the model can be correctly specified when attention
mechanism applies. This can be violated when all the variables are useful and they all need to be
included in the model. In this case, the model with attention will be inconsistent. It indicates that in
this case when assumptions are violated, neural networks can achieve the precise estimation only
through the over-parameterization of w(1).

C DISCUSSIONS ON THEOREM RESULTS

C.1 THEOREM 1: COMPARISON OF SAMPLE COMPLEXITY WITH BASELINE MODEL

When we compare sample complexity of attention model versus baseline model, we say the key
difference will be that s0 is substituted with p, which can be a larger diverging dimensionality.
Constants C1 and C2 can be regarded remain same when we compare attention model with the
baseline for following reasons: (1) We assume same generative model, and the network size is the
same, thus the optimal weight is known to be same. To make sure trained network weight is on the
same scale with the optimal one, it is fair to keep there `2 bound constant same. (2) In this framework,
we study the effect when p diverges to∞ as n → ∞. In this aspect, we don’t expect the weight
norm also diverges, since a diverging weight leads to overfitting. By imposing `2 regularizations on
weights, we can always control the upper bound of `2 norm. Therefore it is reasonable to assume its
norm is bounded by a sufficient large constant. By imposing `2 regularization on weights, we can
always control the upper bound of `2 norm by this sufficient large constant. (3) Even with overfitting,
C2 in baselines are expected to be even larger due to the overfitting effect(Ch.7.Goodfellow et al.
(2016). It will further explain why sample complexity of baseline is even larger comparing with
fixing C1 and C2. In the experiment result, we also observe that the `2 norm of weights from baseline
is larger or equal to the attention network.

C.2 COROLLARY 1: SUM-TO-ONE GLOBAL ATTENTION

Given the assumption (A7), we do not need s0 on the sample complexity bound for the sum-to-one
global attention model. However, if we rescale x properly, the result will be parallel to Theorem 1
result.

C.3 THEOREM 3: NUMBER OF LINEAR REGIONS

In a sufficiently wide network, bn1

s0
cs0 is much smaller than bn1

p c
p. Then, (n1

s0
)s0 ≤ (n1

p )p holds as

long as n1 ≥ exp(p log p−s0 log s0
p−s0 ). Given p log p−s0 log s0

p−s0 ≤ p
p−s log p, since p

p−s is close to p when
s is relatively small, the result still holds when n1 is larger than the order of p.

For illustration, the bounds are plotted in Figure 1 in paper. The red line is for baseline model with
p = 100, and others are attention model with different sparsity level s0. In general we can see the
bound for attention model is smaller than that for baseline model. The implication is that, when
proper attention mechanism is applied, the approximation error remains small, and we can use a
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simpler landscape structure with less number of linear regions to reduce the estimation error. This is
the why we can achieve specific prediction error rate with a smaller sample complexity.

C.4 THEOREM 5: SMALL SAMPLE SIZE RESULT

In assumptions, rank(φ(〈w̃(1),xi � a〉)i=1,2,..n) = n is a mild assumption in a wide network with
over-parameterization. We can see that as long as we choose the number of units d to be larger than
n, the linear dependence of 〈w(1),xi � a〉i=1,2,..n holds with measure zero. In other words, almost
surely this matrix has full column rank n. Thus after the nonlinear activation, The full column rank
still holds almost surely. This assumption is similar to the condition in Theorem 3.8 of Nguyen &
Hein (2017b), where the number of units in some layer is larger than the sample size. When the
sample size is smaller than the number of units in the network, this theorem holds for the network
without attention. It has been proved by Nguyen & Hein (2017b) and Soudry & Carmon (2016) under
different conditions.

D REGULARIZATION EFFECT AND MULTI-LAYER EXTENSIONS

Our analyses provide some theoretical justification on how attention mechanisms help learn superior
models. The benefit mainly comes from that the attention weight a shrinks the whole parameter
space, while this space is still large enough to capture all the necessary information. Thus the gradient
and Hessian are more controllable in this space, and the landscape of loss function behaves better
compared to the baseline model. It will be shown again in Theorem 4 in the following section. This
fact holds for both global and self-attention model. Our theory further validates that as long as the
attention masks are learnt well, the performance is expected to improve. And this effect can be more
significant when the weight is sparse. We also find that imposing constraints and regularization on
network weights can also help remove sharp minima, and keep flat minima with good prediction.
These discussions can be found in D.1.

The main idea of Theorem 1 and 2 can also be extended to multi-layer networks under the assumption
that bias and gradients of weights are not uncorrelated. They can be found in D.2.

D.1 REGULARIZATION

Our analyses indicate that it is worth considering approaches to control the bounds for the network
weight matrices and pursue more accurate estimation of attention weighted input space. Motivated by
this message, we suggest two possible regularization methods, which help to improve currently used
attention mechanisms.

• `2 Regularization on w
It is known that in optimization, `2 regularization on w is equivalent to specific `2 bound
for w. For our two-layer model, if we choose regularization level properly, the `2 bound for
w(1), w(2)( also wQ,wK and wV in self-attention model) will match our assumption. In
practice, a proper regularization should be as large as possible, as long as a nice in-sample
prediction is still achieved. This is important for attention mechanisms to keep prediction
power while improving the landscape behavior of loss function.
• `1 Regularization on a to achieve sparse attention weight

As we discussed, `1 regularization can help achieve sparsity and more precise estimation.
For our 2-layer model, imposing `1 regularization will not affect the analysis since we didn’t
use the gradient w.r.t a in the analysis. It means the same theoretical guarantee holds for
the regularized network. At the same time a will be more sparse, practically lead to a more
precise estimation, and more interpretable result.
This idea can also be adapted to self-attention model. In self-attention, we can add a
regularization to a = softmax(QK

T

√
dk

). With this regularization, only part of the value
matrices proceeds to the decoding procedure. In real world application such as in transformer,
the sparsity in ai corresponds to the case when there are some words in a sentence should
not attend each other. In this case, a sparse aself help us only focus attention between useful
words in a sentence, thus improve predition.
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It is worth mentioning that, through our theorem, we can tell why `1 loss are more helpful
than `2 loss under sparsity assumption. Both `1 loss and `2 loss will control the magnitude
of attention mask, however, `1 loss can also help control sparsity level s0, and we can
see that the sample complexity bound is proportion to s20. Although `2 loss on attention
mask can also help reduce the sample complexity, its effect will only be reflected in the log
term, therefore it is less effective. Similarly in Theorem 2, if we assume the attention to be
sparse(i.e. one word should not attend to all words, but only some relevant words), then `1
loss can help further reduce the sample complexity.

Regularization is one experimental approach for estimating a sparse and precise a and w. If some
other methods can achieve this target, they are also the right directions to reduce sample complexity
and improve current attention structures.

D.2 BEYOND TWO LAYERS

Here we discuss how our results of Theorem 1 and 2 can be extended to multi-layer neural nets.

First we consider a D-layer network with naive global attention structure: f(x) =

(w(D)φ(w(D−1) . . . φ(〈w(1),x � a〉)). Denoting ∇f(wk) = ∂f(x)
∂w(k) , under the assumption that

at least one gradient term ∇f(wk) for k = 1, . . . , D has correlation at rate O(1) with bias u(this
assumption is parallel to (A5)), we can show the expectation term Ex,y(∇R(w(k))) ≥ O(γ). Then
using the similar ε-covering and uniform convergence technique as Theorem 1 goes, we can still
show attention mechanism leads to a smaller ε-covering number and tighter Hoeffding bound, thus
leading to a smaller sample complexity bound comparing to baseline model.

Then we consider a D-layer network with self-attention structure. We denote the kth self-attention
layer follows gk(xk−1g ) = wk2φ(〈wk1 ,wV xk−1g aself 〉)), where xk−1g is the output of (k − 1)th

self-attention layer, with wV ∈ Rdv×t, xk−1g ∈ Rt×dk−1 , aself ∈ Rdk−1×dk−1 , wk1 ∈ Rdv×qk and
wk2 ∈ Rdk×qk . a is calcualted in the same way with two-layer self-attention network. Then we have
the final output f(x) = wD2φ(〈wD1 , vec(wV xD−1g aself 〉)), where xD−1g = (gD−1(· · · g1(x)),
and wD1 ∈ R×, wD2 ∈ R×. In this way, the network calculate self-attention D times and finally
produce the final prediction. It is worth mentioning that, To obtain a scalar prediction in regression
model, we flatten the value matrix of the last layer as same as the two-layer model. We still denote
u = (wD2φ(〈wD1 , vec(wV xD−1g aself 〉))− E(y|x)). Then the necessary assumptions parallel to
(A2), (A9) and (A10) are as follows.

• (A14) All weights wkj for k = 1, . . . , D and j = 1, 2 satisfy ‖wkj‖2 ≤ C10. And we
assume the prediction is centered, i.e. E(u) = 0.

• (A15) The output y can be predicted by the D-layer self-attention network with an in-
dependent sub-Gaussian error with variance σ2, i.e, there exists a set of parameters
(w(1)?,w(2)?) such that yi = wD2φ(〈wD1 , vec(wV xD−1g aself 〉)) + εi as defined, where
εi ∼ subG(0, C2

4 ) for i = 1, 2, ...n, with xi ⊥⊥ εi.
• (A16) There exists interger k and r such that k ∈ {1, . . . , D} and r ∈ {1, 2}, such that
cor(∇f(wkr ),u) = O(1) and sd(∇f(wkr ) = O(1).

Then we can have the following theorem of sample complexity bound of multi-layer self-attention
model:

Theorem 7. Under (A1) and (A14) to (A16), we assume the weight term wkr satisfies (A16) with
‖∇f(wkr )‖2 ≤ ck. dself is the total number of parameters in all value, query, key matrices. Then
for any γ > 0, given the sample size:

n & log(
ck
γ

)(dself +

k∑
i=1

(dk + dv)qk)

where η = C1C2Cx, with probability tending to 1, any stationary point (w̃(1), w̃(2), w̃Q, w̃K) of
the objective function (6) satisfies that: E(f(x)− E(y|x))2 . γ2
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Remark: Because multi-layer self-attention models include a large parameter set with complicated
gradients, the assumptions are not as intuitive as the two-layer model. But the main assumptions
are parallel, such that the bias ui cannot be uncorrelated with all possible directions. And this
assumption is reasonable considering the high-dimensionality nature of networks. The extension of
this multi-layer model is omitted in the main paper since it leads to over-complicated derivations
and complicated assumption discussion and will distract readers from main ideas of the paper. We
believe the two-layer attention model is representative enough to provide theoretical evidence on why
attention reduces sample complexity.

D.3 CNN AND RNN

Our analyses are based on fully connected network, and may not be able to apply to more involved
task such as CNN and RNN directly. But we believe the key message of our analyses also provide
insights in analyzing CNN/RNN with attention: The attention mechanisms can help us effectively
shrink the parameter space, thus reducing most of the noise and unnecessary variability in training.
Thus the stationary solutions are more likely to generalize well. That’s why we start with analyzing
the naive global attention model and self-attention models, which can help inspire the analysis of
these complicated tasks. More detailed analysis/experiments with CNN/RNN are important future
work. To this point, our experiments aim at validating the theoretical analyses and explaining why
attention works in general.

E PROOFS

E.1 PROOF OF THEOREM 1

Proof. The proof is divided into two parts. Firstly, we study the landscape of population risk in part
(a), then we evaluate the convergence of empirical risk to the population risk in part (b).

a. Landscape of population risk

We introduce necessary notations beforehand. To emphasize the role of x and y separately, here
we denote R(w(1),w(2),a) = Ey|x(Rn(w(1),w(2),a)), which is the expectation of the empiri-
cal loss gradient with respect to y, treating x as random, and ∇R(w) as corresponding deriva-
tives. And we denote Ex(∇R(w(1),w(2),a)) = Ex,y(Rn(w(1),w(2),a)), which is the expectation
of the empirical loss function with expectation to both x and y. In our analysis, first we will
study Ex(∇R(w(1),w(2),a)), then we analyze Ey|xRn(w(1),w(2),a). The motivation of using
Ey|xRn(w(1),w(2),a) comes from that it simplifies the part (b) analysis of empirical risk conver-
gence, since the randomness of x has been included in the population risk analysis, making advantage
that the noise is independent from predictors. In the proof, we may use o(γ) for vector/matrix case.
In these cases, it means that every element in vector/matrix is o(γ). In the proof, we will regard d as
an arbitrary large fixed value, not diverging with n.

We denote
u = (w(2)φ(〈w(1),x� a〉)− E(y|x)) (7)

and ui as the version with specified sample index. Then the derivatives of population risk with
expection to y can be presented as follows:

∇R(w(2)) =
1

n

n∑
i=1

uiφ(〈w(1),xi � a〉)

∇R(w(1)) =
1

n

n∑
i=1

ui(xi � a)(w(2) � φ
′
(〈w(1),xi � a〉))T

∇R(a) =
1

n

n∑
i=1

ui(xi � (w(1)T (w(2) � φ
′
(〈w(1),xi � a〉)))
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By (A3), we know that E(yi|xi) = w(2)?Tφ(〈w(1)?,xi � a?〉). Therefore when (a,w(1),w(2)) =
(a?,w(1)?,w(2)?), all the ui are zero, and all the gradients expectations are zero. Thus for any true
set of parameter (a?,w(1)?,w(2)?), they have zero gradient expectation automatically. And the key
of our proof is showing that with high probability, any parameter (a,w(1),w(2)) cannot be stationary
point if E(|w̃(2)φ(〈w̃(1),x � ã〉) − E(y|x)|2) ≥ O(γ2), because their gradients w.r.t to w(2) or
w(1) must be bounded away from zero.

By our assumption (A2) and (A4), our parameters w(1),w(2) and a are inside the `2 balls
Bd(0, C1),Bp×d(0, C2) and Bp(0, s20). By Lemma 5.2 in Vershynin (2010), we know the ε-covering
number Nε1 ,Nε2 ,Nε3 for these three balls are upper bounded by:

Nε1 ≤ (3C1/ε)
d, Nε2 ≤ (3C2/ε)

pd, Nε3 ≤ (3s20/ε)
p

Then we know 3ε-covering number for the union of all three parameters N3ε satisfies that N3ε ≤
Nε1Nε2Nε3 . For the ease of notation, we denote θ = (a,w(1),w(2)). Let Θε = {θ1, · · · ,θNε} be
a corresponding cover with N3ε elements. Then we can always find Θε such that for any feasible
θ, there exists j ∈ [N ] such that max(‖w(1)

(j) −w
(1)‖2, ‖w(2)

(j) −w
(2)‖2, ‖a(j) − a‖2) ≤ ε. In this

proof, we use parenthesis subscription (j) to represent elements in the cover, to distinguish it from
other subscriptions.

By triangle inequality, we have for v = 1, 2:

‖∇R(w(v))‖2 ≥ ‖∇R(w
(v)
(j) )‖2 − ‖∇R(w(v))−∇R(w

(v)
(j) )‖2 (8)

And in the following section, we prove that if E(u2) ≥ O(γ2), we must have ‖Ex(∇R(w(2)))‖2 ≥
O(γ) or there exists kth variable of x, such that the kth column of ∇R(w(1)) satisfies
‖Ex(∇R(w

(1)
k ))‖2 ≥ O(γ). Here the subscription k without parenthesis corresponds to kth feature.

First we consider ∇R(w(2)). By (A4), there are at most s0 nonzero elements in x � a, and we
denote ‖ · ‖1,active as the `1 norm on the elements with corresponding non-zero attention mask. Thus
by inequality between norms, we have:

E(‖φ(〈w(1),xi � a〉)‖2) ≤ |x� a|max|w(1)|1,active ≤
√
s0CxC1 = O(

√
s0)

Then we derive
‖Ex(∇R(w(2)))‖2 = ‖cov(u, φ(〈w(1),x� a〉)) + E(u)E(φ(〈w(1),x� a〉))‖2

≥ ‖cov(u, φ(〈w(1),x� a〉))‖2 − o(γ/
√
s0)O(

√
s0)

Therefore if ‖cov(u, φ(〈w(1),xi � a〉))‖2 ≥ O(γ), we already have ‖E(∇R(w(2)))‖2 ≥ O(γ).
Then we consider the case when ‖cov(u, φ(〈w(1),xi � a〉))‖2 = o(γ). In this case, we denote
r = cov(E(y|x), φ(〈w(1),x� a〉)) ∈ Rd, and denote the covariance matrix for φ(〈w(1),x� a〉)
as:

(Σφ)ij = cov(φi(〈w(1),x� a〉), φj(〈w(1),x� a〉))
Then plugging into cov((w(2))Tφ(〈w(1),x�a〉), φ(〈w(1),x�a〉)) = r+ o(γ), using subtraction
and addition, we have:

Σφw
(2) = r + o(γ)

With (A5), covariance matrix Σφ is invertible with smallest eigenvalue lower bounded, we have
w(2) = Σ−1φ r + o(γ).

Next we argue the following term by contradiction:
E(‖φ(〈w(1),x� a〉)− φ?(〈w(1),x� a〉)‖2) ≥ O(γ) (9)

where φ?(〈w(1),x � a〉) represents the function corresponding to the true parameter set
(w(1)?,w(2)?,a?). If we have equation 9 violated, we know:
Σφij −Σφ?ij

=

E(φ(〈w(1),x� a〉)iφ(〈w(1),x� a〉)j)− E(φ(〈w(1),x� a〉)i)E(φ(〈w(1),x� a〉)j)
− (E(φ?(〈w(1),x� a〉)iφ?(〈w(1),x� a〉)j)− E(φ?(〈w(1),x� a〉)i)E(φ?(〈w(1),x� a〉)j))
. O(1)(E(‖φ(〈w(1),x� a〉)i − φ?(〈w(1),x� a〉i‖2 + E(‖φ(〈w(1),x� a〉)j − φ?(〈w(1),x� a〉j‖2))

= o(γ)
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where we use E(‖φ(〈w(1),x � a〉)‖2) ≤ E(‖φ?(〈w(1),x � a〉)‖2) + E(‖φ(〈w(1),x � a〉) −
φ?(〈w(1),x� a〉)‖2) = O(1), and we know φ?(〈w(1),x� a〉) corresponding to true parameter set
is finite. Since we have derivedw(2)? = Σ−1φ? r, with lower bounded eigenvalue assumption, we can
derive:

Σ−1φ −Σ−1φ? = Σ−1φ Σφ(Σ−1φ −Σ−1φ? ) = Σ−1φ (I − (Σφ? + o(γ))Σ−1φ? )

= Σ−1φ o(γ)Σ−1φ? = o(γ)

We know if we have ‖cov(u, φ(〈w(1),xi � a〉))‖2 = o(γ), thus w(2) = Σ−1φ r + o(γ). Therefore
we conclude w(2) = w(2)? + o(γ). Plugging back to the formula of u in equation 12, we have:

E(u2) = E(|w(2)?Tφ(w(1)?,x� a)−w(2)Tφ(〈w(1),xi � a〉)|2)

≤ E(|w(2)?Tφ(w(1)?,x� a)−w(2)?Tφ(〈w(1),xi � a〉)|2)

+ E(|w(2)?Tφ(〈w(1),xi � a〉)−w(2)Tφ(〈w(1),xi � a〉)|2) = o(γ2)

Here we conclude the contradiction. When condition equation 9 is violated, we derive E(u2) = o(γ2).
Therefore if E(u2) ≥ O(γ2), we must have E(‖φ(〈w(1),xi � a〉)− φ?(〈w(1)xi � a〉‖2) ≥ O(γ).

Now we are ready to study∇R(w(1)). Recall in assumption (A5), we denote hk(x) = x·kak(w(2)�
φ
′
(〈w(1),xi � a〉)), where x·k represents kth feature in x, and ak is the attention weight for

x·k. And we have proved that E(‖φ(〈w(1),xi � a〉) − φ?(〈w(1)xi � a〉‖2) = O(γ). Thus by
(A5), we can find k, t such that sd(ht(x·k)) = O(1) and cor(u, ht(x·k)) = O(1). Then we have
|cov(u, ht(x·k))| = sd(u)sd(ht(x·k))|cor(u, ht(x·k))|. We know

sd(u) =
√

E(u2)− |E(u)|2 =
√
O(γ2)− o(γ)2 = O(γ)

Therefore we have:

‖E(∇R(w
(1)
k ))‖2 ≥ ‖E(uht(x·k))‖2 = ‖cov(u, ht(x·k))) + E(u)E(ht(x·k))‖2 = O(γ)

Here we conclude that we can always find k ∈ {1, . . . , p}, such that ‖E(∇R(w
(1)
k ))‖2 ≥ O(γ).

With this conclusion, we move to bound the gradient term vi = uiφ(〈w(1),xi � a〉) and zik =

ui(xik � ak)(w(2)T )� φ′(〈w(1),xi � a〉)). With any fixed parameter set, we can calculate:

‖vi‖22 . (C2‖φ(〈w(1),xi � a〉)‖2)2‖φ(〈w(1),xi � a〉)‖22 = s20C
4
1C

2
2C

4
x

‖zik‖22 . (C2‖φ(〈w(1),xi � a〉)‖2)2C2
xC

2
2 = s0C

2
1C

4
2C

2
x

where we use again that there are at most s0 nonzero elements in x� a:

‖φ(〈w(1),xi � a〉)‖2 ≤ max{|x� a|}‖w(1)‖1,active =
√
s0CxC1

From the last section, we know there exists a constant c such that ‖Ex(∇R(w(2)))‖2 ≥ cγ or
‖Ex(∇R(w

(1)
k ))‖2 ≥ cγ for some constant c. Suppose ‖Ex(∇R(w(2)))‖2 ≥ cγ, and we denote

σ2 = s20C
4
1C

2
2C

4
x, And we know ‖vi‖22 is bounded as we derived. Therefore we can use Hoeffding

bound on the `2 norm in direction of Ex(∇R(w
(2)
(j))), since we know the variance on this direction is

smaller than σ2. Denoting∇R(w
(2)
(j)) as the gradient with respect to jth parameter set in ε-cover for

j ∈ {1, . . . , Nε}:

P (‖∇R(w
(2)
(j))− Ex(∇R(w

(2)
(j)))‖2 ≥

cγ

3
) . exp(−nc

2γ2

σ2
)

By union bound, we have:

P (∃j ∈ [Nε], ‖∇R(w
(2)
(j))‖2 ≥

2cγ

3
) . Nε exp(−nc

2γ2

σ2
)

Secondly we analyze ‖∇R(w(2))−∇R(w
(2)
(j))‖2 term. Here we use ui to represent the prediction

error for ith instant with respect to parameter (a,w(1),w(2)), and use ui(j) to represent the term
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with respect to the parameter from jth element in ε-cover set. By triangle inequality, we have:

‖∇R(w(2))−∇R(w(2)

(j))‖2 ≤
2

n
‖

n∑
i=1

(uiφ(〈w(1),xi � a〉)− ui(j)φ(〈w(1)

(j) ,xi � a(j)〉))‖2

.
2

n
(‖

n∑
i=1

(ui − ui(j))φ(〈w(1),xi � a〉)‖2 + ‖
n∑

i=1

ui(j)(φ(〈w(1),xi � a〉)− φ(〈w(1)

(j) ,xi � a(j)〉))‖2)

. s0C
2
XC

2
1C2ε

We choose ε = cγ
3s0C2

xC
2
1C2

, and plug back above results to equation 8, then at least with prob-

ability 1 − O(Nε exp(−n c
2γ2

σ2 )), we have ‖∇R(w(2))‖2 > cγ
3 . Therefore we can choose n &

σ2

c2γ2 log( s0C1C2Cx
cγ )(pd+ p+ d), such that Nε exp(−n c

2γ2

σ2 ) = o(1). Finally we can conclude that
with probability 1−on(1), for any (a,w(1),w(2)) such that E(w̃(2)φ(〈w̃(1),x�ã〉)−E(y|x))2 ≥ γ,
we have ‖∇R(w(2))‖2 > cγ

3 .

If ‖Ex(∇R(w
(1)
k ))‖2 = O(γ). Applying the same technique, we can show that with probability

1− on(1), we have ‖∇R(w
(1)
k )‖2 > cγ

3 .

b. Convergence of empirical risk

So far, we have shown that for population risk with respect to y, with high probability, all the parameter
sets with poor prediction in expectation, i.e E(|w̃(2)φ(〈w̃(1),X � ã〉)− E(y|x)|2) ≥ O(γ2), their
population risk gradient with expectation to y must be away from zero. Now we move forward to
show that empirical risk will converge to the popular risk, i.e. ∇Rn(w) → ∇R(w). Thus these
parameter sets cannot have zero empirical gradient. In aspect of three parameter sets, they can be
represented as:

∇Rn(w(2))−∇R(w(2)) =
1

n

n∑
i=1

εiφ(〈w(1),xi � a〉)

∇Rn(w(1))−∇R(w(1)) =
1

n

n∑
i=1

εi(xi � a)(w(2) � φ
′
(〈w(1),xi � a〉))T

∇Rn(a)−∇R(a) =
1

n

n∑
i=1

εi(xi � (w(1)T (w(2) � φ
′
(〈w(1),xi � a〉)))

With (A3), we know that εi ∼ subG(0, C2
4 ), thus 1

n

∑n
i=1 εi = O( 1√

n
) by C.L.T, combin-

ing the bound for φ(〈w(1),xi � a〉) we have derived in last section, with sample size n &
σ2

c2γ2 log( s0C1C2Cx
cγ )(pd+ p+ d), conclude that with probability 1− op(1):

‖∇Rn(w(2))−∇R(w(2))‖2 ≤
cγ

6
(10)

‖∇Rn(w
(1)
k )−∇R(w

(1)
k )‖2 ≤

cγ

6
(11)

Recalling part (a), under the first case that w.h.p ‖∇R(w(2))‖2 ≥ cγ
3 for any parameter

(a,w(1),w(2)) with ‖w̃(2)φ(〈w̃(1),X � ã〉) − E(y|X)‖2 ≥ γ. Combining this with (10), we
can conclude that for any positive constant γ > 0, with required sample size, with high probability
that ‖∇Rn(w(2))‖2 > 0, thus they cannot be stationary solution for our loss function. As we stated,
if we are in another case, we have w.h.p ‖∇R(w

(1)
k )‖2 ≥ cγ

3 , we can use same techniques to show
w.h.p ‖∇Rn(w(2))‖2 > 0.

In other words, under our assumptions, all the stationary points (ã, w̃(1), w̃(2)) in our programming
satisfy the prediction error upper bound rate γ w.h.p.
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E.2 PROOF OF COROLLARY 1

Proof. To extend the result from Theorem 3 to corollary 1, we simply substitute the `2 norm bound
‖xi � a‖2, from s0Cx to Cx since ‖a‖2 ≤ ‖a‖1 = 1. All the other parts keep the same. Thus the
only difference is that we remove s0 in the bound comparing with Theorem 3.

E.3 PROOF OF PROPOSITION 1

Proof. This proposition is a direct result of Theorem 3. Since the assumptions for a still hold, all the
bounds apply. The only different is that since a is not optimized together, we don’t have to consider
the ε-cover number for a in the maximum operator. This leads to a slightly tighter sample complexity
bound in corollary 1 comparing with theorem 3.

E.4 PROOF OF THEOREM 2

Proof. Similar with Theorem 1, we obtained a new ε-covering bound:

Nε1 ≤ (3C1/ε)
d, Nε2 ≤ (3C2/ε)

pdvd, Nε3 ≤ (3C5/ε)
tdq , Nε4 ≤ (3C6/ε)

tdq , Nε5 ≤ (3C7/ε)
tdv ,

where N = Π5
i=1Nεi . And also, the new vi and zik terms are:

vi = uiφ(〈w(1), vec(wV xia
self
i )〉)

zik = ui(w
V xia

self
i )·k(w(2)T )� φ

′
(〈w(1), vec(wV xia

self
i )〉))

where ui = yi − (w(2)Tφ(〈w(1), vec(wV xia
self
i )). Under assumptions, using the same agrument

with Theorem 3, we can show there exists a constant c such that either ‖E(∇R(w(2))‖2 ≥ cγ or
there exist k ∈ 1, . . . , p such that ‖E(∇R(w

(1)
k ))‖2 ≥ cγ.

In the case when ‖E(∇R(w(2))‖2 ≥ cγ. we have new bound of ‖v‖22 with respect to x is upper
bounded by σ2 = p2t2C4

1C
2
2C

4
7C

4
X , considering aself is normalized by softmax function for each

vector in set. Parallel to Theorem 3, by hoeffding bound and union bound, we have:

P (∃j ∈ [Nε], ‖vj‖2 ≤
2cγ

3
) . Nε exp(−nc

2γ2

σ2
)

Secondly we bound ‖∇R(w(2))−∇R(w(2))j‖2 term by subtraction and addition:

‖∇R(w(2))−∇R(w(2))j‖2

≤ 1

n
‖

n∑
i=1

ujiφ(〈w(1), vec(wV xia
self(z)
i )〉)− ui(j)φ(〈w(1)

j , vec(wV xia
self(z)
i )〉)‖2

.
1

n
(‖

n∑
i=1

(ui − ui(j))φ(〈w(1), vec(wV xia
self(z)
i ))‖2

+ ‖
n∑
i=1

uji (φ(〈w(1),wV xia
self(z)
i )− ui(j)φ(〈w(1)

j , vec(wV
(j)xia

self(z)
i(j) )))‖2)

. ptC2
1C

2
2C

2
7C

2
xε

recalling that ui(j) and ai(j) are corresponding to the jth epsilon cover. We choose ε = cγ
3C2

1C
2
2C

2
7C

2
x

,

and combine the above results. Then at least with probability 1 − O(Nε exp(−n c
2sγ2

σ2 )), we have
‖∇R(w(2))‖2 > γ

3 . Therefore we can choose n & σ2

c2γ2 log(pC1C2C5C6C7Cx
c3γ )(pdvd + d + 2pdq),

such then Nε exp(−n c
2γ2

σ2 ) = o(1). Thus with this required sample complexity, we have
‖∇R(w(2)) − E(∇R(w(2))‖2 ≤ 2cγ

3 . In the same way, we can in the case when show
‖∇R(w

(1)
k )− E(∇R(w

(1)
k )‖2 ≤ 2cγ

3 .

Finally we can conclude that with high probability, any parameter (a,w(1),w(2)) with
E(w̃(2)φ(〈w̃(1), vec(wV xia

self(z)
i ))〉) − E(y|x))2 ≥ γ, we have ‖∇R(w(2))‖2 > γ

3 or
‖∇R(w

(1)
k )‖2 > γ

3 . Then following the same empirical risk convergence argument, we show
that with high probability they cannot be stationary point.
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E.5 PROOF OF THEOREM 3

Proof. First with ‖a‖0 = s0, we know all the inputs xi with corresponding ai = 0, will be inactive
in the network. We can omit all these inactive inputs. Then we split n1 units into s0 group, with bn1

s0
c

number of units in each group, and discard the leftover units. s0 different groups correspond to s0
active inputs with non-zero attention weight.

Inside each group, for example in jth group, denoting q = bn1

s0
c, we choose the input weights and

biases for i = 1, 2, · · · , q as:

h1(x) = max{0,wjx},
h2(x) = max{0, 2wjx− 1},

...
hq(x) = max{0, 2wjx− (q − 1)}

here we assignwj to be a row vector with jth variable equal to 1 and all other entries to be 0. And in
the second layer, we choose w(2) = (w3, · · · ,w3), where
w3 = (1,−1, 1, · · · , (−1)q+1), corresponding to h1 to hq in each group. Then the designed network
has q linear regions inside each group, giving by the intervals:

(−∞, 0], (0, 1], (1, 2], · · · , [q − 1,∞)

Each of these intervals has a subset that is mapped by w3h(x) onto the interval (0,1).Montufar et al.
(2014) Therefore the total number of linear regions is lower bounded by bn1

s0
cs0 .

E.6 PROOF OF THEOREM 4

Proof. Here we define an (α1, α2) scale transformation such that:

Tα1,α2 : (a,w(1),w(2)) 7→ (α1a, α2w
(1), (α1α2)−1w(2))

Then we know the jacobian determinant for Tα1,α2
is αp−d1 αpd−d2 . Let r > 0 such that B∞(r,θ) is in

C(L,θ, ε) and has empty intersection with (a,w(1),w(2)) = 0. Since pd > d, we assign α2 →∞,
such that the jacobian determinant goes to infinity, and the volume of C(L,θ, ε) goes to infinity.

For the Hessian matrix, without loss of generality, we assume there is a positive diagonal element
δ > 0 in a. Therefore the Frobenius norm ‖∇2L(Tα1,α2

(θ))‖F of

∇2L(Tα1,α2
(θ)) = α−11 I 0 0

0 α−12 I 0
0 0 (α1α2)I

∇2L(θ)

 α−11 I 0 0
0 α−12 I 0
0 0 (α1α2)I


is lower bounded by α−21 δ. Further we apply the fact that the biggest eigenvalue of a symmetric

matrix X is larger than c‖X‖F , and pick α1 <
√

cδ
M , then we have the biggest eigenvalue of

∇2L(Tα1,α2(θ)) is larger than M. Therefore there exists a stationary point such that the operator
norm for Hessian is arbitrary large. Thus we finish proving part (a).

Then we consider part (b). Similar with part (a), we define an α scale transformation such
that:

Tα : (w(1),w(2)) 7→ (αw(1), α−1w(2))

And all the value,query and key matrices remain the same. Then we know the jacobian determinant
for Tα = α(pdv−1)d. Since pdvd ≥ d, as we assign α→∞, such that the jacobian determinant goes
to infinity, and the volume of C(L,θ, ε) goes to infinity.
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For the Hessian matrix, we still assume a positive diagonal element δ > 0 in w(1). Simi-
larly we have the Frobenius norm ‖∇2L(Tα(θ))‖F of

∇2L(Tα(θ)) = α−1I 0 0
0 αI 0
0 0 I

∇2L(θ)

 α−1I 0 0
0 αI 0
0 0 I


is lower bounded by α−2δ. When we choose sufficient small α, we have the biggest eigenvalue of
∇2L(Tα1,α2

(θ)) is larger than any constant M . Therefore there exists a stationary point such that
the operator norm for Hessian is arbitrary large.

E.7 PROOF OF THEOREM 5

Proof. For global attention in part (a), We start with calculating the gradient of the empirical
loss function ∇Rn(w(2)), where Rn(w(1),w(2),a) = 1

2n

∑n
i=1(w(2)Tφ(〈w(1),xi � a〉) − yi)2.

Denoting ui = (w(2)Tφ(〈w(1),xi � a〉)− y). The derivatives can be presented as follows:

∇Rn(w(2)) =
1

n

n∑
i=1

uiφ(〈w(1),xi � a〉)

∇Rn(w(1)) =
1

n

n∑
i=1

ui(xi � a)(w(2) � φ
′
(〈w(1),xi � a〉))T

∇Rn(a) =
1

n

n∑
i=1

ui(xi � (w(1)T (w(2) � φ
′
(〈w(1),xi � a〉)))

By assumption, rank(φ(〈w(1),xi � a〉)i=1,...,n) = n, thus solving the linear system, we must have
ui = 0 for any i = 1, 2, ..., n to satisfy that ∇Rn(w̃(2)) = 0. Thus we know that the loss is exactly
zero inside sample. Thus it must be a global minimum.

Part (b) can be proved by substituting a to a in part (a). Here we only consider the deriva-
tives with respect to w(1) and w(2), they can be presented as follows:

∇Rn(w(2)) =
1

n

n∑
i=1

uiφ(〈w(1), vec(wV xia
self
i )〉)

∇Rn(w(1)) =
1

n

n∑
i=1

ui(vec(w
V xia

self
i ))(w(2) � φ

′
(〈w(1), vec(wV xia

self
i ))T

By assumption, rank(φ(〈w(1), vec(wV xia
self
i )〉)i=1,...,n) = n, thus solving the linear system, we

must have ui = 0 for any i = 1, 2, ..., n to satisfy that ∇Rn(w̃(2)) = 0. Thus we know that the loss
is exactly zero inside sample. Thus it must be a global minimum.

E.8 PROOF OF THEOREM 6

Proof. First, we obtained new ε-covering bound for the parameter set (w(2),w(1),wf ,wa):

Nε1 ≤ (3C1/ε)
d, Nε2 ≤ (3C2/ε)

td, Nε3 ≤ (3C8/ε)
da , Nε4 ≤ (3C9/ε)

df ,

And Nε ≤ Π4
i=1Nεi Similar to Theorem 1, we denote

u = (w(2)Tφ(〈w(1),

p∑
j=1

a(xi)x
j
i )− E(y|x)) (12)

and ui as the version with specified sample index. Then the derivatives of population risk with
expection to y can be presented as follows:
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∇R(w(2)) =
1

n

n∑
i=1

uiφ(〈w(1),xi � a〉)

∇R(w(1)) =
1

n

n∑
i=1

ui(

p∑
j=1

a(xi)x
j
i )(w

(2) � φ
′
(〈w(1),

p∑
j=1

a(xi)x
j
i 〉))

T

And also, the new vi and zik terms are:

vi = uiφ(〈w(1)
j ,

p∑
j=1

a(xi)x
j
i 〉)

zik = uia(xik)xjik(w(2)T )� φ
′
(〈w(1)

j ,

p∑
j=1

a(xi)x
j
i 〉))

In the case when ‖E(∇R(w(2))‖2 ≥ cγ. we have new bound of ‖v‖22 with respect to x is upper
bounded by σ2 = t2C4

1C
2
2C

2
8C

2
9C

4
X with normalized attention weight. Same argument follows for

the case when ‖E(∇R(w(1))k‖2 ≥ cγ Then follow the same approach as Theorem 1 and 2, we
obtain the sample complexity bound:

n &
σ2

c2γ2
log(

tC1C2C8C9Cx
c3γ

)(d+ td+ df + da)

E.9 PROOF OF THEOREM 7

Proof. Under assumption (A1) and (A14), we know all input features and weights are bounded.
Therefore we know ‖∇f(wkr )‖2 is Lipschitz continuous function, and we denote its Lipschitz
constant Lk. For wkr , we can derive that:

∇R(wkr ) =
1

n

n∑
i=1

ui∇f(wkr )

Under (A14) to (A16), if we have E(f(x)− E(y|x))2 . γ2, then:

‖E(∇R(wkr ))‖2 & sd(f(wkr )‖2)sd(u)cor(∇f(wkr ),u) & O(γ)

Then similar with Theorem 1 and 2, we construct an ε-cover over all parameters θ :=
(wk1 ,wk2 ,wV ,wQ,wK), and we denote it as {θ1, . . . ,θN} such that for any feasible parame-
ter, there exist j ∈ [N ] such that the maximum `2 distance to θj is smaller than ε. By calculating the
number of parameters in all matrices in θ, we have

log(Nε) =
1

ε
O(dself +

k∑
i=1

(dk + dv)qk)

Denoting ∇R(wkr
(j)) as the gradient with respect to jth parameter set in ε-cover for j ∈ {1, . . . , Nε}:

P (‖∇R(wkr
(j)

) − Ex(∇R(wkr
(j))‖2 ≥

cγ

3
) . exp(−nc

2γ2

c2k
)

By union bound, we have:

P (∃j ∈ [Nε], ‖∇R(w
(2)
(j))‖2 ≥

2cγ

3
) . Nε exp(−nc

2γ2

c2k
)
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Secondly we analyze ‖∇R(wkr ) − ∇R(wkr
(j))‖2 term. As we have shown that the gradient is

Lipschitz continuous, thus we have:

‖∇R(wkr )−∇R(wkr
(j))‖2 ≤ Lkε(dself +

k∑
i=1

(dk + dv)qk)

We choose ε = cγ
3Lk

, then at least with probability 1−O(Nε exp(−n c
2γ2

σ2 )), we have ‖∇R(w(2))‖2 >
cγ
3 . Therefore we can choose n & log( ckγ )(dself +

∑k
i=1(dk+dv)qk), such thatNε exp(−n c

2γ2

c2k
) =

o(1). Finally we can conclude that with probability 1 − on(1), for any (a,w(1),w(2)) such that
E(w̃(2)φ(〈w̃(1),x � ã〉) − E(y|x))2 ≥ γ, we have ‖∇R(w(2))‖2 > cγ

3 . Then following the
convergence of empirical risk procedure of Theorem 1, we show with probability going to 1 such that
‖∇Rn(w(2))‖2 > 0 and all parameters with prediction error O(γ) cannot be stationary point as long
as n & log( ckγ )(dself +

∑k
i=1(dk + dv)qk). Thus we complete the proof.

F ADDITIONAL NUMERICAL EXPERIMENTS

F.1 CONVERGENCE PLOTS FOR CLASSIFICATION TASKS ON NOISY-MNIST DATASET

We present additional results on convergence of 2− layer neural networks on classification task
involving Noisy-MNIST dataset (Section 5.1 of main paper). This dataset is formed by embedding
an s × s digit image in a noisy image of size 48 × 48. We show convergence results for three
settings: s = {5, 8, 15}. In each setting, the learning rate of models are varied. The plots are shown
in Figures 4,5, and 6. We observe that in every setting, attention models converge faster than the
baseline models not employing attention.

F.2 CONVERGENCE PLOTS FOR REGRESSION TASK

In this section, we present convergence plots for sample complexity experiments discussed in Section
5.3 of the main paper. Regression task is considered in this experiment. Convergence plots of baseline
model, attention model and regularized attention models are plotted for various sizes of the datsset
Ns as shown in Figure 7. We observe that for all Ns values, regualrized attention model converge
fastest followed by attention model which is then followed by baseline model. So, we conclude that
in addition to achieving improved sample complexity, attention models converge faster than models
not employing attention. Also, regularization helps speed up the model convergence.
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Figure 4: Convergence plots for classification tasks: Image size: 48× 48, Digit patch size s = 15
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Figure 5: Convergence plots for classification tasks: Image size: 48× 48, Digit patch size s = 8
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Figure 6: Convergence plots for classification tasks: Image size: 48× 48, Digit patch size s = 5
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Ns = 16000 Ns = 18000

Ns = 20000 Ns = 50000

Figure 7: Convergence plots for regression task varying the number of samples Ns. "Baseline"
indicates 2− layer NN not using attention, "attention" denotes attention models, and "attention
regualrized" denotes attention models trained with L1 regularization

29



Under review as a conference paper at ICLR 2020

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In Proceedings of the 36th International Conference on Machine
Learning, ICML ’19, 2019.

Rong Ge, Jason D. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape
design. CoRR, abs/1711.00501, 2017.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323, 2011.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-image co-attention for
visual question answering. In NIPS, pp. 289–297, 2016.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 1412–1421. Association for Computational Linguistics, 2015.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Song Mei, Yu Bai, Andrea Montanari, et al. The landscape of empirical risk for nonconvex losses.
The Annals of Statistics, 46(6A):2747–2774, 2018a.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018b. ISSN 0027-8424. doi: 10.1073/pnas.1806579115.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and koray kavukcuoglu. Recurrent models of visual
attention. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.),
Advances in Neural Information Processing Systems 27, pp. 2204–2212. Curran Associates, Inc.,
2014.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in neural information processing systems, pp.
2924–2932, 2014.

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. In Proceedings
of the 34th International Conference on Machine Learning (ICML 2017), Sydney, NSW, Australia,
6-11 August 2017, pp. 2603–2612, 2017a.

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. arXiv preprint
arXiv:1704.08045, 2017b.

Tomaso A. Poggio and Qianli Liao. Theory II: landscape of the empirical risk in deep learning.
CoRR, abs/1703.09833, 2017.

Yunchen Pu, Martin Renqiang Min, Zhe Gan, and Lawrence Carin. Adaptive feature abstraction
for translating video to text. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 7284–7291, 2018.

Blaine Rister and Daniel L. Rubin. Piecewise convexity of artificial neural networks. Neural Networks,
94:34–45, 2017.

30

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015


Under review as a conference paper at ICLR 2020

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D. Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. CoRR, abs/1707.04926, 2017.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

Daniel Soudry and Elad Hoffer. Exponentially vanishing sub-optimal local minima in multilayer
neural networks, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 2048–2057,
Lille, France, 07–09 Jul 2015. PMLR.

Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. CoRR, abs/1805.08318, 2018.

Bolei Zhou, Yuandong Tian, Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Simple baseline
for visual question answering. arXiv preprint arXiv:1512.02167, 2015.

Pan Zhou and Jiashi Feng. The landscape of deep learning algorithms. CoRR, abs/1705.07038, 2017.

31


	Introduction
	Attention Models
	Loss landscape analyses on attention models
	Asymptotic property of naive global attention model
	Asymptotic property of self-attention model
	Extension to recurrent attention network
	Discussion: Regularization and beyond 2 layers

	On improving the landscape structure
	On the number of linear regions
	On flatness/sharpness of minima
	On small sample size

	Experiments
	Sample complexity
	Global Attention model
	Self-attention model

	Convergence plot
	Hessian plot

	Conclusions
	Extension to recurrent attention model
	Justification of Assumptions (A1)–(A6)
	Discussions on Theorem results
	Theorem 1: Comparison of sample complexity with baseline model
	Corollary 1: Sum-to-one global attention
	Theorem 3: Number of linear regions
	Theorem 5: Small sample size result

	Regularization effect and Multi-layer extensions
	Regularization
	Beyond two layers
	CNN and RNN

	Proofs
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	Additional Numerical Experiments
	Convergence plots for classification tasks on Noisy-MNIST dataset
	Convergence plots for regression task


