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ABSTRACT

Multi-agent systems exhibit complex behaviors that emanate from the interac-
tions of multiple agents in a shared environment. In this work, we are interested
in controlling one agent in a multi-agent system and successfully learn to inter-
act with the other agents that have fixed policies. Modeling the behavior of other
agents (opponents) is essential in understanding the interactions of the agents in
the system. By taking advantage of recent advances in unsupervised learning, we
propose modeling opponents using variational autoencoders. Additionally, many
existing methods in the literature assume that the opponent models have access
to opponent’s observations and actions during both training and execution. To
eliminate this assumption, we propose a modification that attempts to identify the
underlying opponent model, using only local information of our agent, such as
its observations, actions, and rewards. The experiments indicate that our oppo-
nent modeling methods achieve equal or greater episodic returns in reinforcement
learning tasks against another modeling method.

1 INTRODUCTION

In recent years, several promising works (Mnih et al., 2015; Schulman et al., 2015a; Mnih et al.,
2016) have arisen in deep reinforcement learning (RL), leading to fruitful results in single-agent
scenarios. In this work, we are interested in using single-agent RL in multi-agent systems, where we
control one agent and the other agents (opponents) in the environment have fixed policies. The agent
should be able to successfully interact with a diverse set of opponents as well as generalize to new
unseen opponents. One effective way to address this problem is opponent modeling. The opponent
models output specific characteristics of the opponents based on their trajectories. By successfully
modeling the opponents, the agent can reason about opponents’ behaviors and goals and adjust its
policy to achieve the optimal outcome. There is a rich literature of modeling opponents in the multi-
agent systems (Albrecht & Stone, 2018).

Several recent works have proposed learning opponent models using deep learning architectures (He
et al., 2016; Raileanu et al., 2018; Grover et al., 2018a; Rabinowitz et al., 2018). In this work, we
focus on learning opponent models using Variational Autoencoders (VAEs) (Kingma & Welling,
2014). This work is, to the best of our knowledge, the first attempt to use VAEs in multi-agent
scenarios. VAE are generative models that are commonly used for learning representations of the
data, and various works use them in RL for learning representations of the environment (Igl et al.,
2018; Ha & Schmidhuber, 2018; Zintgraf et al., 2019). We first propose a VAE for learning opponent
representations in multi-agent systems based on the opponent trajectories.

A shortcoming of this approach and most opponent modeling methods, as will be presented in Sec-
tion 2, is that they require access to opponent’s information, such as observations and actions, during
training as well as execution. This assumption is too limiting in the majority of scenarios. For exam-
ple, consider Poker, where each agent never has access to the opponent’s observations. Nevertheless,
during Poker, humans can reason about the opponent’s behaviors and goals using only their local
observations. For example, an increase in the table’s pot could mean that the opponent either holds
strong cards or is bluffing. Based on the idea that an agent can reason about an opponent’s model
using its observations, actions, and rewards in a recurrent fashion, we propose a second VAE-based
architecture. The encoder of the VAE learns to represent opponents’ models conditioned on only
local information removing the requirement to access the opponents’ information during execution.
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To summarize our contribution, in this work, we explore VAEs for opponent modeling in multi-
agent systems. We are not interested in VAEs as generative models but as methods for learning
representations. We evaluate our proposed methodology using a toy example and the commonly
used Multi-agent Particle Environment (Mordatch & Abbeel, 2017). We evaluate the quality of the
learned representations, and the episodic returns that RL algorithms can achieve. The experiments
indicate that opponent modeling without opponents’ information can perform the same or even better
in RL compared to models that access the opponent’s information.

2 RELATED WORK

Learning Opponent Models. In this work, we are interested in opponent modeling methods that
use neural networks to learn representations of the opponents. He et al. (2016) proposed an opponent
modeling method that learns a modeling network to reconstruct the opponent’s actions given the op-
ponent observations. Raileanu et al. (2018) developed an algorithm for learning to infer opponents’
goals using the policy of the controlled agent. Grover et al. (2018a) proposed an encoder-decoder
method for modeling the opponent’s policy. The encoder learns a point-based representation of dif-
ferent opponents’ trajectories, and the decoder learns to reconstruct the’ opponent’s policy given
samples from the embedding space. Additionally, Grover et al. (2018a) introduce an objective to
separate embeddings of different agents into different clusters.

d(z+, z−, z) =
1

(1 + e|z−z−|2−|z−z+|2)2
(1)

where z+ and z are embeddings of the same agent from two different episodes and embedding z−
is generated from the episode of a different agent. Rabinowitz et al. (2018) proposed the Theory
of mind Network (TomNet), which learns embedding-based representations of opponents for meta-
learning. Tacchetti et al. (2018) proposed RFM to model opponents using graph neural networks.
A common assumption among these methods, that this work aims to eliminate, is that access to
opponents trajectories is available during execution.

Representation Learning in Reinforcement Learning. Another topic that has received signifi-
cant attention, recently, is representation learning in RL. Using unsupervised learning techniques to
learn low dimensional representations of the MDP has led to significant improvement in RL. Ha &
Schmidhuber (2018) proposed a VAE-based and a forward model to learn state representations of
the environment. Hausman et al. (2018) learned tasks embeddings and interpolated them to solve
harder tasks. Igl et al. (2018) used a VAE for learning representation in partially-observable envi-
ronments. Gupta et al. (2018) proposed MAESN, which learns Gaussian embeddings to represent
different tasks during meta-training and manages to quickly adapt to new task during meta-testing.
The work of Zintgraf et al. (2019) is closely related, where Zintgraf et al. proposed a recurrent VAE
model, which receives as input the observation, action, reward of the agent, and learns a variational
distribution of tasks. Rakelly et al. (2019) used representations from an encoder for off-policy meta-
RL. Note that, all these works have been applied for learning representations of tasks or properties
of the environments. On the contrary, our approach is focused on learning representations of the
opponents.

3 BACKGROUND

3.1 REINFORCEMENT LEARNING

Markov Decision Processes (MDPs) are commonly used to model decision making problems. An
MDP consists of the set of states S, the set of actions A, the transition function, P (s′|s,a),
which is the probability of the next state, s′, given the current state, s, and the action, a, and
the reward function, r(s′,a, s), that returns a scalar value conditioned on two consecutive states
and the intermediate action. A policy function is used to choose an action given a state, which
can be stochastic a ∼ π(a|s) or deterministic a = µ(s). Given a policy π, the state value
function is defined as V (st) = Eπ[

∑H
i=t γ

i−trt|s = st] and the state-action value (Q-value)
Q(st,at) = Eπ[

∑H
i=t γ

i−trt|s = st, a = at], where 0 ≤ γ ≤ 1 is the discount factor and H
is the finite horizon of the episode. The goal of RL is to compute the policy that maximizes state
value function V , when the transition and the reward functions are unknown.
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There is a large number of RL algorithms; however, in this work, we focus on two actor-critic
algorithms; the synchronous Advantage Actor-Critic (A2C) (Mnih et al., 2016; Dhariwal et al.,
2017) and the Deep Deterministic Policy Gradient (DDPG) (Silver et al., 2014; Lillicrap et al.,
2015). DDPG is an off-policy algorithm, using an experience replay for breaking the correlation
between consecutive samples and target networks for stabilizing the training (Mnih et al., 2015).
Given an actor network with parameters θ and a critic network with parameter φ, the gradient
updates are performed using the following equations.

min
φ

1

2
EB [(r + γ ·Qtarget,φ′(s

′, µtarget,θ′(s
′))−Qφ(s,a))2]

min
θ
−EB [Qφ(s, µθ(s))]

(2)

On the other hand, A2C is an on-policy actor-critic algorithm, using parallel environments to break
the correlation between consecutive samples. The actor-critic parameters are optimized by:

min
θ,φ

EB [−Â log πθ(a|s) +
1

2
(r + γVφ(s

′)− Vφ(s))2] (3)

where the advantage term, Â, can be computed using the Generalized Advantage Estimation (GAE)
(Schulman et al., 2015b).

3.2 VARIATIONAL AUTOENCODERS

Consider samples from a dataset x ∈ X that are generated from some hidden (latent) random vari-
able z based on a generative distribution pu(x|z) with unknown parameter u and a prior distri-
bution on the latent variables, which we assume is a Gaussian with 0 mean and unit variance
p(z) = N (z;0, I). We are interested in approximating the true posterior p(z|x) with a varia-
tional parametric distribution qw(z|x) = N (z;µ,Σ,w). Kingma & Welling (2014) proposed the
Variational Autoencoders (VAE) to learn this distribution. Starting from the Kullback-Leibler (KL)
divergence from the approximate to the true posterior DKL(qw(z|x)‖p(z|x)), the lower bound on
the evidence log p(x) is derived as:

log p(x) ≥ Ez∼qw(z|x)[log pu(x|z)]−DKL(qw(z|x)‖p(z)) (4)

The architecture consists of an encoder which receives a sample x and generates the Gaussian vari-
ational distribution p(z|x;w). The decoder receives a sample from the Gaussian variational distri-
bution and reconstructs the initial input x. The architecture is trained using the reparameterization
trick Kingma & Welling (2014). Higgins et al. (2017) proposed β-VAE, where a parameter β ≥ 0
is used to control the trade-off between the reconstruction loss and the KL-divergence.

L(x;w,v) = Ez∼qw(z|x)[log pu(x|z)]− βDKL(qw(z|x)‖p(z)) (5)

4 APPROACH

4.1 PROBLEM FORMULATION

We consider a modified Markov Game (Littman, 1994), which consists of N agents I =
{1, 2, ..., N}, the set of states S, the set of actions A = A1 × A−1 , the transition function
P : S×A×S→ R and the reward function r : S×A×S→ RN . We consider partially observable
settings, where each agent i has access only to its local observation oi and reward ri. Additionally,
two sets of pretrained opponents are provided T = {I−1,m}m=M

m=1 and G = {I−1,m}m=M
m=1 , which

are responsible for providing the joint action A−1. Note that by opponent we refer to I−1,m, which
consists of one or more agents, independently from the type of the interactions (cooperative, mixed
or competitive). At the beginning of each episode, we sample a pretrained opponent from the set
T during training or from G during testing. Our goal is to train the agent 1 using RL, to maximize
the average return against opponents from the training set, T, and generalize to opponents sampled
from the test G. Note, that when we refer to agent 1 we drop the subscript.

maxEπ[ET[
∑
t

γtrt]] (6)
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4.2 VARIATIONAL AUTOENCODER WITH ACCESS TO OPPONENT’S INFORMATION
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Figure 1: Diagram of the proposed VAE architecture

We assume a number of K provided episode trajectories for each pretrained opponents j ∈ T,
E(j) = {τ (j,k)

−1 }
k=K−1
k=0 , where τ (j,k)

−1 = {o−1,t,a−1,t}t=Ht=0 , and o−1,t,a−1,t are the observations
and actions of the opponent at the time step t in the trajectory. These trajectories are generated from
the opponents in set T, which are represented in the latent space from the variable z and for which
we assume there exists an unknown model pu(τ−1|z). Our goal is to approximate the unknown
posterior, p(z|τ−1), using a variational Gaussian distribution N (µ,Σ;w) with parameters w. We
consider using a β-VAE for the sequential task:

L(τ−1;w,u) = Ez∼qw(z|τ−1)[log pu(τ−1|z)]− βDKL(qw(z|τ−1)‖p(z)) (7)

We can further subtract the discrimination objective (equation 1) that was proposed by Grover et al.
(2018a). Since the discrimination objective is always non-negative, we derive and optimize a lower
bound as:

L(τ−1;w,u) ≥ Ez∼qw(z|τ−1)[log pu(τ−1|z)]
− βDKL(qw(z|τ−1)‖p(z))− λd(E(z+),E(z−),E(z))

(8)

The discrimination objective receives as input the mean of the variational Gaussian distribution, pro-
duced by three different trajectories. Despite the less tight lower bound, the discrimination objective
will separate the opponents in the embedding space, which could potentially lead to higher episodic
returns. At each time step t, the recurrent encoder network generates a latent sample zt, which
is conditioned on the opponent’s trajectory τ−1,:t, until this time step. The KL divergence can be
written as:

DKL(qw(z|τ−1)‖p(z)) =
H∑
t=1

DKL(qw(zt|τ−1,:t)‖p(zt)) (9)

The lower bound consist of the reconstruction loss of the trajectory which involves the observation
and actions of the opponent. The opponent’s action, at each time step depends on its observation and
the opponent’s policy, which is represented by the latent variable z. We use a decoder that consists
of fully-connected layers, however, a recurrent network can be used, if we instead assume that the
opponent decides its actions based on the history of its observations. Additionally, the observation
at each time step depends only on the dynamics of the environment and the actions of the agents and
not on the identity of the opponent. Therefore, the reconstruction loss factorizes as:

log pu(τ−1|z) =
H∑
t=1

log pu(a−1,t|o−1,t, zt)pu(o−1,t|ot−1,o−1,t−1,at−1,a−1,t−1)

∝
H∑
t=1

log pu(a−1,t|o−1,t, zt)

(10)

From the equation above, we observe that the loss is the reconstruction of the opponent’s policy
given the current observation and a sample from the latent variable. Overall, our proposed VAE
takes the form of a Conditional VAE (Sohn et al., 2015). Figure 1 illustrates the diagram of the
VAE. The full pseudocode of the method is provided in the Appendix D.
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4.3 VARIATIONAL AUTOENCODER WITHOUT ACCESS TO OPPONENT’S INFORMATION
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Figure 2: Diagram of the proposed VAE architecture using local information

In Sections 1 and 2, it was noted that most agent modeling methods assume access to opponent’s
observations and actions is available both during training and execution. To eliminate this assump-
tion, we propose a VAE that uses a parametric variational distribution which is conditioned on the
observation-action-reward triplet of the agent that we control and a variable d indicating whether
the episode has terminated; qw(z|τ = (o,a, r, d)). More precisely, our goal is to approximate
the true posterior that is conditioned on opponent’s information, with a variational distribution that
only depends on local information. The use of this local information in a recurrent fashion has been
successfully used in meta-RL settings (Wang et al., 2016; Duan et al., 2016). We start by computing
the KL divergence between the two distributions:

DKL(qw(z|τ )‖p(z|τ−1)) = Ez∼qw(z|τ )[log qw(z|τ )− log p(z|τ−1)] (11)

By following the works of Kingma & Welling (2014) and Higgins et al. (2017) and using the Jensen
inequality, the VAE objective can be written as:

L(τ , τ−1;w,v) = Ez∼qw(z|τ )[log pu(τ−1|z)]− βDKL(qw(z|τ )‖p(z)) (12)

The reconstruction loss factorizes exactly similar to equation 10. From equation 12, it can be seen
that the variational distribution only depends on locally available information. Since during exe-
cution, only the encoder is required to generate the opponent’s model, this approach removes the
assumption that access to the opponent’s observations and actions is available during execution.
Figure 2 presents the diagram of the VAE.

4.4 REINFORCEMENT LEARNING TRAINING

We use the latent variable z augmented with the agent’s observation to condition the policy of our
agent, which is optimized using RL. Consider the augmented observation space O′ = O×Z, where
O is the original observation space of the our agent in the Markov game, and Z is the representation
space of the opponent models. The advantage of learning the policy on O′ compared to O is that the
policy can adapt to different z ∈ Z.

After training the variational autoencoder that was described in Section 4.2, we use it to train our
agent against the opponents in the set T. We use the DDPG (Lillicrap et al., 2015) algorithm for this
task. We did not manage to optimize the representation jointly with the policy, neither with DDPG
or A2C. At the beginning of each episode, we sample an opponent from the set T. The agent’s input
is the local observation and a sample from the variational distribution. We refer to this as OMDDPG
(Opponent Modeling DDPG), and the full pseudocode is provided in Appendix D.

We optimize the second proposed VAE method jointly with the policy of the controlled agent. We
use the A2C algorithm, similarly to the meta-learning algorithm RL2 (Wang et al., 2016; Duan et al.,
2016). In the rest of this paper, we refer to this as SMA2C (Self Modeling A2C). The actor’s and
the critic’s input is the local observation and a sample from the latent space. We back-propagate
the gradient from both the actor and the critic loss to the parameters of the encoder. Therefore, the
encoder’s parameters are shaped to maximize both the VAE’s objective as well as the discounted
sum of rewards. The full pseudocode is provided in Appendix D.
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5 EXPERIMENTS

5.1 TOY EXAMPLE

We will first provide a toy example to illustrate SMA2C. We consider the classic repeated game
of prisoner’s dilemma with a constant episode length of 25 time steps. We control one agent, and
the other agent is selected randomly between two possible opponent policies. The first opponent
always defects, while the second opponent follows a tit-for-tat policy. At the beginning of the
episode, one of the two opponents is randomly selected. We train SMA2C against the two possible
opponents. The agent that we control has to identify the correct opponent, and the optimal policy, it
can achieve, is to defect against opponent one and collaborate with opponent two. Figure 3 shows
the payoff matrix, the embedding space at the last time step of the episode, and the episodic return
that SMA2C and A2C achieve during training. Note that, based on the payoff matrix, the optimal
average episodic return that can be achieved is 24.5.
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Figure 3: Payoff matrix, embedding visualization and episodic return during training.

5.2 EXPERIMENTAL FRAMEWORK

To evaluate the proposed methods in more complex environments, we used the Multi-agent Particle
Environment (MPE) (Mordatch & Abbeel, 2017), which provides several different multi-agent en-
vironments. The environments have continuous observation, discrete action space, and fixed-length
episodes of 25 time steps. Four environments are used for evaluating the proposed methodology;
the speaker-listener, the double-speaker listener, the predator-prey, and the spread. In Appendix A,
descriptions of the different environments are provided. During the experiments, we evaluated the
two proposed algorithms OMDDPG and SMA2C as well as the modeling method of Grover et al.
(2018a) combined with DDPG (Lillicrap et al., 2015).

In all the environments, we pretrain ten different opponents, where five are used for training and
five for testing. In the speaker-listener environment, we control the listener, and we create ten dif-
ferent speakers using different communication messages for different colors. In the double speaker-
listener, which consists of two agents that have to be both listener and speaker simultaneously, we
control the first agent. We create a diverse set of opponents that have different communication mes-
sages similar to speaker-listener, while they learn to navigate using the MADDPG algorithm (Lowe
et al., 2017), with different initial random seeds. In the predator-prey environment, we control the
prey and pretrain the three other agents in the environment using MADDPG with different initial
parameters. Similarly, in spread, we control one of the agents, while the opponents are pretrained
using MADDPG.

We use agent generalization graphs (Grover et al., 2018b) to evaluate the generalization of the pro-
posed methods. We evaluate two types of generalizations in this work. First, we evaluate the episodic
returns against the opponents that are used for training, T, which Grover et al. (2018b) call ”weak
generalization”. Secondly, we evaluate against unknown opponents from set G, which is called
”strong generalization”. A figure of an agent generalization graph is provided in Appendix E.
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5.3 EVALUATION OF THE REPRESENTATIONS

To evaluate the representations created from our models we will estimate the Mutual Information
(MI) between the variational distribution (q(z|τ ) or q(z|τ−1)) and the prior on the opponents’
identities, which is uniform. This is a common method to estimate the quality of the representation
(Chen et al., 2018; Hjelm et al., 2019). To estimate the MI, we use the Mutual Information Neural
Estimation (MINE) (Belghazi et al., 2018). Note that, the upper bound of the MI, the entropy of the
uniform distribution, in our experiments is 1.61. We gather 200 trajectories against each opponent
in T, where 80% of them are used for training and the remaining for testing. The visualization of
the embedding space, for the predator-prey environment, is provided in Appendix C.

Table 1: MI estimations using MINE in the double speaker-listener and the predator-prey environ-
ment of the embeddings at the 15th, 20th and 25th time step of the trajectory.

Double speaker-listener Predator-prey
Algorithm 15 20 25 15 20 25
OMDDPG 0.86 0.81 0.86 0.87 0.86 0.85
SMA2C 0.73 0.72 0.7 1.27 1.04 1.39
Grover et al. (2018a) 1.16 1.21 1.20 1.29 1.38 1.41

From Table 1, we observe that the method of Grover et al. (2018a) achieves significantly higher val-
ues of MI. We believe that the main reason behind this is the discrimination objective that implicitly
increases MI. This is apparent in the MI values of OMDDPG as well. SMA2C manages to create
opponent representations, based only on the local information of our agent, that have information
about the opponent identities. Additionally, based on Figure 4, we observe that the value of MI is
not directly related to the episodic returns in RL tasks. In Appendix B, we demonstrate that when
we detach the encoder’s parameters from the policy optimization, the MI decreases.

5.4 REINFORCEMENT LEARNING PERFORMANCE

We evaluate the proposed opponent modeling methods in RL settings. In Figure 4, the episodic
returns for the three methods in all four environments are presented.
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Figure 4: Episodic return during training against the opponents from T (top row) and G (bottom
row). Four environments are evaluated; speaker-listener (first column), double speaker-listener (sec-
ond column), predator-prey (third column) and spread (fourth column). For the double speaker-
listener, predator-prey and spread environments the x-axis is in logarithmic scale.

Every line corresponds to the average return over five runs with different initial seeds, and the shad-
owed part represents the 95% confidence interval. We evaluate the models every 1000 episodes for
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100 episodes. During the evaluation, we sample an embedding from the variational distribution at
each time step, and the agent follows the greedy policy. The hyperparameters for all the experi-
ments in Figure 4 were optimized on weak generalization scenarios, against opponents from set T.
Details about the implementation and hyperparameters that were used for generating the figures are
presented in Appendix D.

OMDDPG is an upper baseline for SMA2C achieving higher returns in all environments during
weak generalization. However, OMDDPG, as well as Grover et al. (2018a), tend to overfit and
perform poorly during strong generalization in the speaker-listener and double speaker-listener en-
vironment. SMA2C achieves higher returns that Grover et al. (2018a) in more than half of the
scenarios. Below, in the Section 5.5, we perform an ablation study on different inputs in the encoder
of SMA2C. In Appendix B, we evaluate whether back-propagating the RL loss to the parameters of
the encoder, in SMA2C, affects the episodic returns.

5.5 ABLATION STUDY ON SMA2C INPUTS

We perform an ablation study to assess the performance requirements of the SMA2C. Our proposed
method utilizes the observation, action, reward, and termination sequence to generate the opponent’s
model. We use different combinations of these elements in the encoder and compare the average
episodic returns. In Figure 5, the average episode return is presented for three different cases;
SMA2C with all inputs, SMA2C with only observation and action as inputs and SMA2C with only
observation as input; for all four environments.
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Figure 5: Ablation on the episodic returns for different inputs in the VAE of SMA2C for weak (top
row) and strong (bottom row) generalization in all four environments.

5.6 ABLATION STUDY ON THE DISCRIMINATION OBJECTIVE

Another element of this work is the utilization of the discrimination objective of the Grover et al.
(2018a) in the VAE loss. To better understand how the opponent separation in the embedding space
is related to RL performance, below, Figure 6 shows the episodic return during the training for the
OMDDPG with and without the discrimination objective is presented. Using the discrimination
objective has a significant impact on the episodic returns in the speaker-listener and the double
speaker-listener environment.
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Figure 6: Ablation study on the importance of the discrimination objective. Episodic returns in all
four environments for weak (top row) and strong (bottom row) generalization.

6 CONCLUSION

To conclude this work, we proposed two methods for opponent modeling in multi-agent systems
using variational autoencoders. First, we proposed OMDDPG a VAE-based method that uses the
common assumption that access to opponents’ information is available during execution. The goal
of this work is to motivate opponent modeling without access to opponent’s information. The core
contribution of this work is SMA2C, which learns representations without requiring access to op-
ponent’s information during execution. We performed a thorough experimental evaluation of the
proposed methodology. We evaluated the quality of the representations produced by our models as
well as the episodic return that can achieve in RL tasks. The experiments conclusively indicate that
access to the opponent’s information is not necessary during execution, eliminating a long-standing
assumption of the prior work. Additionally, we provided evidence that the relationship between the
MI and the RL performance is not apparent. In the future, we would like to research how these
models can be used for non-stationary opponents. Particularly, there are two scenarios worth inves-
tigating; the first is multi-agent deep RL, where different agents are learning concurrently leading
to non-stationarity in the environment, which prevents the agents from learning optimal policies.
Secondly, we would like to explore whether the proposed models can deal with opponents that try
to deceive it and exploit the controlled agent (Ganzfried & Sandholm, 2011; 2015).
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forcement learning. In International Conference on Machine Learning, pp. 1804–1813, 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. International Conference on Learning Representations, 2(5):
6, 2017.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. International Conference on Learning Representations, 2019.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational
reinforcement learning for pomdps. In International Conference on Machine Learning, pp. 2122–
2131, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International Conference
on Learning Representations, 2014.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning Proceedings 1994, pp. 157–163. Elsevier, 1994.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information
Processing Systems, pp. 6379–6390, 2017.

10



Under review as a conference paper at ICLR 2020

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural net-
work acoustic models. In Internation Conference on Machine Learning, volume 30, pp. 3, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, pp. 529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Neil C Rabinowitz, Frank Perbet, H Francis Song, Chiyuan Zhang, SM Eslami, and Matthew
Botvinick. Machine theory of mind. International Conference on Machine Learning, pp. 4218–
4227, 2018.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself in
multi-agent reinforcement learning. arXiv preprint arXiv:1802.09640, 2018.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. International Conference on Ma-
chine Learning, pp. 5331–5340, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International Conference on Machine Learning,
2014.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In Advances in neural information processing systems, pp.
3483–3491, 2015.

Andrea Tacchetti, H Francis Song, Pedro AM Mediano, Vinicius Zambaldi, Neil C Rabinowitz,
Thore Graepel, Matthew Botvinick, and Peter W Battaglia. Relational forward models for multi-
agent learning. arXiv preprint arXiv:1809.11044, 2018.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Luisa Zintgraf, Maximilian Igl, Kyriacos Shiarlis, Anuj Mahajan, Katja Hofmann, and Shimon
Whiteson. Variational task embeddings for fast adaptation in deep reinforcement learning. Inter-
national Conference on Learning Representations Workshop on Structure & Priors in Reinforce-
ment Learning, 2019.

11



Under review as a conference paper at ICLR 2020

A DETAILS OF THE EXPERIMENTAL ENVIRONMENT

A.1 SPEAKER-LISTENER ENVIRONMENT

The speaker-listener environment consists of two agents, called speaker and listener as well as three
designated landmarks that each one has a different color, red green or blue. At the beginning of the
episode, the listener is assigned a color, which can be red, green, or blue. The task of the listener is
to navigate to the landmark that has the same color. However, the color of the listener can only be
observed by the speaker. So the speaker has to learn to communicate the correct color to the listener.
The listener should be able to understand the generated message of the speaker and to navigate to the
correct color. The observation space of the listener has 13 dimensions, which consists of the position
of the listener, the positions of the three landmarks in the 2D environment and the 5-dimensional
communication message of the speaker and its action space has five dimensions. The speaker has
a 3-dimensional observation space, which is a vector assigned to the color of the listener, and 5-
dimensional action space. We use our method to train the listener to be able to understand a set
of different speakers, pretrained speakers that use different communication messages. Both speaker
and listener share the same reward, which is the negative Euclidean distance between the listener and
the correct landmark. In Figure 7a, an instance from the speaker-listener environment is presented.

A.2 DOUBLE SPEAKER-LISTENER ENVIRONMENT

The double speaker-listener environment consists of two agents and three designated landmarks that
each one has a different color, red green or blue, similarly to the speaker-listener environment. The
only difference is that both agents are simultaneously both speakers and listeners. Therefore, at
the beginning of the episode, each agent has a color that can only be observed by the other agent.
Each agent must learn both to communicate a message to the other agent as well as navigate to the
correct landmark. The observation space of each agent has 16 dimensions, where 13 of them are
the same as the listener’s in the previous environment, and the other three are the vector assigned
to the color of the opponent, while the action space is 5-dimensional for the navigation actions and
5-dimensional for the communication message as well. The reward is the average of the negative
Euclidean distances between each agent and the correct landmark. This environment is significantly
more difficult compared to the speaker-listener because our agent has to infer both the color that
the other agent observes as well as communicate the correct message that the opponent expects. In
Figure 7b, an instance from the double speaker-listener environment is presented.

A.3 PREDATOR-PREY ENVIRONMENT

This environment consists of one prey agent and three predator agents. At the beginning of the
episode, the prey and the predators are randomly placed on a 2D map. The goal of the prey is to
avoid being caught by predators. In the environment, there are additionally two large black obstacles
in order to block the agents. The advantage of the prey compared to the three predators is that it can
move faster compared to the three adversaries. This environment, compared to the previous two, is
competitive. We deliberately chose this environment in order to prove that our method is agnostic
to the environment setting. In our work, we will apply the proposed algorithm in the prey agent
in order to examine whether it can avoid a large number of different pretrained predator agents.
The observation of each agent has 14 dimensions representing the agents’ positions as well as the
obstacles in the 2D space, while their action space consists of 5 actions. In Figure 7c, an instance
from the predator-prey environment is presented.

A.4 SPREAD ENVIRONMENT

The spread environment consists of three large agents and three landmarks as well. At the beginning
of the episode, the three agents and the three landmarks are spread randomly in the 2D space. The
goal of the agents is to navigate to three different landmarks without colliding. The reward is the
negative distance of each agent from the landmark. In the case of collision, there is an additional
negative reward. The reward is the same for all agents. All the agents have the same observation
space, which consists of 18 dimensions, while their action space consists of 5 actions. In Figure 7d,
an instance from the spread environment, is presented.
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(a) Speaker-listener (b) Double SL (c) Predator-prey (d) Spread

Figure 7: Instances of different MPE environments

B ABLATION STUDY ON RL BACK-PROPAGATION

We evaluate SMA2C without back-propagating the gradients of the RL loss to the parameters of the
encoder. Therefore, the encoder is only trained based on ELBO.
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Figure 8: Ablation study on back-propagation of the RL loss to the encoder’s parameters for weak
generalization.

Figure 8 verifies that not performing back-propagation does not significantly affect the episodic
returns that SMA2C achieves during weak generalization. Additionally, we compute the MI between
the embeddings and the opponents’ identities similarly to Section 5.3 for the double speaker-listener
environment. We observe that the MI decreases when we do not perform back-propagation to the
embeddings of the encoder.

Table 2: MI estimations using MINE in the double speaker-listener environment of the embeddings
at the 15th, 20th and 25th time step of the trajectory.

Double speaker-listener
Algorithm 15 20 25
SMA2C 0.73 0.72 0.7
SMA2C No Back-propagation 0.61 0.62 0.58

C EMBEDDING VISUALIZATION

Figure 9 visualizes the embedding space for the three different evaluated algorithms in the predator-
prey environment. Note that the embeddings were generated using interactions between the oppo-
nents from the set T and the trained agent that we control.
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(c) Grover et al. (2018a)

Figure 9: Embedding visualization from the double speaker-listener environment. The figures
present 200 embeddings against each one of the five opponents and have been projected in the
two first principal components from the initial ten dimensions. The embeddings presented here are
from the last time step of the episode.

D IMPLEMENTATION DETAILS

The pseudocode for training the VAE from Section 4.2 is provided below. We consider that 1000
trajectories are provided for each one of the opponents, which are generated against trained agents.
We train the VAE for 1000 epochs, using Adam (Kingma & Ba, 2014) with 10−3 learning rate.

Algorithm 1 Pseudocode of the proposed VAE algorithm

for i = 1 :M do
Sample an episode and compute the embedding z ← q(sample(Ei))
Sample a different episode and compute the embedding z+ ← q(sample(Ei))
for j = 1 :M do

if i == j then
continue

Sample an episode and compute the embedding z− ← q(sample(Ej))
Update VAE parameters by maximizing 8

We train OMDDPG for 2 million steps in all the experiments. Since the encoder of the VAE has an
LSTM layer and has to be trained on sequential data, we use a modified experience replay, that en-
ables sampling of whole episodes, which has also been used by Hausknecht & Stone (2015). DDPG
algorithm requires continuous action space. However, since our experimental environments have
discrete action space, we use the Gumbel-Softmax trick (Jang et al., 2016) to create differentiable
samples from a discrete distribution. Additionally, we regularize the actor loss by adding the squared
logits in order to prevent them from getting large values. The pseudocode of OMDDPG is presented
below 2.

Algorithm 2 Pseudocode of the OMDDPG algorithm

for e = 1 : K episodes do
opp← sample(opponents)
while episode is not fished do

Get the observation of our agent o and the observation of the opponent o−1
Compute the action of the opponent a−1
Get a sample from the encoder z ← q(z|o−1, a−1)
Compute the action a of the agent using exploration
Perform the actions in the environment and get new observations and rewards

Store the sequences of both agents in the experience replay
if t%update frequency == 0 then

Sample a batch of sequences from the experience replay
Update the actor-critic parameters using 2 where s← concat(o, z)
Update the target networks
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All neural networks have 2 hidden layers with ReLU (Maas et al., 2013) activation function. We
use the Adam optimizer (Kingma & Ba, 2014) for all experiments. The target networks are updated
with τ = 0.01. The hidden dimensions for all VAE layers is 100. The parameter λ in the VAE
loss (equation 8) is always 1. We perform gradient updates every 50 time steps with a batch of 100
episodes. Table 3 summarizes the rest of the hyperparameters.

Table 3: Hyperparameters of OMDDPG, for speaker-listener (SL), double speaker-listener (DSL),
predator-prey (PP) and spread (SP).

SL DSL PP SP
Hidden dim RL 64 128 64 64
Embedding dim 2 10 10 8
Actor lr 0.001 0.001 0.001 0.001
Critic lr 0.001 0.001 0.01 0.001
β 0.01 0.01 0.05 0.1
Policy reg 0.01 0.001 0.001 0.001

We train A2C for 2 million steps in the speaker-listener environment, 5 million in the double speaker-
listener, 10 million in the predator-prey and 15 million in the spread environment. A2C as an on-
policy algorithm is significantly less sample-efficient compared to DDPG, and as a result, more
training steps are required. The pseudocode of SMA2C is presented below 3. We subtract the policy
entropy from the actor loss (Mnih et al., 2016) to ensure sufficient exploration. The loss that SMA2C
minimizes can be written as:

min
φ,θ,w,u

1

2
EB [(r + γVφ(s

′)− Vφ(s))2 − Â log πθ(a|s)

− δ log pu(τ−1|z) + βDKL(qw(z|τ )‖p(z))− bH(π)]
(13)

Algorithm 3 Pseudocode of the SMA2C algorithm

Create D parallel environments
t← 0
for e = 1 : K episodes do

Sample D opponents opp← sample(opponents)
while episode is not finished do

for every environment in D do
Get the observation of our agent o and the observation of the opponent o−1
Get a sample from the encoder z ← q(z|o, a, r, d)
Compute the action a of the agent using exploration
t← t+ 1
Perform the actions in the environment and get new observations, rewards and done

if t%update frequency == 0 then
Gather the sequences from all environments to a single batch
Update the actor-critic and VAE parameters using 13 where s← concat(o, z)

For the advantage computation, we use the GAE (Schulman et al., 2015b) with λGAE = 0.95. We
create 10 parallel environment to break the correlation between consecutive samples. The actor and
the critic share all hidden layers in all the environments except the double speaker-listener. We use
the Adam optimizer (Kingma & Ba, 2014), and we clip the gradient norm to 0.5. Table 4 summarizes
the rest of the hyperparameters.
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Table 4: Hyperparameters of SMA2C, for speaker-listener (SL), double speaker-listener (DSL),
predator-prey (PP) and spread (SP).

SL DSL PP SP
Hidden dim 64 128 128 64
Embedding dim 5 10 10 5
lr 0.0005 0.0005 0.0005 0.0003
δ 0.1 0.5 1 0.1
β 0.1 0.1 0.1 0.1
b 0.1 0.001 0.01 0.001
train frequency 5 25 5 5

E AGENT GENERALIZATION GRAPHS

Figure 10 presents the agent generalization graph that was used in all experiments in this paper.
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Figure 10: Agent Generalization graph. —: weak generalization, - - -: strong generalization
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