
Published as a conference paper at ICLR 2019

TOWARD UNDERSTANDING THE IMPACT OF
STALENESS IN DISTRIBUTED MACHINE LEARNING

Wei Dai∗, Yi Zhou†, Nanqing Dong§, Hao Zhang§, Eric P. Xing§
∗Apple Inc, †Duke University, and §Petuum Inc
daviddai@apple.com, yi.zhou610@duke.edu
{nanqing.dong, hao.zhang, eric.xing}@petuum.com

ABSTRACT

Most distributed machine learning (ML) systems store a copy of the model param-
eters locally on each machine to minimize network communication. In practice,
in order to reduce synchronization waiting time, these copies of the model are not
necessarily updated in lock-step, and can become stale. Despite much development
in large-scale ML, the effect of staleness on the learning efficiency is inconclusive,
mainly because it is challenging to control or monitor the staleness in complex
distributed environments. In this work, we study the convergence behaviors of a
wide array of ML models and algorithms under delayed updates. Our extensive
experiments reveal the rich diversity of the effects of staleness on the convergence
of ML algorithms and offer insights into seemingly contradictory reports in the
literature. The empirical findings also inspire a new convergence analysis of SGD
in non-convex optimization under staleness, matching the best-known convergence
rate of O(1/

√
T).

1 INTRODUCTION

With the advent of big data and complex models, there is a growing body of works on scaling machine
learning under synchronous and non-synchronous1 distributed execution (Dean et al., 2012; Goyal
et al., 2017; Li et al., 2014a). These works, however, point to seemingly contradictory conclusions
on whether non-synchronous execution outperforms synchronous counterparts in terms of absolute
convergence, which is measured by the wall clock time to reach the desired model quality. For deep
neural networks, Chilimbi et al. (2014); Dean et al. (2012) show that fully asynchronous systems
achieve high scalability and model quality, but others argue that synchronous training converges
faster (Chen et al., 2016; Cui et al., 2016). The disagreement goes beyond deep learning models: Ho
et al. (2013); Zhang & Kwok (2014); Langford et al. (2009); Lian et al. (2015); Recht et al. (2011)
empirically and theoretically show that many algorithms scale effectively under non-synchronous
settings, but McMahan & Streeter (2014); Mitliagkas et al. (2016); Hadjis et al. (2016) demonstrate
significant penalties from asynchrony.

The crux of the disagreement lies in the trade-off between two factors contributing to the absolute
convergence: statistical efficiency and system throughput. Statistical efficiency measures convergence
per algorithmic step (e.g., a mini-batch), while system throughput captures the performance of
the underlying implementation and hardware. Non-synchronous execution can improve system
throughput due to lower synchronization overheads, which is well understood (Ho et al., 2013;
Chen et al., 2016; Cui et al., 2014; Chilimbi et al., 2014; Dai et al., 2015). However, by allowing
various workers to use stale versions of the model that do not always reflect the latest updates,
non-synchronous systems can exhibit lower statistical efficiency (Chen et al., 2016; Cui et al., 2016).
How statistical efficiency and system throughput trade off in distributed systems, however, is far from
clear.

The difficulties in understanding the trade-off arise because statistical efficiency and system through-
put are coupled during execution in distributed environments. Non-synchronous executions are in
general non-deterministic, which can be difficult to profile. Furthermore, large-scale experiments
∗The work is conducted at Petuum Inc.
1We use the term “non-synchronous” to include both fully asynchronous model (Recht et al., 2011) and

bounded asynchronous models such as Stale Synchronous Parallel (Ho et al., 2013).

1

Published as a conference paper at ICLR 2019

are sensitive to the underlying hardware and software artifacts, which confounds the comparison
between studies. Even when they are controlled, innocuous change in the system configurations
such as adding more machines or sharing resources with other workloads can inadvertently alter the
underlying staleness levels experienced by ML algorithms, masking the true effects of staleness.

Understanding the impact of staleness on ML convergence independently from the underlying dis-
tributed systems is a crucial step towards decoupling statistical efficiency from the system complexity.
The gleaned insights can also guide distributed ML system development, potentially using different
synchronization for different problems. In particular, we are interested in the following aspects: Do
ML algorithms converge under staleness? To what extent does staleness impact the convergence?

By resorting to simulation study, we side step the challenges faced in distributed execution. We study
the impact of staleness on a diverse set of models: Convolutional Neural Networks (CNNs), recurrent
neural networks (RNNs), Deep Neural Networks (DNNs), multi-class Logistic Regression (MLR),
Matrix Factorization (MF), Latent Dirichlet Allocation (LDA), and Variational Autoencoders (VAEs).
They are addressed by 7 algorithms, spanning across optimization, sampling, and blackbox variational
inference. Our findings suggest that while some algorithms are more robust to staleness, no ML
method is immune to the negative impact of staleness. We find that all investigated algorithms reach
the target model quality under moderate levels of staleness, but the convergence can progress very
slowly or fail under high staleness levels. The effects of staleness are also problem dependent. For
CNNs, DNNs, and RNNs, the staleness slows down deeper models more than shallower counterparts.
For MLR, a convex objective, staleness has minimal effect. Different algorithms respond to staleness
very differently. For example, high staleness levels incur more statistical penalty for Momentum
methods than stochastic gradient descent (SGD) and Adagrad (Duchi et al., 2011). Separately, Gibbs
sampling for LDA is highly resistant to staleness up to a certain level, beyond which it does not
converge to a fixed point. Overall, it appears that staleness is a key governing parameter of ML
convergence.

To gain deeper insights, for gradient-based methods we further introduce gradient coherence along
the optimization path, and show that gradient coherence is a possible explanation for an algorithm’s
sensitivity to staleness. In particular, our theoretical result establishes the O(1/

√
T) convergence

rate of the asynchronous SGD in nonconvex optimization by exploiting gradient coherence, matching
the rate of best-known results (Lian et al., 2015).

2 RELATED WORK

Staleness is reported to help absolute convergence for distributed deep learning in Chilimbi et al.
(2014); Dean et al. (2012); Xing et al. (2015) and has minimal impact on convergence (Mitliagkas
et al., 2016; Hadjis et al., 2016; Lian et al., 2015; Dai et al., 2013; Zhou et al., 2018; 2016). But
Chen et al. (2016); Cui et al. (2016) show significant negative effects of staleness. LDA training
is generally insensitive to staleness (Smola & Narayanamurthy, 2010; Yuan et al., 2015; Wei et al.,
2015; Ho et al., 2013), and so is MF training (Yun et al., 2013; Low et al., 2012; Cui et al., 2014;
Zhang & Kwok, 2014). However, none of their evaluations quantifies the level of staleness in the
systems. By explicitly controlling the staleness, we decouple the distributed execution, which is hard
to control, from ML convergence outcomes.

We focus on algorithms that are commonly used in large-scale optimization (Goyal et al., 2017; Chen
et al., 2016; Dean et al., 2012), instead of methods specifically designed to minimize synchroniza-
tion (Neiswanger et al., 2013; Scott et al., 2016; Jordan et al., 2013). Non-synchronous execution has
theoretical underpinning (Li et al., 2014b; Ho et al., 2013; Zhang & Kwok, 2014; Lian et al., 2015;
Recht et al., 2011). Here we study algorithms that do not necessarily satisfy assumptions in their
analyses.

3 METHODS

We study six ML models and focus on algorithms that lend itself to data parallelism, which a primary
approach for distributed ML. Our algorithms span optimization, sampling, and black box variational
inference. Table 1 summarizes the studied models and algorithms.

Simulation Model. Each update generated by worker p needs to be propagated to both worker p’s
model cache and other worker’s model cache. We apply a uniformly random delay model to these
updates that are in transit. Specifically, let utp be the update generated at iteration t by worker p. For

2

Published as a conference paper at ICLR 2019

each worker p′ (including p itself), our delay model applies a delay rtp,p′ ∼ Categorical(0, 1, .., s),
where s is the maximum delay and Categorical() is the categorical distribution placing equal weights
on each integer2. Under this delay model, update utp shall arrive at worker p′ at the start of iteration
t+ 1 + rtp,p′ . The average delay under this model is 1

2s+ 1. Notice that for one worker with s = 0
we reduce to the sequential setting. Since model caches on each worker are symmetric, we use the
first worker’s model to evaluate the model quality. Finally, we are most interested in measuring
convergence against the logical time, and wall clock time is in general immaterial as the simulation
on a single machine is not optimized for performance.

3.1 MODELS AND ALGORITHMS

Model Algorithms Key Parameters Dataset

CNN
RNN

SGD η

CIFAR10 (CNN)
Penn Treebank (RNN)

Momentum SGD η, momentum=0.9
Adam η, β1 = 0.9, β2 = 0.999
Adagrad η
RMSProp η, decay=0.9, momentum=0

DNN/MLR SGD η = 0.01 MNISTAdam η = 0.001, β1 = 0.9, β2 = 0.999
LDA Gibbs Sampling α = 0.1, β = 0.1 20 NewsGroup
MF SGD η = 0.005, rank=5, λ = 0.0001 MovieLens1M

VAE Blackbox VI (SGD,
Adam)

Optimization parameters same as
MLR/DNN MNIST

Table 1: Overview of the models, algorithms (Qian, 1999; Duchi et al., 2011; Kingma & Ba, 2014; Hinton, 2012;
Griffiths & Steyvers, 2004), and dataset (Krizhevsky & Hinton, 2009; Marcus et al., 1993; LeCun, 1998; Harper
& Konstan, 2016; Rennie) in our study. η denotes learning rate, which, if not specified, are tuned empirically
for each algorithm and staleness level, β1, β2 are optimization hyperparameters (using common default values).
α, β in LDA are Dirichlet priors for document topic and word topic random variables, respectively.

Convolutional Neural Networks (CNNs) have been a strong focus of large-scale training, both under
synchronous (Goyal et al., 2017; Cui et al., 2016; Coates et al., 2013) and non-synchronous (Chilimbi
et al., 2014; Dean et al., 2012; Chen et al., 2016; Hadjis et al., 2016) training. We consider residual
networks with 6n+ 2 weight layers (He et al., 2016). The networks consist of 3 groups of n residual
blocks, with 16, 32, and 64 feature maps in each group, respectively, followed by a global pooling
layer and a softmax layer. The residual blocks have the same construction as in (He et al., 2016).
We measure the model quality using test accuracy. For simplicity, we omit data augmentation in our
experiments.

Deep Neural Networks (DNNs) are neural networks composed of fully connected layers. Our DNNs
have 1 to 6 hidden layers, with 256 neurons in each layer, followed by a softmax layer. We use
rectified linear units (ReLU) for nonlinearity after each hidden layer (Nair & Hinton, 2010). Multi-
class Logistic Regression (MLR) is the special case of DNN with 0 hidden layers. We measure the
model quality using test accuracy.

Matrix factorization (MF) is commonly used in recommender systems and have been im-
plemented at scale (Yun et al., 2013; Low et al., 2012; Cui et al., 2014; Zhang & Kwok,
2014; Kim et al., 2016; Ho et al., 2013; Kumar et al., 2014). Let D ∈ RM×N be a par-
tially filled matrix, MF factorizes D into two factor matrices L ∈ RM×r and R ∈ RN×r
(r � min(M,N) is the user-defined rank). The `2-penalized optimization problem is:
minL,R

1
|Dobs|

{∑
(i,j)∈Dobs

||Dij −
∑K
k=1 LikRkj ||2 + λ(||L||2F + ||R||2F)

}
where || · ||F is the

Frobenius norm and λ is the regularization parameter. We partition observations D to workers while
treating L,R as shared model parameters. We optimize MF via SGD, and measure model quality by
training loss defined by the objective function above.

Latent Dirichlet Allocation (LDA) is an unsupervised method to uncover hidden semantics (“top-
ics”) from a group of documents, each represented as a bag of tokens. LDA has been scaled under
non-synchronous execution (Ahmed et al., 2012; Low et al., 2012; Yuan et al., 2015) with great
success. Further details are provided in Appendix.

2We find that geometrically distributed delays, presented in the sequel, have qualitatively similar impacts on
convergence. We defer read-my-write consistency to future work.

3

Published as a conference paper at ICLR 2019

Variational Autoencoder (VAE) is commonly optimized by black box variational inference, which
can be considered as a hybrid of optimization and sampling methods. The inputs to VAE training
include two sources of stochasticity: the data sampling x and samples of random variable ε. We
measure the model quality by test loss. We use DNNs with 1∼3 layers as the encoders and decoders
in VAE, in which each layer has 256 units furnished with rectified linear function for non-linearity.
The model quality is measured by the training objective value, assuming continuous input x and
isotropic Gaussian prior p(z) ∼ N (0, I).

4 EXPERIMENTS

We use batch size 32 for CNNs, DNNs, MLR, and VAEs34. For MF, we use batch size of 25000
samples, which is 2.5% of the MovieLens dataset (1M samples). We study staleness up to s = 50 on
8 workers, which means model caches can miss updates up to 8.75 data passes. For LDA we use D

10P
as the batch size, where D is the number of documents and P is the number of workers. We study
staleness up to s = 20, which means model caches can miss updates up to 2 data passes. We measure
time in terms of the amount of work performed, such as the number of batches processed.

s=0 s=4 s=8 s=16
0

10000

20000

30000

40000

CNN (8 workers, SGD)(a)

N
u
m

b
e
r

o
f

B
a
tc

h
e
s

to
 R

e
a
ch

7
1

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=4 s=8 s=16
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
o
rm

a
liz

e
d

 N
u
m

b
e
r

o
f

B
a
tc

h
e
s

to
 R

e
a
ch

 7
1

%
 T

e
st

 A
cc

u
ra

cy

(b)

CNN (8 workers, Adam)(c)

CNN (8 workers, SGD) CNN (8 workers, Adam)(d)
s=0 s=16 s=32

0

5

10

15

20

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

(e)

DNN (8 workers, SGD)

MLR

Depth 1

Depth 2

Depth 3

Depth 6

s=0 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

(f)

DNN (8 workers, Adam)

s=0 s=4 s=8 s=16
0

5000

10000

15000

20000

25000

30000
ResNet8

ResNet14

ResNet20

ResNet32

s=0 s=4 s=8 s=16
0

1

2

3

4

5

6

Figure 1: (a)(c) The number of batches to reach 71% test accuracy on CIFAR10 for 4 variants of ResNet with
varying staleness, using 8 workers and SGD (learning rate 0.01) and Adam (learning rate 0.001). The mean and
standard deviation are calculated over 3 randomized runs. (b)(d) The same metrics as (a)(c), but each model
is normalized by the value under staleness 0 (s = 0), respectively. (e)(f) The number of batches to reach 92%
accuracy for MLR and DNN with varying depths, normalized by the value under staleness 0. MLR with SGD
does not converge within the experiment horizon (77824 batches) and thus is omitted in (f).

Convergence Slowdown. Perhaps the most prominent effect of staleness on ML algorithms is the
slowdown in convergence, evident throughout the experiments. Fig. 1 shows the number of batches
needed to reach the desired model quality for CNNs and DNNs/MLR with varying network depths
and different staleness (s = 0, ..., 16). Fig. 1(b)(d) show that convergence under higher level of
staleness requires more batches to be processed in order to reach the same model quality. This
additional work can potentially be quite substantial, such as in Fig. 1(d) where it takes up to 6x more
batches compared with settings without staleness (s = 0). It is also worth pointing out that while
there can be a substantial slowdown in convergence, the optimization still reaches desirable models
under most cases in our experiments. When staleness is geometrically distributed (Fig. 4(c)), we
observe similar patterns of convergence slowdown.

We are not aware of any prior work reporting slowdown as high as observed here. This finding has
important ramifications for distributed ML. Usually, the moderate amount of workload increases
due to parallelization errors can be compensated by the additional computation resources and higher
system throughput in the distributed execution. However, it may be difficult to justify spending large

3Non-synchronous execution allows us to use small batch sizes, eschewing the potential generalization
problem with large batch SGD (Keskar et al., 2016; Masters & Luschi, 2018).

4We present RNN results in the Appendix.

4

Published as a conference paper at ICLR 2019

amount of resources for a distributed implementation if the statistical penalty is too high, which
should be avoided (e.g., by staleness minimization system designs or synchronous execution).

Model Complexity. Fig. 1 also reveals that the impact of staleness can depend on ML parameters,
such as the depths of the networks. Overall we observe that staleness impacts deeper networks more
than shallower ones. This holds true for SGD, Adam, Momentum, RMSProp, Adagrad (Fig. 1), and
other optimization schemes, and generalizes to other numbers of workers (see Appendix)5.

This is perhaps not surprising, given the fact that deeper models pose more optimization challenges
even under the sequential settings (Glorot & Bengio, 2010; He et al., 2016), though we point out that
existing literature does not explicitly consider model complexity as a factor in distributed ML (Lian
et al., 2015; Goyal et al., 2017). Our results suggest that the staleness level acceptable in distributed
training can depend strongly on the complexity of the model. For sufficiently complex models it may
be more advantageous to eliminate staleness altogether and use synchronous training.

Algorithms’ Sensitivity to Staleness. Staleness has uneven impacts on different SGD variants.
Fig. 2 shows the amount of work (measured in the number of batches) to reach the desired model
quality for five SGD variants. Fig. 2(d)(e)(f) reveals that while staleness generally increases the
number of batches needed to reach the target test accuracy, the increase can be higher for certain
algorithms, such as Momentum. On the other hand, Adagrad appear to be robust to staleness6. Our
finding is consistent with the fact that, to our knowledge, all existing successful cases applying
non-synchronous training to deep neural networks use SGD (Dean et al., 2012; Chilimbi et al., 2014).
In contrast, works reporting subpar performance from non-synchronous training often use momentum,
such as RMSProp with momentum (Chen et al., 2016) and momentum (Cui et al., 2016). Our results
suggest that these different outcomes may be partly driven by the choice of optimization algorithms,
leading to the seemingly contradictory reports of whether non-synchronous execution is advantageous
over synchronous ones.

Effects of More Workers. The impact of staleness is amplified by the number of workers. In the case
of MF, Fig. 3(b) shows that the convergence slowdown in terms of the number of batches (normalized
by the convergence for s = 0) on 8 workers is more than twice of the slowdown on 4 workers. For
example, in Fig. 3(b) the slowdown at s = 15 is ∼3.4, but the slowdown at the same staleness level
on 8 workers is ∼8.2. Similar observations can be made for CNNs (Fig. 3). This can be explained by
the fact that additional workers amplifies the effect of staleness by (1) generating updates that will be
subject to delays, and (2) missing updates from other workers that are subject to delays.

LDA. Fig. 3(c)(d) show the convergence curves of LDA with different staleness levels for two
settings varying on the number of workers and topics. Unlike the convergence curves for SGD-based
algorithms (see Appendix), the convergence curves of Gibbs sampling are highly smooth, even under
high staleness and a large number of workers. This can be attributed to the structure of log likelihood
objective function (Griffiths & Steyvers, 2004). Since in each sampling step we only update the count
statistics based on a portion of the corpus, the objective value will generally change smoothly.

Staleness levels under a certain threshold (s ≤ 10) lead to convergence, following indistinguishable
log likelihood trajectories, regardless of the number of topics (K = 10, 100) or the number of workers
(2–16 workers, see Appendix). Also, there is very minimal variance in those trajectories. However,
for staleness beyond a certain level (s ≥ 15), Gibbs sampling does not converge to a fixed point.
The convergence trajectories are distinct and are sensitive to the number of topics and the number of
workers. There appears to be a “phase transition” at a certain staleness level that creates two distinct
phases of convergence behaviors7. We believe this is the first report of a staleness-induced failure
case for LDA Gibbs sampling.

VAE In Fig. 3(e)(f), VAEs exhibit a much higher sensitivity to staleness compared with DNNs
(Fig. 1(e)(f)). This is the case even considering that VAE with depth 3 has 6 weight layers, which

5ResNet8 takes more batches to reach the same model quality than deeper networks in Fig. 1(a) because,
with SGD, ResNet8’s final test accuracy is about 73% in our setting, while ResNet20’s final test accuracy is close
to 75%. Therefore, deeper ResNet can reach the same model accuracy in the earlier part of the optimization
path, resulting in lower number of batches in Fig. 1(a). However, when the convergence time is normalized by
the non-stale (s=0) value in Fig. 1(b), we observe the impact of staleness is higher on deeper models.

6 Many synchronous systems uses batch size linear in the number of workers (e.g., (Goyal et al., 2017)). We
preserve the same batch size and more workers simply makes more updates in each iteration.

7We leave the investigation into this distinct phenomenon as future work.

5

Published as a conference paper at ICLR 2019

has a comparable number of model parameters and network architecture to DNNs with 6 layers. We
hypothesize that this is caused by the additional source of stochasticity from the sampling procedure,
in addition to the data sampling process.

N
um

be
r
of
Ba
tc
he
s
to
Re
ac
h

71
%
Te
st
Ac
cu
ra
cy

N
or
m
al
iz
ed
N
um

be
r
of
Ba
tc
he
s

to
Re
ac
h
71
%
Te
st
Ac
cu
ra
cy

ResNet8 (1 worker) (b) ResNet8 (8 workers)

(e)

(c) ResNet8 (16 workers)

(f)

(a)

(d)

s=0 s=4 s=8 s=16
0.0

0.5

1.0

1.5

2.0

2.5

s=0 s=4 s=8 s=16
0

2000

4000

6000

8000

s=0 s=4 s=8 s=16
0

1

2

3

4
sgd
adam
momentum
rmsprop
adagrad

s=0 s=4 s=8 s=16
0

5000

10000

15000

20000

25000

30000

35000

s=0 s=4 s=8 s=16
0

2

4

6

8

s=0 s=4 s=8 s=16
0

10000

20000

30000

40000

50000

60000

Figure 2: (a)(b)(c) The number of batches to reach 71% test accuracy on 1, 8, 16 workers with staleness
s = 0, ..., 16 using ResNet8. We consider 5 variants of SGD: SGD, Adam, Momentum, RMSProp, and Adagrad.
For each staleness level, algorithm, and the number of workers, we choose the learning rate with the fastest time
to 71% accuracy from {0.001, 0.01, 0.1}. (d)(e)(f) show the same metric but each algorithm is normalized by
the value under staleness 0 (s = 0), respectively, with possibly different learning rate.

0 1 2 3 4 5
Number of Documents

1.60

1.55

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15

Lo
g

 L
ik

e
lih

o
o
d

1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

num workers=4 num workers=8
0

100

200

300

400

500

600

700

800

N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

T
ra

in
in

g
 L

o
ss

 0
.5

s = 0

s = 5

s = 10

s = 15

s = 20

s = 30

s = 40

s = 50

num workers=4 num workers=8
0

2

4

6

8

10

12

14

16

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
ra

in
in

g
 L

o
ss

 0
.5

s = 0

s = 5

s = 10

s = 15

s = 20

s = 30

s = 40

s = 50

(a)

(b)

(c) LDA (2 workers, 10 topics)MF (4 and 8 workers)

1e5

0 1 2 3 4 5
Number of Documents

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

Lo
g

 L
ik

e
lih

o
o
d

1e7
LDA (16 workers, 100 topics)

1e5

MF (4 and 8 woerkers)

s=0 s=2 s=4 s=8 s=16
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

Depth 1

Depth 2

Depth 3

VAE (1 worker, SGD)

(d)

(e)

(f)

s=0 s=2 s=4 s=8 s=16
0

10

20

30

40

50

60

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

VAE (1 worker, Adam)

Figure 3: (a) The number of batches to reach training loss of 0.5 for Matrix Factorization (MF). (b) shows
the same metric in (a) but normalized by the values of staleness 0 of each worker setting, respectively (4 and 8
workers). (c)(d) Convergence of LDA log likelihood using 10 and 100 topics under staleness levels s = 0, ..., 20,
with 2 and 16 workers. The convergence is recorded against the number of documents processed by Gibbs
sampling. The shaded regions are 1 standard deviation around the means (solid lines) based on 5 randomized
runs. (e)(f) The number of batches to reach test loss 130 by Variational Autoencoders (VAEs) on 1 worker,
under staleness s = 0, ..., 16. We consider VAEs with depth 1, 2, and 3 (the number of layers in the encoder
and the decoder networks, separately). The numbers of batches are normalized by s = 0 for each VAE depth,
respectively. Configurations that do not converge to the desired test loss are omitted in the graph, such as Adam
optimization for VAE with depth 3 and s = 16.

5 GRADIENT COHERENCE AND CONVERGENCE OF ASYNCHRONOUS SGD
We now provide theoretical insight into the effect of staleness on the observed convergence slowdown.
We focus on the challenging asynchronous SGD (Async-SGD) case, which characterizes the neural

6

Published as a conference paper at ICLR 2019

network models, among others. Consider the following nonconvex optimization problem

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x), (P)

where fi corresponds to the loss on the i-th data sample, and the objective function is assumed to
satisfy the following standard conditions:

Assumption 1. The objective function F in the problem (P) satisfies:

1. Function F is continuously differentiable and bounded below, i.e., infx∈Rd F (x) > −∞;
2. The gradient of F is L-Lipschitz continuous.

Notice that we allow F to be nonconvex. We apply the Async-SGD to solve the problem (P). Let ξ(k)
be the mini-batch of data indices sampled from {1, . . . , n} uniformly at random by the algorithm
at iteration k, and |ξ(k)| is the mini-batch size. Denote mini-batch gradient as ∇fξ(k)(xk) :=∑
i∈ξ(k)∇fi(xk). Then, the update rule of Async-SGD can be written as

xk+1 = xk − ηk
|ξ(τk)|∇fξ(τk)(xτk), (Async-SGD)

where ηk corresponds to the stepsize, τk denotes the delayed clock and the maximum staleness is
assumed to be bounded by s. This implies that k − s+ 1 ≤ τk ≤ k.

The optimization dynamics of Async-SGD is complex due to the nonconvexity and the uncertainty of
the delayed updates. Interestingly, we find that the following notion of gradient coherence provides
insights toward understanding the convergence property of Async-SGD.

Definition 1 (Gradient coherence). The gradient coherence at iteration k is defined as

µk := min
k−s+1≤t≤k

〈∇F (xk),∇F (xt)〉
‖∇F (xk)‖2 .

Parameter µk captures the minimum coherence between the current gradient ∇F (xk) and the
gradients along the past s iterations8. Intuitively, if µk is positive, then the direction of the current
gradient is well aligned to those of the past gradients. In this case, the convergence property induced
by using delayed stochastic gradients is close to that induced by using synchronous stochastic
gradients. Note that Definition 1 only requires the gradients to be positively correlated over a small
number of iterations s, which is often very small (e.g. <10 in our experiments). Therefore, Definition
1 is not a global requirement on optimization path.

Even though neural network’s loss function is non-convex, recent studies showed strong evidences
that SGD in practical neural network training encourage positive gradient coherence (Li et al., 2017;
Lorch, 2016). This is consistent with the findings that the loss surface of shallow networks and deep
networks with skip connections are dominated by large, flat, nearly convex attractors around the
critical points (Li et al., 2017; Keskar et al., 2016), implying that the degree of non-convexity is
mild around critical points. We show in the sequel that µk > 0 through most of the optimization
path, especially when the staleness is minimized in practice by system optimization (Fig. 4). Our
theory can be readily adapted to account for a limited amount of negative µk (see Appendix), but our
primary interest is to provide a quantity that is (1) easy to compute empirically during the course of
optimization9, and (2) informative for the impact of staleness and can potentially be used to control
synchronization levels. We now characterize the convergence property of Async-SGD.

Theorem 1. Let Assumption 1 hold. Suppose for some µ > 0, the gradient coherence satisfies
µk ≥ µ for all k and the variance of the stochastic gradients is bounded by σ2 > 0. Choose stepsize
ηk = µ

sL
√
k

. Then, the iterates generated by the Async-SGD satisfy

min
0≤k≤T

E‖∇F (xk)‖2 ≤
(sL(F (x0)−infx F (x))

µ2 + σ2 log T
s

)
1√
T
. (1)

8Our gradient coherence bears similarity with the sufficient direction assumption in (Huo et al., 2018).
However, sufficient direction is a layer-wise and fixed delay, whereas our staleness is a random variable that is
subject to system level factors such as communication bandwidth

9It can be approximated by storing a pre-selected batch of data on a worker. The worker just needs to compute
gradient every T mini-batches to obtain approximate ∇F (xk), ∇F (xt) in Definition 1.

7

Published as a conference paper at ICLR 2019

0 10000 20000 30000 40000 50000 60000
Num Batches

0.4

0.2

0.0

0.2

0.4

0.6

0.8

m = 1
m = 2
m = 3
m = 4

Co
si
ne
Si
m
ila
rit
y

Gradient Coherence Over Epochs
ResNet32, SGD, staleness = 4, 8 workers

Gradient Coherence Over Epochs
ResNet32, Adam, staleness = 4, 8 workers

Geometric Distribution with Straggler
ResNetX, 8 workers, SGD

0 10000 20000 30000 40000 50000 60000
Num Batches

0.0

0.2

0.4

0.6

0.8

m = 1
m = 2
m = 3
m = 4

s=0 s=4 s=8 s=16
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
or
m
al
iz
ed
N
um

Ba
tc
he
s

to
Re
ac
h
71
%
Te
st
Ac
cu
ra
cy

ResNet8
ResNet14
ResNet20
ResNet32

Staleness

(a) (b) (c)

Figure 4: (a)(b) Cosine similarity between the gradient at the k-th iteration ∇F (xk), and the gradient m steps
prior ∇F (xk−m), over the course of convergence for ResNet32 on CIFAR10 optimized by SGD (a) and Adam
(b) under staleness s = 4 on 8 workers with parameters in Table 1. Shaded region is 1 standard deviation over
3 runs. For computational efficiency, we approximate the full gradient ∇F (xk) by gradients on a fixed set of
1000 training samples Dfixed and use ∇DfixedF (xk). (c) The number of batches to reach 71% test accuracy
on CIFAR10 for ResNet8-32 using 8 workers and SGD under geometric delay distribution (details in Appendix).

We refer readers to Appendix for the the proof. Theorem 1 characterizes several theoretical aspects of
Async-SGD. First, the choice of the stepsize ηk = µ

sL
√
k

is adapted to both the maximum staleness
and the gradient coherence. Intuitively, if the system encounters a larger staleness, then a smaller
stepsize should be used to compensate the negative effect. On the other hand, the stepsize can be
accordingly enlarged if the gradient coherence along the iterates turns out to be high. In this case,
the direction of the gradient barely changes along the past several iterations, and a more aggressive
stepsize can be adopted. In summary, the choice of stepsize should trade-off between the effects
caused by both the staleness and the gradient coherence.

1 2 3 40.0

0.2

0.4

0.6

0.8

1.0
ResNet 8 ResNet 14 ResNet 20

ResNet 32

Co
si
ne
Si
m
ila
rit
y

m
Figure 5: Gradient coherence for ResNet with varying
depths optimized by SGD using 8 workers. The x-axis
m is defined in Fig. 4

Furthermore, Theorem 1 shows that the mini-
mum gradient norm decays at the rate O(log T√

T
),

implying that the Async-SGD converges to a
stationary point provided a positive gradient co-
herence, which we observe empirically in the
sequel. On the other hand, the bound in Eq. (1)
captures the trade-off between the maximum
staleness s and the gradient coherence µ. Specif-
ically, minimizing the right hand side of Eq. (1) with regard to the maximum staleness s yields the

optimal choice s∗ = σµ
√

log T
L(F (x0)−infx F (x)) , i.e., a larger staleness is allowed if the gradients remain

to be highly coherent along the past iterates.

Empirical Observations. Theorem 1 suggests that more coherent gradients along the optimization
paths can be advantageous under non-synchronous execution. Fig. 4 shows the cosine similarity
sim(a, b) := a·b

‖a‖‖b‖ between gradients along the convergence path for CNNs and DNNs10. We
observe the followings: (1) Cosine similarity improves over the course of convergence (Fig. 4(a)(b)).
Except the highest staleness during the early phase of convergence, cosine similarity remains posi-
tive11. In practice the staleness experienced during run time can be limited to small staleness (Dai
et al., 2015), which minimizes the likelihood of negative gradient coherence during the early phase.
(2) Fig. 5 shows that cosine similarity decreases with increasing CNN model complexity. Theorem 1
implies that lower gradient coherence amplifies the effect of staleness s through the factor s

µ2 in
Eq. (1). This is consistent with the convergence difficulty encountered in deeper models (Fig. 1).

6 DISCUSSION AND CONCLUSION

In this work, we study the convergence behaviors under delayed updates for a wide array of models
and algorithms. Our extensive experiments reveal that staleness appears to be a key governing
parameter in learning. Overall staleness slows down the convergence, and under high staleness
levels the convergence can progress very slowly or fail. The effects of staleness are highly problem

10Cosine similarity is closely related to the coherence measure in Definition 1.
11Low gradient coherence during the early part of optimization is consistent with the common heuristics to

use fewer workers at the beginning in asynchronous training. (Lian et al., 2015) also requires the number of
workers to follow 1√

K
where K is the iteration number.

8

Published as a conference paper at ICLR 2019

dependent, influenced by model complexity, choice of the algorithms, the number of workers, and the
model itself, among others. Our empirical findings inspire new analyses of non-convex optimization
under asynchrony based on gradient coherence, matching the existing rate of O(1/

√
T).

Our findings have clear implications for distributed ML. To achieve actual speed-up in absolute
convergence, any distributed ML system needs to overcome the slowdown from staleness, and
carefully trade off between system throughput gains and statistical penalties. Many ML methods
indeed demonstrate certain robustness against low staleness, which should offer opportunities for
system optimization. Our results support the broader observation that existing successful non-
synchronous systems generally keep staleness low and use algorithms efficient under staleness.

REFERENCES

Amr Ahmed, Mohamed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and Alexander J. Smola.
Scalable inference in latent variable models. In WSDM, pp. 123–132, 2012.

Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting distributed synchronous
SGD. ArXiv: 1604.00981, 2016.

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam:
Building an efficient and scalable deep learning training system. In Proc. USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pp. 571–582, Broomfield, CO, October
2014.

Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng Andrew. Deep learning
with cots hpc systems. In Proc. International Conference on Machine Learning (ICML), pp.
1337–1345, 2013.

Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu Kumar, Jinliang Wei,
Wei Dai, Gregory R. Ganger, Phillip B. Gibbons, Garth A. Gibson, and Eric P. Xing. Exploiting
bounded staleness to speed up big data analytics. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pp. 37–48, Philadelphia, PA, June 2014. USENIX Association.

Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and Eric P Xing. Geeps: Scalable
deep learning on distributed gpus with a gpu-specialized parameter server. In Proceedings of the
Eleventh European Conference on Computer Systems, pp. 4. ACM, 2016.

Wei Dai, Jinliang Wei, Xun Zheng, Jin Kyu Kim, Seunghak Lee, Junming Yin, Qirong Ho, and
Eric P Xing. Petuum: A framework for iterative-convergent distributed ml. arXiv preprint
arXiv:1312.7651, 2013.

Wei Dai, Abhimanu Kumar, Jinliang Wei, Qirong Ho, Garth Gibson, and Eric P. Xing. Analysis
of high-performance distributed ml at scale through parameter server consistency models. In
Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in
Neural Information Processing Systems, pp. 1223–1231, 2012.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), pp.
249–256, 2010.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training
imagenet in 1 hour. ArXiv: 1706.02677, 2017.

Thomas L. Griffiths and Mark Steyvers. Finding scientific topics. PNAS, 101(suppl. 1):5228–5235,
2004.

9

Published as a conference paper at ICLR 2019

Stefan Hadjis, Ce Zhang, Ioannis Mitliagkas, Dan Iter, and Christopher Ré. Omnivore: An optimizer
for multi-device deep learning on cpus and gpus. arXiv preprint arXiv:1606.04487, 2016.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TiiS), 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Geoffrey Hinton. Neural networks for machine learning. http://www.cs.toronto.edu/
~tijmen/csc321/slides/lecture_slides_lec6.pdf, 2012.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gibbons, Garth A.
Gibson, Greg Ganger, and Eric Xing. More effective distributed ml via a stale synchronous
parallel parameter server. In Advances in Neural Information Processing Systems (NIPS) 26, pp.
1223–1231. 2013.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay. arXiv
preprint arXiv:1807.04511, 2018.

Michael I Jordan et al. On statistics, computation and scalability. Bernoulli, 19(4):1378–1390, 2013.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. ArXiv:
1609.04836, 2016.

Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai, Garth A Gibson, and Eric P Xing.
Strads: a distributed framework for scheduled model parallel machine learning. In Proceedings of
the Eleventh European Conference on Computer Systems, pp. 5. ACM, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Abhimanu Kumar, Alex Beutel, Qirong Ho, and Eric P Xing. Fugue: Slow-worker-agnostic distributed
learning for big models on big data. In Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics, pp. 531–539, 2014.

John Langford, Alexander J Smola, and Martin Zinkevich. Slow learners are fast. In Advances in
Neural Information Processing Systems, pp. 2331–2339, 2009.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural nets.
arXiv preprint arXiv:1712.09913, 2017.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James
Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter
server. In OSDI, volume 14, pp. 583–598, 2014a.

Mu Li, David G Andersen, Alex J Smola, and Kai Yu. Communication efficient distributed machine
learning with the parameter server. In Proc. Advances in Neural Information Processing Systems
(NIPS), pp. 19–27, 2014b.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. In Advances in Neural Information Processing Systems, pp. 2737–2745,
2015.

Eliana Lorch. Visualizing deep network training trajectories with pca. In The 33rd International
Conference on Machine Learning JMLR volume, volume 48, 2016.

10

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Published as a conference paper at ICLR 2019

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M.
Hellerstein. Distributed graphlab: A framework for machine learning and data mining in the cloud.
PVLDB, 2012.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks. ArXiv:
1804.07612, 2018.

Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous distributed
online learning. In Advances in Neural Information Processing Systems, pp. 2915–2923, 2014.

Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. Asynchrony begets momentum,
with an application to deep learning. In Communication, Control, and Computing (Allerton), 2016
54th Annual Allerton Conference on, pp. 997–1004. IEEE, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine
Learning, pp. 807–814, 2010.

Willie Neiswanger, Chong Wang, and Eric Xing. Asymptotically exact, embarrassingly parallel
mcmc. arXiv preprint arXiv:1311.4780, 2013.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1):
145–151, 1999.

Benjamin Recht, Christopher Re, Stephen J. Wright, and Feng Niu. Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In NIPS, pp. 693–701, 2011.

Jason Rennie. 20 newsgroups. http://qwone.com/ jason/20Newsgroups/.

Steven L Scott, Alexander W Blocker, Fernando V Bonassi, Hugh A Chipman, Edward I George, and
Robert E McCulloch. Bayes and big data: The consensus monte carlo algorithm. International
Journal of Management Science and Engineering Management, 11(2):78–88, 2016.

Alexander Smola and Shravan Narayanamurthy. An architecture for parallel topic models. Proc.
VLDB Endow., 3(1-2):703–710, September 2010. ISSN 2150-8097.

Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gregory R Ganger, Phillip B Gibbons,
Garth A Gibson, and Eric P Xing. Managed communication and consistency for fast data-parallel
iterative analytics. In Proceedings of the Sixth ACM Symposium on Cloud Computing, pp. 381–394.
ACM, 2015.

E.P. Xing, Q. Ho, W. Dai, Jin-Kyu Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and Y. Yu.
Petuum: A new platform for distributed machine learning on big data. Big Data, IEEE Transactions
on, PP(99):1–1, 2015. doi: 10.1109/TBDATA.2015.2472014.

Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jinliang Wei, Xun Zheng, Eric Po Xing, Tie-Yan Liu, and
Wei-Ying Ma. Lightlda: Big topic models on modest computer clusters. In Proceedings of the
24th International Conference on World Wide Web, pp. 1351–1361. ACM, 2015.

Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, SVN Vishwanathan, and Inderjit Dhillon. NOMAD:
Non-locking, stochastic multi-machine algorithm for asynchronous and decentralized matrix
completion. ArXiv: 1312.0193, 2013.

Ruiliang Zhang and James T. Kwok. Asynchronous distributed admm for consensus optimization. In
ICML, 2014.

Yi Zhou, Yaoliang Yu, Wei Dai, Yingbin Liang, and Eric P. Xing. On convergence of model parallel
proximal gradient algorithm for stale synchronous parallel system. In The 19th International
Conference on Artificial Intelligence and Statistics (AISTATS), 2016.

Yi Zhou, Yingbin Liang, Yaoliang Yu, Wei Dai, and Eric P. Xing. Distributed proximal gradient
algorithm for partially asynchronous computer clusters. Journal of Machine Learning Research,
19(19):1–32, 2018.

11

Published as a conference paper at ICLR 2019

A APPENDIX

A.1 PROOF OF THEOREM 1

Theorem 2. Let Assumption 1 hold. Suppose the gradient coherence µk is lower bounded by some
µ > 0 for all k and the variance of the stochastic gradients is upper bounded by some σ2 > 0.
Choose stepsize ηk = µ

sL
√
k

. Then, the iterates generated by the Async-SGD satisfy

min
0≤k≤T

E‖∇F (xk)‖2 ≤
(sL(F (x0)−infx F (x))

µ2 + σ2 log T
s

)
1√
T
. (2)

Proof. By the L-Lipschitz property of∇F , we obtain that for all k

F (xk+1) ≤ F (xk) + 〈xk+1 − xk,∇F (xk)〉+
L

2
‖xk+1 − xk‖2 (3)

= F (xk)− ηk〈∇fξ(τk)(xτk),∇F (xk)〉+
Lη2k
2
‖∇fξ(τk)(xτk)‖

2. (4)

Taking expectation on both sides of the above inequality and note that the variance of the stochastic
gradient is bounded by σ2, we further obtain that

E[F (xk+1)] ≤ E[F (xk)]− ηkE[〈∇F (xτk),∇F (xk)〉] +
Lη2k
2

E[‖∇F (xτk)‖2 + σ2] (5)

≤ E[F (xk)]− ηkµkE‖∇F (xk)‖2 +
Lη2k
2

E‖∇F (xτk)‖2 +
σ2Lη2k

2
(6)

≤ E[F (xk)]− ηkµE‖∇F (xk)‖2 +
Lη2k
2

k∑
t=k−s+1

E‖∇F (xt)‖2 +
σ2Lη2k

2
. (7)

Telescoping the above inequality over k from 0 to T yields that

E[F (xk+1)]− E[F (x0)]

≤ −
T∑
k=0

ηkµE‖∇F (xk)‖2 +
L

2

T∑
k=0

k∑
t=k−s+1

η2kE‖∇F (xt)‖2 +
σ2L

2

T∑
k=0

η2k (8)

≤ −
T∑
k=0

ηkµE‖∇F (xk)‖2 +
L

2

T∑
k=0

k∑
t=k−s+1

η2tE‖∇F (xt)‖2 +
σ2L

2

T∑
k=0

η2k (9)

≤ −
T∑
k=0

ηkµE‖∇F (xk)‖2 +
Ls

2

T∑
k=0

η2kE‖∇F (xk)‖2 +
σ2L

2

T∑
k=0

η2k (10)

=

T∑
k=0

(Lsη2k
2
− ηkµ

)
E‖∇F (xk)‖2 +

σ2L

2

T∑
k=0

η2k. (11)

Rearranging the above inequality and note that F (xk+1) > infx F (x) > −∞, we further obtain that

T∑
k=0

(
ηkµ−

Lsη2k
2

)
E‖∇F (xk)‖2 ≤

(
F (x0)− inf

x
F (x)

)
+
σ2L

2

T∑
k=0

η2k. (12)

Note that the choice of stepsize guarantees that ηkµ− Lsη2k
2 > 0 for all k. Thus, we conclude that

min
0≤k≤T

E‖∇F (xk)‖2 ≤
(
F (x0)− infx F (x)

)
+ σ2L

2

∑T
k=0 η

2
k∑T

k=0

(
ηkµ−

Lsη2k
2

) (13)

≤
2
(
F (x0)− infx F (x)

)
+ σ2L

∑T
k=0 η

2
k∑T

k=0 ηkµ
, (14)

12

Published as a conference paper at ICLR 2019

where the last inequality uses the fact that ηkµ− Lsη2k
2 > ηkµ

2 . Substituting the stepsize ηk = µ

sL
√
k

into the above inequality and simplifying, we finally obtain that

min
0≤k≤T

E‖∇F (xk)‖2 ≤
(
sL
(
F (x0)− infx F (x)

)
µ2

+
σ2 log T

s

)
1√
T
. (15)

A.2 HANDLING NEGATIVE GRADIENT COHERENCE IN THEOREM 1

Our assumption of positive gradient coherence (GC) is motivated by strong empirical evidence
that GC is largely positive (Fig. 4(a)(b) in the main text). Contrary to conventional wisdom, GC
generally improves when approaching convergence for both SGD and Adam. Furthermore, in
practice, the effective staleness for any given iteration generally concentrates in low staleness for the
non-stragglers (Dai et al., 2015).

When some µk are negative at some iterations, in eq. 11 in the Appendix we can move the negative
terms in

∑
k ηkµk to the right hand side and yield a higher upper bound (i.e., slower convergence).

This is also consistent with empirical observations that higher staleness lowers GC and slows
convergence.

A.3 EXPONENTIAL DELAY DISTRIBUTION.

We consider delays drawn from geometric distribution (GD), which is the discrete version of ex-
ponential distribution. For each iterate we randomly select a worker to be the straggler with large
mean delay (p = 0.1), while all other non-straggler workers have small delays. The non-straggler
delay is drawn from GD with p chosen to achieve the same mean delay as in the uniform case (after
factoring in straggler) in the main text. The delay is drawn per worker for each iteration, and thus a
straggler’s outgoing updates to all workers suffer the same delay. Fig. 4(c) in the main text shows
the convergence speed under the corresponding staleness s with the same mean delay (though s is
not a parameter in GD). It exhibits trends analogous to Fig. 1(b) in the main text: staleness slows
convergence substantially and overall impacts deeper networks more.

A.4 ADDITIONAL RESULTS FOR DNNS

We present additional results for DNNs. Fig. 6 shows the number of batches, normalized by s = 0, to
reach convergence using 1 hidden layer and 1 worker under varying staleness levels and batch sizes.
Overall, the effect of batch size is relatively small except in high staleness regime (s = 32).

Fig. 7 shows the number of batches to reach convergence, normalized by s = 0 case, for 5 variants of
SGD using 1 worker. The results are in line with the analyses in the main text: staleness generally
leads to larger slow down for deeper networks than shallower ones. SGD and Adagrad are more
robust to staleness than Adam, RMSProp, and SGD with momentum. In particular, RMSProp exhibit
high variance in batches to convergence (not shown in the normalized plot) and thus does not exhibit
consistent trend.

Fig. 8 shows the number of batches to convergence under Adam and SGD on 1, 8, 16 simulated work-
ers, respectively normalized by staleness 0’s values. The results are consistent with the observations
and analyses in the main text, namely, that having more workers amplifies the effect of staleness. We
can also observe that SGDS is more robust to staleness than Adam, and shallower networks are less
impacted by staleness. In particular, note that staleness sometimes accelerates convergence, such as
in Fig. 8(d). This is due to the implicit momentum created by staleness (Mitliagkas et al., 2016).

A.5 LDA AND ADDITIONAL RESULTS FOR LDA

In LDA each token wij (j-th token in the i-th document) is assigned with a latent topic zij from
totally K topics. We use Gibbs sampling to infer the topic assignments zij . The Gibbs sampling step
involves three sets of parameters, known as sufficient statistics: (1) document-topic vector θi ∈ RK
where θik the number of topic assignments within document i to topic k = 1...K; (2) word-topic

13

Published as a conference paper at ICLR 2019

s=0 s=2 s=4 s=8 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy

SGD with Momentum SGD(a) (b)

RMSProp(c) (d)Adam

(e) Adagrad (f) FTRL

s=0 s=2 s=4 s=8 s=16 s=32
0

1

2

3

4

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=2 s=4 s=8 s=16 s=32
0

2

4

6

8

10

12

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=2 s=4 s=8 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=2 s=4 s=8 s=16 s=32
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy

batch 32

batch 64

batch 128

s=0 s=2 s=4 s=8 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy

Figure 6: The number of batches to reach 95% test accuracy using 1 hidden layer and 1 worker,
respectively normalized by s = 0.

vector φw ∈ RK where φwk is the number of topic assignments to topic k = 1, ...,K for word
(vocabulary) w across all documents; (3) φ̃ ∈ RK where φ̃k =

∑W
w=1 φwk is the number of tokens

in the corpus assigned to topic k. The corpus (wij , zij) is partitioned to workers, while φw and φ̃ are
shared model parameters. We measure the model quality using log likelihood.

We present additional results of LDA under different numbers of workers and topics in Fig. 9 and
Fig. 10. These panels extends Fig. 3(c)(d) in the main text. See the main text for experimental setup
and analyses and experimental setup.

A.6 ADDITIONAL RESULTS FOR MF

We show the convergence curves for MF under different numbers of workers and staleness levels in
Fig. 11. It is evident that higher staleness leads to a higher variance in convergence. Furthermore, the
number of workers also affects variance, given the same staleness level. For example, MF with 4
workers incurs very low standard deviation up to staleness 20. In contrast, MF with 8 workers already
exhibits a large variance at staleness 15. The amplification of staleness from increasing number of

14

Published as a conference paper at ICLR 2019

SGD with Momentum SGD(a) (b)

RMSProp(c) (d)Adam

(e) Adagrad

s=0 s=16 s=32
0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

2

4

6

8

10

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

5

10

15

20

25

30

35

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

Depth 0

Depth 1

Depth 2

Depth 3

Depth 6

s=0 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

1

2

3

4

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

Figure 7: The number of batches to reach 92% test accuracy using DNNs with varying numbers of
hidden layers under 1 worker. We consider several variants of SGD algorithms (a)-(e). Note that with
depth 0 the model reduces to MLR, which is convex. The numbers are averaged over 5 randomized
runs. We omit the result whenever convergence is not achieved within the experiment horizon (77824
batches), such as SGD with momentum at depth 6 and s = 32.

workers is consistent with the discussion in the main text. See the main text for experimental setup
and analyses.

A.7 ADDITIONAL RESULTS FOR VAES

Fig. 12 shows the number of batches to reach test loss 130 by Variational Autoencoders (VAEs) on 1
worker, under staleness 0 to 16 and 4 SGD variants. We consider VAEs with depth 1, 2, and 3 (the
number of layers in the encoder and decoder networks). The number of batches are normalized by
s = 0 for each VAE depth, respectively. See the main text for analyses.

15

Published as a conference paper at ICLR 2019

(a) Adam (1 worker)

Adam (8 workers)

(b)

(c)

(e) Adam (16 workers)

SGD (1 worker)

(d) SGD (8 workers)

(f) SGD (16 workers)

s=0 s=16 s=32
0

2

4

6

8

10

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

Depth 0

Depth 1

Depth 2

Depth 3

Depth 6

s=0 s=16 s=32
0

5

10

15

20

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

Figure 8: The number of batches to reach 92% test accuracy with Adam and SGD on 1, 8, 16 workers
with varying staleness. Each model depth is normalized by the staleness 0’s values, respectively.
The numbers are average over 5 randomized runs. Depth 0 under SGD with 8 and 16 workers did
not converge to target test accuracy within the experiment horizon (77824 batches) for all staleness
values, and is thus not shown.

A.8 RECURRENT NEURAL NETWORKS

Recurrent Neural Networks (RNNs) are widely used in recent natural language processing tasks. We
consider long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) applied to the language
modeling task, using a subset of Penn Treebank dataset (PTB) (Marcus et al., 1993) containing 5855
words. The dataset is pre-processed by standard de-capitalization and tokenization. We evaluate the
impact of staleness for LSTM with 1 to 4 layers, with 256 neurons in each layer. The maximum
length for each sentence is 25. Note that 4 layer LSTM is about 4x more model parameters than
the 1 layer LSTM, which is the same ratio between ResNet32 and Resnet 8. We use batch size 32
similar to other experiments. We consider staleness s = 0, 4, 8, 16 on 8 workers. The model quality
is measured in perplexity. Fig. 13 shows the number of batches needed to reach the desired model
quality for RNNs with varying network depths. We again observe that staleness impacts deeper
network variants more than shallower counterparts, which is consistent with our observation in CNNs
and DNNs.

16

Published as a conference paper at ICLR 2019

0 1 2 3 4 5
Number of Documents

1.60

1.55

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15 1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

0 1 2 3 4 5
Number of Documents

1.60

1.55

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15

Lo
g

 L
ik

e
lih

o
o
d

1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

(a) LDA (10 topics, 2 workers)

1e5

(b) LDA (10 topics, 4 workers)

(c)

0 1 2 3 4 5
Number of Documents

1.60

1.55

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15 1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

0 1 2 3 4 5
Number of Documents

1.60

1.55

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15

Lo
g

 L
ik

e
lih

o
o
d

1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

(d)LDA (10 topics, 8 workers) LDA (10 topics, 16 workers)

Figure 9: Convergence of LDA log likelihood using 10 topics with respect to the number of documents
processed by collapsed Gibbs sampling, with varying staleness levels and number of workers. The
shaded regions are 1 standard deviation around the means (solid lines) based on 5 randomized runs.

Fig. 14 shows the number of batches needed to reach the desired model quality for RNNs with on 4
SGD variants: SGD, Adam, Momentum, and RMSProp. Similar to the discussion in the main text,
different algorithms respond to staleness differently, with SGD and Adam more robust to staleness
than Momentum and RMSProp.12.

12We however, note that we have not tuned the learning rate in this experiment. RMSProp might benefit from
a lower learning rate at high staleness.

17

Published as a conference paper at ICLR 2019

(a) LDA (100 topics, 2 workers) (b) LDA (100 topics, 4 workers)

(c) (d)LDA (100 topics, 8 workers)

0 1 2 3 4 5
Number of Documents

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

Lo
g

 L
ik

e
lih

o
o
d

1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

0 1 2 3 4 5
Number of Documents

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2 1e7

1e5

0 1 2 3 4 5
Number of Documents

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

Lo
g

 L
ik

e
lih

o
o
d

1e7

0 1 2 3 4 5
Number of Documents

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2 1e7
LDA (100 topics, 16 workers)

Figure 10: Convergence of LDA log likelihood using 100 topics with respect to the number of
documents processed by collapsed Gibbs sampling, with varying staleness levels and the number
of workers. The shaded regions are 1 standard deviation around the means (solid lines) based on 5
randomized runs.

(a)

0 100 200 300 400 500 600 700 800
Num Batches

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 L

o
ss

s = 0

s = 5

s = 10

s = 15

MF(4 workers)

0 100 200 300 400 500 600 700 800
Num Batches

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 L

o
ss

s = 20

s = 30

s = 40

s = 50

MF (4 workers)(b)

0 100 200 300 400 500 600 700 800
Num Batches

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 L

o
ss

s = 0

s = 5

s = 10

s = 15

MF (8 workers)(c)

0 100 200 300 400 500 600 700 800
Num Batches

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 L

o
ss

s = 20

s = 30

s = 40

s = 50

(d) MF (8 workers)

Figure 11: Convergence of Matrix Factorization (MF) using 4 and 8 workers, with staleness ranging
from 0 to 50. The x-axis shows the number of batches processed across all workers. Shaded area
represents 1 standard deviation around the means (solid curves) computed on 5 randomized runs.

18

Published as a conference paper at ICLR 2019

s=0 s=2 s=4 s=8 s=16
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0
Depth 1

Depth 2

Depth 3

(a) SGD

s=0 s=2 s=4 s=8 s=16
0

10

20

30

40

50

60

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

(b) Adam

s=0 s=2 s=4 s=8 s=16
0

1

2

3

4

5

6

7

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

(c) SGD with Momentum

s=0 s=2 s=4 s=8 s=16
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

(d) Adagrad

Figure 12: The number of batches to reach test loss 130 by Variational Autoencoders (VAEs) on 1
worker, under staleness 0 to 16. We consider VAEs with depth 1, 2, and 3 (the number of layers in the
encoder and the decoder networks). The numbers of batches are normalized by s = 0 for each VAE
depth, respectively. Configurations that do not converge to the desired test loss are omitted, such as
Adam optimization for VAE with depth 3 and s = 16.

Figure 13: The number of batches to converge (measured using perplexity) for RNNs on 8 workers,
under staleness 0 to 16. We consider LSTMs with depth {1, 2, 3, 4}. See section A.8 for details.

19

Published as a conference paper at ICLR 2019

Figure 14: The number of batches to converge ((measured using perplexity)) for RNNs on 8 workers,
under staleness 0 to 16. We consider 4 variants of SGD: vanilla SGD, Adam, Momentum, RMSProp.
See section A.8 for details.

20

	Introduction
	Related Work
	Methods
	Models and Algorithms

	Experiments
	Gradient Coherence and Convergence of Asynchronous SGD
	Discussion and Conclusion
	Appendix
	Proof of Theorem 1
	Handling Negative Gradient Coherence in Theorem 1
	Exponential delay distribution.
	Additional Results for DNNs
	LDA and Additional Results for LDA
	Additional Results for MF
	Additional Results for VAEs
	Recurrent Neural Networks

