
Under review as a conference paper at ICLR 2019

EXPLAINING ADVERSARIAL EXAMPLES WITH
KNOWLEDGE REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial examples are modified samples that preserve original image structures
but deviate classifiers. Researchers have put efforts into developing methods for
generating adversarial examples and finding out origins. Past research put much
attention on decision boundary changes caused by these methods. This paper,
in contrast, discusses the origin of adversarial examples from a more underlying
knowledge representation point of view. Human beings can learn and classify pro-
totypes as well as transformations of objects. While neural networks store learned
knowledge in a more hybrid way of combining all prototypes and transforma-
tions as a whole distribution. Hybrid storage may lead to lower distances between
different classes so that small modifications can mislead the classifier. A one-
step distribution imitation method is designed to imitate distribution of the nearest
different class neighbor. Experiments show that simply by imitating distributions
from a training set without any knowledge of the classifier can still lead to obvious
impacts on classification results from deep networks. It also implies that adver-
sarial examples can be in more forms than small perturbations. Potential ways
of alleviating adversarial examples are discussed from the representation point of
view. The first path is to change the encoding of data sent to the training step.
Training data that are more prototypical can help seize more robust and accurate
structural knowledge. The second path requires constructing learning frameworks
with improved representations.

1 INTRODUCTION

With the more widespread use of deep neural networks, the robustness and security of these networks
have aroused the attention of both academic and industrial eyes. Among these adversarial examples
is one of the most interesting as well as intriguing.

Since the discovery of adversarial examples in CNNs from 2013Szegedy et al. (2013), security
and robustness has become a hot topic. Researchers have put efforts into finding out sources for
adversarial examples and also developing methods for automatically generating these adversarial
examplesGoodfellow et al. (2014).

Most these research focus on how certain perturbations lead to changes in decision boundaries. This
paper discusses the origin of adversarial examples from a more underlying knowledge representation
point of view. It provides a possible reason why adversarial examples exist for current networks and
uses some experiments to prove this idea. Experiments also in some way show that adversarial
examples can be derived from only the training data and totally network-independent. In addition,
adversarial examples may be in more forms than the usual small perturbations. At last, possible
ways to alleviate this issue are discussed.

1.1 RELATED WORK

Current adversarial attacks have become a systematic procedure. Some algorithms have been devel-
oped to deliberately generate these kinds of adversarial examples Goodfellow et al. (2014); Moosavi-
Dezfooli et al. (2016). After these examples have been generated, they can be injected back into the
model to skew the classificationPapernot et al. (2017). This can even serve as a universal attack
model for other machine learning techniques.

1



Under review as a conference paper at ICLR 2019

Some adversarial example generation techniques arise from the properties of neural networks them-
selves and are dependent on model architectures. Most of this kind of work has been done on
image classification tasks like handwriting recognition (MINST dataset) and object recognition
(ImageNet). However, from related research work these years, it has been widely recognized that
there are even more machine architectures vulnerable to adversarial attacking other than neural net-
worksPapernot et al. (2016).

More recently, some other research has shown that adversarial examples maybe more widespread
in our physical worldKurakin et al. (2016). And there even exist universal perturbationsMoosavi-
Dezfooli et al. (2017b;a) for a certain neural network that can generate examples that are both uni-
versal and adversarial. A recent paper further shows the existence of single-pixel attacks on image
classification tasksSu et al. (2017).

Opposite to the attack techniques are the defense techniquesPapernot et al. (2015); Lu et al. (2017a).
Some research has also been on this area. The most straightforward idea for defense is including
some adversarial examples as inputs of the training set and let the neural network also learn what
adversarial examplesTramèr et al. (2017a) are like.DeepDefenseYan et al. (2018) incorporates an
adversarial perturbation-based regularization into classification objectives. A quite optimistic view
comes from the research on multi-camera view indicating adversarial examples can be constrained
by taking inputs of an object from different angles of viewLu et al. (2017b). And this multi-camera
design aims to prove that adversarial examples may not be obvious for autonomous driving which
must involve multiple cameras and scaling. However, some research shows that adversarial exam-
ples can directly work on image and scene segmentationsMetzen et al. (2017); Xie et al. (2017).

Other researchers also put many efforts into exploring the underlying reasons for these adver-
sarial examples. The most direct one would be the linear vibration caused by vector computa-
tionGoodfellow et al. (2014); Tramèr et al. (2017b). This is the cause given by the fast gradient
method paper. A more recent trend is that researchers try to use geometrical and topological meth-
ods to explore the perturbation effects on high-dimensional decision spaceWang et al. (2016); Tanay
& Griffin (2016); Tramèr et al. (2017b); Liu et al. (2016). All these research shows a trend that
people are more and more eager to undermine the principles of deep neural networks and extend
their applications.

1.2 GENERAL IDEA

Even though we still have no clear idea how eyes and vision of human beings actually work on the
neural level, human eyes are more error-resistant. It is not easy to see such kind of adversarial ex-
amples intuitively. Most of these kinds of examples are generated by carefully designed algorithms
and procedures. This complexity to some extent shows that adversarial examples may only occupy
a small percentage for total image space we can imagine with pixel representations.

To the best of our knowledge, this paper should be the first one that discusses adversarial examples
from the internal knowledge representation point of view. The rest of this paper is organized as
follows:

• The representation section gives a formal description of the explanation and illustrates why
adversarial examples exist for current architectures.

• The experiment section proposes a one-step distribution imitation procedure to do some
distribution imitations. Experiments show that simply by distribution imitation on a train-
ing set without any knowledge of the classifier may still lead to obvious impacts on clas-
sification results using the network. The last discussion section concludes the paper and
discusses some potential solutions from knowledge representation perspective.

2 KNOWLEDGE REPRESENTATION OF NETWORK

When people think of an object, the object usually can be depicted in a quite abstract way. For
example, when asked what is a car, we can think of a vehicle with several wheels and a driver
steering in it. Even though for one task, there could be a large number of neurons involved, at
least on high-level the encoding of the information should still be in a sparse way. For computers,
the modern machine also set sparsity and abstraction as goals to seek. However, due to the lack of

2



Under review as a conference paper at ICLR 2019

accurate knowledge of optimal representations, current deep networks actually choose an alternative
way with redundant parameters to depict tasks and objects.

For human beings, both abstraction and sparsity can be achieved with hierarchical storage of knowl-
edge. This can be similar to object-oriented programming. We can think of an object with its
attributes. Going back to the object recognition tasks, human beings can actually learn from one or
a few prototypes for a certain object and know how this prototype can be transformed into different
plausible forms. As a result, when recognizing an object, we are actually recognizing the object as
well as how it is transformed from the prototype of this object to what we see.

Current multi-layer neural networks are partly enlightened by the hierarchical ideology. Even though
throughout these years, the detailed architectures of deep neural networks have evolved a lot so as
the accuracy, the most fundamental one is still the AlexNetKrizhevsky et al. (2012).

There are many layers but two main phases in this network for image classification tasks. The first
phase mainly uses convolutional layers to extract local features from different scales. The second
mainly uses fully connected layers to add up local features from the first phase with weights to
construct a higher-level image entity. At last outputs from the second phase go through a Softmax
classifier and give out probabilities for each possible class.

As described above, the architecture of AlexNet is quite intuitive. However, there still exists a great
gap between abstract and sparse representation from human beings and neural networks. An ideal
execution procedure can be simulated here to see how neural networks actually represent knowledge
through the process.

Consider the two-step procedure of extraction and transformation. We can define the output of a
network as: output = T ·X , where X refers to the extracted part after the convolution and pooling
part and T refers to the transformations.

For a given network, different inputs can have different extracted patterns of X , here define the
extracted X = [X1, X2] consisting of two parts. Correspondingly, different inputs can activate
different parts in the transformation, so we can have the output denoted as:

output = T ·X = [T1, T2] · [X1, X2]
T (1)

We can have inputs from the same class(same label). Some extreme cases can be considered here.
Suppose for the first input, it is only extracted to be [X1, 0]. For this input:

output1 = [T1, T2] · [X1, X2]
T = T1 ·X1 + 0 = T1 ·X1 (2)

In the same way, there could exist a second input that is only extracted to be [0, X2](for example,
symmetric data). For this input:

output2 = [T1, T2] · [X1, X2]
T = 0 + T2 ·X2 = T2 ·X2 (3)

After the first input, parameters for the transformation T = [T1, 0] can be determined in the form of
the extracted input.

For the ideal condition, the classifier should give the largest value for the correct class and very small
but equal values for other classes before the softmax gives out the final probability distribution. The
extreme case for the ideal softmax is to give positive infinite for the correct and negative infinite for
others. So the outputs discussed above should be a fixed value when two inputs belong to the same
class(they have the same output results).

Similarly, in the second step, given the same output result, there should be:

T2 ·X2 = T1 ·X1 (4)

T2 = (T1 ·X1) ·X−1
2 (5)

Now the transformations are denoted by the first two inputs and we are given a third input and its
output pattern can be denoted as X3 = [A ·X1, B ·X2], where A,B are both matrices.

Put this back into the learned system of output = [T1, T2] · [X1, X2]
T , we can get the output result:

output3 = [T1, T2] · [A ·X1, B ·X2]
−1 (6)

3



Under review as a conference paper at ICLR 2019

= [T1, (T1 ·X1) ·X−1
2 ] · [A ·X1, B ·X2]

−1 (7)
So the system actually processes the test input into:

output3 = T1 ·A ·X1 + (T1 ·X1) ·X−1
2 ·B ·X2 (8)

That actually indicates an interesting fact that what current neural networks have extracted at last are
not only local features with combinations but also a weighted sampling of all training inputs. The
visualization techniquesZeiler & Fergus (2014) can help show some elements of truth in this aspect.

We can use the DeepDream tool to visualize individual feature channels and their combinations to
explore the space of patterns learned by the neural networkMordvintsev et al. (2015).

The tool returns images that strongly activate the channels within the network to highlight the fea-
tures learned by a neural network. Nine random channels are chosen, they are ’balloon’, ’container
ship’, ’grey whale’, ’aircraft carrier’, ’ashcan’, ’radio’, ’trolleybus’, ’revolver’ and ’passenger car’.

Figure 1: Visualize last layer with Deep-
Dream.

Figure 2: Independent and hybrid representations.

It can be seen in Figure 1 that in the last layer with corresponding labels, the objects can still be
recognized from their round and very similar repeating structures. For relative complex objects like
’container ship’ or ’revolver’ they can only ensemble similar shapes that are obviously overlapping
with each other. This, in some way, proves the point that the knowledge storage and representation
of current neural networks are not exactly sparse prototype based. Current networks actually use
a hybrid distribution of all its prototypes from training and possible transformations to represent a
certain class of object.

And the accumulation of these makes the space distances between different types of objects decision
boundaries become smaller. When they become small enough, even small perturbations become
possible to lead the classifier into a wrong result if imposed in certain directions. That may be the
origin of adversarial examples.

The Figure 2 above provides a simple description of this idea. The first one represents the way of
differentiating transformations in the same class. One class includes two normal distributions(after
transformations) N(10,3) and N(30,4). There is one simple explanation of why one prototype of a
class is reasonable to be denoted as an object. When a human is learning a class prototype from a
physical object, there are actually an unlimited number of images from different angles and views
streaming into human brains. And a large number of samples from a same class prototype will be
converged to be a normal distribution. The other class includes one normal distribution N(45,6).

In this representation approach, we can actually easily differentiate between these prototypes with
representations. Even their mean values are different enough. However, as we have discussed,
the representation in current neural networks is more likely to be in the second figures form when
multiple prototypes and transformations are involved. We can see in the second figure of Figure 2,

4



Under review as a conference paper at ICLR 2019

the representation of the first class combines two subclasses together. From the properties of normal
distributions, the resulting hybrid representation becomes N(40, 5). This becomes more similar to
the second class and makes it more difficult to classify. The absolute difference in means decreases
from 45-30=15 to the smaller 45-40=5. The classifier has a lowest precision it can recognize. If right
now a perturbation is added to make this difference even smaller to a certain degree, the classification
cannot be guaranteed any more.

In summary, human beings can detect different objects as well as their transformations at the same
time. CNNs do not separate these two. This makes final layers extracting not pure objects but in
reality, a probability density distribution of the objects and its different states after transformations.
Adversarial examples can arise from this underlying form of hybrid knowledge representation by
imitating the distributions of a target class.

3 EXPERIMENT

As discussed above, the hybrid knowledge representation may lead to unclear bounds facing sam-
ples with high-dimensional distributions. One way to depict high-dimensional distributions is using
weights from PCA. Similar values of weights, especially the first most important values, means
higher similarity in distributions. And higher similarity in distributions means higher probability of
lying in overwhelming areas between different class of objects. This part first gives an example of
how the distribution of an adversarial example may vary after the perturbation. Then more systemic
experiments based on one-step distribution imitations are conducted completely regardless of the
network. And these experiments show how distribution imitation can impact the classification based
on hybrid storage.

3.1 A SAMPLE OF WEIGHT MODIFICATION

Before diving into the direct distribution imitations, an example is shown here to show weight vari-
ations from a more commonly used adversarial attack method. The classifier training is based on
handwriting digits and gets a classifier with 99.8% accuracy. To undermine more universal prop-
erties from the adversary, Fast Gradient MethodGoodfellow et al. (2014) is used for generating
adversarial examples and reduce the success rate to 45%.

Here a set of examples is shown in Figure 3. The first one is a successful adversarial one, which
makes the classifier recognizes a number 7 as a number 9. The second one is an unsuccessful one in
which the classifier could still recognize a number 1 correctly as a number 1.

(a) 7 Adding Noise Recognized to be 9. (b) 1 Adding Noise Still Recognized to be 1.

Figure 3: A set of examples of digit adversarial images.

Here we do PCA on all ten classes from 0 to 9. From these principal components feature space,
we can infer what happens when the classifier classifies the data as 9 instead of 7. The adversarial
example actually puts more weights on the relating principal components of 9 and this later mis-
leads the classifier. This can be confirmed by the values of projections on normal and adversarial
examples.

A simple metric that can be used here is the angle between projectionsFujimaki et al. (2005). It can
be computed using the dot product and ArcCOS function. The angle on basis 7 between normal and
adversarial is 0.2286 while on basis 9 is 0.1140. Smaller angle means higher similarity here. That
is one view of classifying the modified image of 7 as 9.

5



Under review as a conference paper at ICLR 2019

Table 1: Projections of normal and adversarial images on Basis 7 and 9 (truncated)

Projection Score1 Score2 Score3 Score4 Score5

7 Nor -193 108 -39 582 274
7 Adv -134 123 96 644 143
9 Nor -199 364 26 812 3.7
9 Adv -131 420 8.3 52 0.1

3.2 ONE-STEP DISTRIBUTION IMITATION

According to the distribution imitation idea discussed in section 2, we can actually take a one-step
imitation to see whether the new image can deviate from the original classification result while still
preserving the overall structure. We do this imitation by modifying the weight values from PCA.

Nowadays, PCA is mainly used for dimension reduction in the data pre-processing step. But it can
be used as a rough classification method as well. When doing this classification work, first compute
PCA on the training set and get coefficients and weights for training images. And then compute the
weights of the test image using the coefficients. Choose the nearest neighbor according to a certain
number of first weight values. And the class of this nearest neighbor is regarded as the output class
of the test image.

Here, we are seeking a different goal. We know the label of the test image, but we want to modify
this image so that a classifier trained from this training set will be more likely to misclassify the
modified image.

Overall, we are using PCA weights to find the nearest different class neighbor and imitate the orig-
inal image into similar patterns with this neighbor. A formal description of this procedure is given
below.

Algorithm 1: Use PCA Weights to find the Nearest Different Class Neighbor and Imitate

Data: training image dataset X = {x1, x2, ..., xn}, T rainLabels
Data: testing dataImage y, yLabel
Result: xgoal, ymodified

1 initialization;
2 [coeff, score,mu] = pca(X);
3 yscore = (y −mu) ∗ inv(coeff);
4 distmin = +inf
5 for x ∈ X do
6 dist = Distance(yscore, score[x]);
7 if dist < distmin ∩ yLabel 6= TrainLabels[x] then
8 distmin = dist;
9 xgoal = x;

10 else
11 continue;
12 end
13 end
14 ymodified = weightImitate(y, xgoal);

The distance measure can be computed by the first certain number of most important weights which
occupy a high percentage of total variance.

Given the procedure above, the next question is: how to imitate the goal image given the original
test image? We implement this weightImitate(y, xgoal) function in two ways:

Ratio Modification The weight value difference between the test image and the goal image it
needs to imitate is calculated. And then add a ratio times this difference to the original weight value.

6



Under review as a conference paper at ICLR 2019

It can be denoted as yscore = yscore+(xgoal−yscore)∗ ratio. And then use this new weight vector
to reconstruct the image.

Weight Select Modification An alternative way is to choose some weight positions and assign the
values from xgoal to yscore on positions chosen. That is yscore[weight sel] = xgoal[weight sel].
And then use this new weight vector to reconstruct the image.

Both ways discussed above are implemented in the experiment. Experiments are conducted on the
first 5,000 images from cifar-10 dataset. There are two main reasons the experiment is done on 5,000
samples rather than more.

First, 5,000 (about 500 per category) should be enough to depict distribution differences for a limited
number of dimensions required for comparison here;

Second, the very first step of the procedure discussed above involves the computation of PCA on
the whole training dataset. In addition, the step of finding nearest different class neighbor needs to
iterate through all samples. Too many samples will cause too much burden in computation.

One thing worth noticing is that there are three color channels in colored images, the distribution
imitation execution is conducted by each channel. For purely gray-scale image dataset like MNIST,
it would just do for one channel.

To test image classification results, a 24-layer network is used. It has 6 stacks of Conv, BatchNorm
and Relu combinations together with two MaxPooling layers after the second and fourth stack. This
is a network structure that is very common. This network in normal working condition has an
accuracy of 85.1% on the test set of cifar-10.

Figure 4 shows the results from the fixed ratio(=0.2) method. All weight values from the original
image are changed towards 0.2 times the distance between the goal and it. It reduces the accuracy
from 0.851 to 0.756.

Some interesting results are shown here. Two dog images are classified as birds. A cat is classified
as a truck. A horse is classified as a deer. Note that even though some results remain correct, their
confidence probability reduce obviously.

(a) Confusion Matrix. (b) 9 random samples. (c) Modified images.

Figure 4: Ratio=0.2 Weight Bias reduces accuracy by 10%.

Figure 5 shows the results from the row select modification method. Weight values on 50-100th
positions are assigned with corresponding values from the goal. It reduces the accuracy from 0.851
to 0.532. Similarly, some obvious absurd classifications occur and even though some results remain
correct, their confidence probability reduce obviously. Further tests are also conducted using an
improved classifier adding ResNet connections. It has an accuracy of 0.588, which is not very
different from the previous setting.

It can be observed that in both these two ways, the main structure of the original RGB image can
be well preserved. But it differs from normal adversarial images in that it actually maximizes some
color masking to the original image and this is sometimes visible. The position and visibility of this
kind of masking depend on the magnitude and selection of weight changes. For the second method,

7



Under review as a conference paper at ICLR 2019

(a) Confusion Matrix. (b) 9 random samples. (c) Modified images.

Figure 5: Weight imitation on 50-100 components reduces accuracy by 32%.

if we chose more critical positions like weight 10-30, the main structure of the original image can
be totally destroyed.

As RGB images have three color channels, the modifications from original images are sometimes
not very visible. We do further experiments on the MNIST digit dataset with more flexible imitation
settings. As we can see from experiments by two methods above, different weights have different
impacts and the modification strength decides the overall result pattern.

Ratio Piecewise Modification One hybrid way is to combine two modification methods above
together. One 28*28 input image is divided into four 14*14 small patches. The dimension is 196.
Instead of one fixed modification ratio for a number of scores, we apply modifications on scores
from 10 to higher. For score 10-50, the ratio is linearly increased from 0 to a ratio level. And
for scores higher than 50, the ratio is fixed at this level. This idea shown in Figure 6 serves as a
piecewise function.

(a) Ratio setting according to weight positions using
a piecewise function. (b) Confusion matrix for modified digits.

Figure 6: Modification ratio and classification results.

Figure 7 shows the result when the selected highest ratio is 5. Under this condition the classification
error increases from 1.04% to 34.20%. But this error rate requires relative strong modifications that
are quite visible under black and white settings for MNIST dataset. One thing worth noticing is that
the classifier is most easily fooled into recognizing the modified digit as 8. This concentration can
be explained by the most widely connected and stretched for the digit ’8’ itself. This makes it the
most distributed target in high dimension space and the ideal target for imitation in many cases.

We can see from Figure 7 that modified digit images are still recognizable for human eyes but they
can successfully fool the neural network in our experiments. From a binary view, some noise is
added to or removed from original images. The effect of this kind of perturbation is also supported

8



Under review as a conference paper at ICLR 2019

(a) Original digits. (b) Modified digits.

Figure 7: 25 misclassified samples from the imitation that reduces accuracy by 33%.

by a recent paper on face recognitionWang et al. (2018). One main difference is that compared
to RGB images with three color channels, modifications on black and white digits are more easily
recognizable.

We conducted 50 sets of batch experiments. Each batch utilizes the first 500 samples from the test
set. In these experiments, the modification ratio increases from 0.5 to 5. As shown in Figure 8, the
classification accuracy gradually decreases from the initial 98.96% to 65.80% when the modification
ratio equals 5.

(a) Classification accuracy decreases with stronger imita-
tion modifications. (b) Stronger modification on digit ’1’.

Figure 8: Experiment data for increased modification strength.From row 1 to 5 and col 1 to 5 modi-
fication ratio increases from 0.5 to 5.

It is worth pointing out that the procedure and experiments conducted here are mainly to show that
adversarial images can be caused by distribution imitations on the dataset itself regardless of the
network. It also shows that adversarial images can be in more forms than small perturbations.

This one-step distribution imitation procedure is not a formal method of adversarial attack. But
considering the fact that it only needs to get access to the training data or even a part of the training

9



Under review as a conference paper at ICLR 2019

data, it can be conducted without any knowledge of the network. It still renders some danger if the
attacker wants to misguide the classifier with many trials.

4 DISCUSSIONS

In summary, this paper discusses the origin of adversarial examples from an underlying knowledge
representation point of view. Neural networks store learned knowledge in a more hybrid way that
combining all prototypes and transformation distributions as a whole. This hybrid storage may lead
to lower distances between different classes so that small modifications may mislead the classifier.

4.1 UNIVERSAL DISTRIBUTION IMITATION VS HIGH EFFICIENCY OF DEEP NETWORKS

The one-step distribution imitation procedure discussed imitates the nearest different class neighbor.
Experiments conducted show that simply by distribution imitation on a training set without any
knowledge of the network may still lead to obvious impacts on classification results. This also
explains why adversarial examples can be universal.

Modified images are sometimes visible but still can keep original structures and information, this
shows that adversarial images can be in more forms than small perturbations. Also, the robustness
of classification is not only related to the classifier but also the dataset quality used for training.

One interesting question intuitively arising is while adversarial examples can be universal, why cur-
rent deep neural networks show such high efficiency. A rational hypothesis is adversarial examples
are rare from probabilistic view. A research diving into properties of layers Peck et al. (2017) shows
lower bounds on the magnitudes of perturbations necessary to change the classification results. This
also adds to the point that adversarial examples exist under strict conditions and cannot be generated
in a pure random manner.

4.2 POTENTIAL SOLUTIONS FROM KR VIEW

Dataset with More Concentrated Structural Info Without changing learning frameworks, this
path focuses on changing what classifiers can learn from the very beginning.

For human beings, it is possible to learn a class of object from a single image sample. However, this
is not the full story. Human beings are actually learning all the time throughout the process of using
eyes to get visions. A hidden advantage for human vision is that humans have gained a good prior
knowledge for various kinds of environments. This makes it easier for human beings to first judge
out the relative distances from the object and more accurately seize a separate form of structural
information.

In the same way, for a classifier learning from scratch, the training set with a monotonic background
and a limited number of different object states can make learning space more concentrated and this
in theory can help resist adversarial examples as early as from the training step. As far as we can
see from current learning frameworks, this can be realized in two ways.

One way is to add pre-processing steps on datasets to make the data more compact instead of feeding
data directly to the neural networks. A recent work shows that thermometer encodingBuckman et al.
(2018) can help resist adversarial examples. This can be viewed as a frontend sampling step on the
most significant information.

The other way is to make use of more prototypical datasets. Instead of giving one object in an image
a single class label, it is also required to give a state description. This is equivalent to creating more
subclasses and training the classifier to do further classifications. One potential dataset seeking this
purpose is choosing learning prototypes from simplest toysWang et al. (2017). This proposed an
egocentric, manual, multi-image (EMMI) dataset providing a more structured and denser sampling
of viewpoints.

Improved Representation of Learning The other path is to construct a better network repre-
sentation. The success of deep networks points out the importance of hierarchical representations.
However, recent research on neural network compression proves that knowledge representation in

10



Under review as a conference paper at ICLR 2019

current neural networks has a large number of shared and redundant parametersHan et al. (2015);
Iandola et al. (2016). A deep network itself is still worth digging into.

According to the prototype and transformation representation model discussed, it is reasonable to
separate these two kinds of knowledge in learning frameworks that involve detection and classifica-
tion. For the current neural network for classification tasks, it is relatively simple to define a stable
cost function and do the training globally. However, it we really want to separate these prototypes
and transformations at the same time, it is almost impossible to define it as a single optimization
problem. And state overlapping between different prototypes will make the final decision fuzzy.

In this way, we still need to face the dilemma that current hybrid representations in some way
make adversarial examples inevitable. It might be necessary to design a new learning framework
that represents knowledge in a more compact way. No matter what path to choose, we should still
realize that current datasets or representation models are far away from human beings accumulation
through years of vision usage. There is still a long way to go before machines can understand and
represent vision information as good as or even better than human beings can do.

REFERENCES

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot
way to resist adversarial examples. ICLR, 2018.

Ryohei Fujimaki, Takehisa Yairi, and Kazuo Machida. An approach to spacecraft anomaly detection
problem using kernel feature space. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, pp. 401–410. ACM, 2005.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples (2014). arXiv preprint arXiv:1412.6572, 2014.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial exam-
ples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

Jiajun Lu, Theerasit Issaranon, and David A Forsyth. Safetynet: Detecting and rejecting adversarial
examples robustly. In ICCV, pp. 446–454, 2017a.

Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry about adversarial
examples in object detection in autonomous vehicles. arXiv preprint arXiv:1707.03501, 2017b.

Jan Hendrik Metzen, Mummadi Chaithanya Kumar, Thomas Brox, and Volker Fischer. Univer-
sal adversarial perturbations against semantic image segmentation. In The IEEE International
Conference on Computer Vision (ICCV), 2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2574–2582, 2016.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. arXiv preprint, 2017a.

11



Under review as a conference paper at ICLR 2019

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard, and Stefano
Soatto. Analysis of universal adversarial perturbations. arXiv preprint arXiv:1705.09554, 2017b.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Deepdream-a code example for visual-
izing neural networks. Google Research, 2:5, 2015.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distilla-
tion as a defense to adversarial perturbations against deep neural networks. arXiv preprint
arXiv:1511.04508, 2015.

Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277,
2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, pp. 506–519. ACM, 2017.

Jonathan Peck, Joris Roels, Bart Goossens, and Yvan Saeys. Lower bounds on the robustness to
adversarial perturbations. In Advances in Neural Information Processing Systems, pp. 804–813,
2017.

Jiawei Su, Danilo Vasconcellos Vargas, and Sakurai Kouichi. One pixel attack for fooling deep
neural networks. arXiv preprint arXiv:1710.08864, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Thomas Tanay and Lewis Griffin. A boundary tilting persepective on the phenomenon of adversarial
examples. arXiv preprint arXiv:1608.07690, 2016.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017a.

Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. The space
of transferable adversarial examples. arXiv preprint arXiv:1704.03453, 2017b.

Beilun Wang, Ji Gao, and Yanjun Qi. A theoretical framework for robustness of (deep) classifiers
under adversarial noise. CoRR, abs/1612.00334, 2016. URL http://arxiv.org/abs/
1612.00334.

Fei Wang, Liren Chen, Cheng Li, Shiyao Huang, Yanjie Chen, Chen Qian, and Chen Change Loy.
The devil of face recognition is in the noise. arXiv preprint arXiv:1807.11649, 2018.

X. Wang, F. M. Eliott, J. Ainooson, J. H. Palmer, and M. Kunda. An object is worth six thou-
sand pictures: The egocentric, manual, multi-image (emmi) dataset. In 2017 IEEE Interna-
tional Conference on Computer Vision Workshops (ICCVW), pp. 2364–2372, Oct 2017. doi:
10.1109/ICCVW.2017.279.

C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille. Adversarial examples for semantic
segmentation and object detection. In 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 1378–1387, Oct 2017. doi: 10.1109/ICCV.2017.153.

Ziang Yan, Yiwen Guo, and Changshui Zhang. Deepdefense: Training deep neural networks with
improved robustness. arXiv preprint arXiv:1803.00404, 2018.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

12

http://arxiv.org/abs/1612.00334
http://arxiv.org/abs/1612.00334

	Introduction
	Related Work
	General Idea

	Knowledge Representation of Network
	Experiment
	A Sample of Weight Modification
	One-step Distribution Imitation

	Discussions
	Universal Distribution Imitation vs High Efficiency of Deep Networks
	Potential Solutions from KR View


