
Under review as a conference paper at ICLR 2020

TABNET: ATTENTIVE INTERPRETABLE TABULAR
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel high-performance interpretable deep tabular data learning
network, TabNet. TabNet utilizes a sequential attention mechanism that softly
selects features to reason from at each decision step and then aggregates the
processed information to make a final prediction decision. By explicitly selecting
sparse features, TabNet learns very efficiently as the model capacity at each decision
step is fully utilized for the most relevant features, resulting in a high performance
model. This sparsity also enables more interpretable decision making through the
visualization of feature selection masks. We demonstrate that TabNet outperforms
other neural network and decision tree variants on a wide range of tabular data
learning datasets, especially those are not saturated in performance, and yields
interpretable feature attributions and insights into the global model behavior.

1 INTRODUCTION

Deep neural networks have been demonstrated to be very powerful in understanding images (He et al.,
2015; Simonyan & Zisserman, 2014; Zagoruyko & Komodakis, 2016), text (Conneau et al., 2016;
Devlin et al., 2018; Lai et al., 2015) and audio (van den Oord et al., 2016; Amodei et al., 2015; Chiu
et al., 2018), yielding many important artificial intelligence use cases. For these data types, a major
enabler of the rapid research and development progress is the availability of canonical neural network
architectures to efficiently encode the raw data into meaningful representations. Integrated with
simple decision-making layers, these canonical architectures yield high performance on new datasets
and related tasks with small extra tuning effort. For example, consider the image understanding
task – variants of convolutional layers with residual connections, e.g. the notable ResNet (He et al.,
2015) architecture, can yield reasonably good performance on a new image dataset (e.g. in medical
imaging) or a slightly different visual recognition problem (e.g. segmentation).

Our focus in this paper is tabular (structured) data. Tabular data is indeed the most common data type
in the entire addressable artificial intelligent market (Chui et al., 2018). Yet, canonical neural network
architectures for tabular data understanding have been under-explored. Instead, variants of ensemble
decision trees still dominate data science competitions with tabular data (Kaggle, 2019b). A primary
reason for the popularity of tree-based approaches is their representation power for decision manifolds
with approximately hyperplane boundaries that are commonly observed for tabular data. In addition,
decision tree-based approaches are easy to develop and fast to train. They are highly-interpretable in
their basic form (e.g. by tracking decision nodes and edges) and various interpretability techniques
have been shown to be effective for their ensemble form, e.g. (Lundberg et al., 2018). On the
other hand, conventional neural network architectures based on stacked convolutional or multi-
layer perceptrons, may not be the best fit for tabular data decision manifolds due to being vastly
overparametrized – the lack of appropriate inductive bias often causes them to fail to find robust
solutions for tabular decision manifolds (Goodfellow et al., 2016). We argue here that neural network
architectures for tabular data should be redesigned to account for a ‘decision-tree-like’ mapping.

Given the aforementioned benefits and reasonable performances of tree-based methods, why is deep
learning worth exploring for tabular data? One obvious motivation is pushing the performance albeit
an increased computational cost, especially with more training data. In addition, introduction of a
high-performance deep neural network architecture unlocks the benefits of gradient descent-based
end-to-end deep learning for tabular data. For example, decision tree learning (even with gradient
boosting) does not utilize back-propagation into their inputs to use an error signal to guide efficient
learning of complex data types. On the other hand, with a deep neural network architecture, complex

1

Under review as a conference paper at ICLR 2020

data types like images can be integrated into tabular data efficiently. Another well-known challenge
for tree-based methods is learning from streaming data. Most algorithms for tree learning need global
statistical information to select split points and straightforward modifications such as (Ben-Haim &
Tom-Tov, 2010) typically yield lower accuracy compared to learning from full data at once, yet deep
neural networks show great potential for continual learning (Parisi et al., 2018). Lastly, deep learning
models learn meaningful representations which enable new capabilities such as data-efficient domain
adaptation (Goodfellow et al., 2016), generative modeling (e.g. using variational autoencoders or
generative adversarial networks (Radford et al., 2015) or semi-supervised learning (Dai et al., 2017).
As one example of these potential new capabilities, we demonstrate the potential of semi-supervised
learning in the Appendix, showing the potential benefits of information extraction from unlabeled
data which non-deep learning models are much weaker at.

Feature selection Input processing

Aggregate information

Feature selection Input processing

Predicted output (whether the income level >$50k)

Professional occupation related Investment related

Input features

Feedback from
previous step

Feedback to
next step

… …

Figure 1: Depiction of TabNet’s sparse feature selection for Adult Census Income prediction (Dua &
Graff, 2017). TabNet employs multiple decision blocks that focus on processing a subset of input
features for overall decision making. Two decision blocks shown as examples process the features
that are professional occupation related and investment related in order to predict the income level.

In this paper we propose TabNet, a deep neural network architecture to make a significant leap
forward towards the optimal model design for tabular data learning. Motivated by the key problems
for tabular data discussed above, the design of TabNet has two goals that are often not considered
jointly: state-of-the-art performance and interpretability. With decision tree motivations, TabNet
brings sparsity-controlled soft feature selection, but individually for each instance. Unlike other
instance-wise feature selection methods like (Chen et al., 2018) or (Yoon et al., 2019), TabNet
employs a single deep learning architecture with end-to-end learning, to map the raw data to the final
decision with soft feature selection. The key aspects and contributions of TabNet are:

1. In order to learn flexible representations and enable flexible integration into end-to-end learning,
unlike most tabular data methods, TabNet inputs raw tabular data without any feature preprocess-
ing and is trained using conventional gradient descent-based optimization.

2. To improve performance and interpretability, TabNet utilizes a sequential attention mechanism to
choose which features to reason from at each decision step, as shown in Fig. 1. We design this
feature selection to be instance-wise such that the model can decide which features to focus on
separately for each input – e.g., for income classification capital gain may be a more important
feature to focus on for a middle-aged individual. Explicit selection of sparse features enables
interpretability as well as more efficient learning as the model parameters are fully utilized for the
most salient features at the corresponding decision step.

3. Overall, our careful architecture design leads to two valuable properties for real world tabular
learning problems: (1) TabNet outperforms other tabular learning models on various datasets
for classification and regression problems from different domains, particularly those which
are not saturated in performance; and (2) TabNet enables two kinds of interpretability: local
interpretability that visualizes the importance of input features and how they are combined, and
global interpretability that quantifies the amount of contribution of each input feature to the trained
model.

2 RELATED WORK

Feature selection: Feature selection in machine learning broadly refers to the techniques for
judicious selection of a subset of features that are useful to build a good predictor for a specified
response variable. Commonly-used feature selection techniques such as forward feature selection
and LASSO regularization (Guyon & Elisseeff, 2003) attribute importance to the features based on
the entire training data set, and are referred as global methods. On the other hand, instance-wise
feature selection refers to selection of the most important features, individually and differently for

2

Under review as a conference paper at ICLR 2020

each input. Instance-wise feature selection was studied in (Chen et al., 2018) by training an explainer
model to maximize the mutual information between the selected features and the response variable,
and in (Yoon et al., 2019) by using an actor-critic framework to mimic a baseline model while
optimizing the feature selection. (Ma et al., 2018) uses partial variational autoencoder to dynamically
decide which piece of information to acquire next sequentially, that can be adapted for instance-wise
feature selection. Unlike these approaches, our proposed method employs soft feature selection with
controllable sparsity in end-to-end learning – a single model jointly performs feature selection and
output mapping, enabled by the specific design of the architecture. Thus, we demonstrate superior
performance with very compact representations.
Tree-based learning: Tree-based models are the most common machine learning approaches for
tabular data learning. The prominent strength of tree-based models is their efficacy in picking global
features with the most statistical information gain (Grabczewski & Jankowski, 2005). To improve the
performance of standard tree-based models by reducing the model variance, one common approach is
ensembling. Among ensembling methods, random forests (Ho, 1998) use random subsets of data with
randomly selected features to grow many trees. XGBoost (Chen & Guestrin, 2016) and LightGBM
(Ke et al., 2017) are the two recent ensemble decision tree approaches that dominate most of the
recent data science competitions. They are based on learning the structures of trees at first, and then
updating the leaves with the streaming data.
Integration of neural networks into decision trees: One direction to address the limitations of
decision trees is integration of neural networks. Representing decision trees with canonical neural
network building blocks, as in (Humbird et al., 2018), yields redundancy in representation and
inefficient learning. Soft (neural) decision trees (Wang et al., 2017; Kontschieder et al., 2015) are
proposed with differentiable decision functions, instead of non-differentiable axis aligned splits to
construct trees. Yet, abandoning axis-aligned splits loses the automatic feature selection ability, which
is important for learning from tabular data. In (Yang et al., 2018), a soft binning function is proposed
to simulate decision trees in neural networks, which needs to enumerate all possible decisions and is
inefficient. In (Ke et al., 2019), a novel neural network architecture is proposed, with the motivations
of explicitly leveraging expressive feature combinations and reducing model complexity. However,
learning is based on transferring knowledge from a gradient boosted decision tree. Thus, it yields very
limited performance improvement compared to it, and interpretability was not considered. In (Tanno
et al., 2018), a deep learning framework is proposed based on adaptively growing the architecture
from primitive blocks while representation learning into edges, routing functions and leaf nodes of a
decision tree. Our proposed model TabNet differs from these methods as it embeds the soft feature
selection ability into a sequential attention-based network architecture, with controllable sparsity.
Attentive table-to-text models: Table-to-text models extract textual information from tabular data.
Recent works (Liu et al., 2017) (Bao et al., 2019) propose an architecture based on sequential
mechanism for field-level attention. Despite the high-level similarities in the architecture, TabNet
aims to perform the ultimate classification or regression task considering the entire input features,
rather than mapping them to a different data type.

3 TABNET MODEL

3.1 PRINCIPLES

We initially consider the implementation of a decision tree-like output manifold using conventional
neural network building blocks (Fig. 2). Individual feature selection is the key idea to obtain decision
boundaries in hyperplane form, which can be generalized for linear combination of features where
constituent coefficients determine the proportion of each feature in the decision boundary. We aim to
generalize this type of tree-like functionality by:

• Utilizing sparse instance-wise feature selection, learned based on the training dataset.
• Constructing a sequential multi-step architecture, where each decision step can contribute to a

portion of the decision that is based on the selected features.
• Improving the model capacity by non-linear processing of the selected features.
• Ensembling via higher feature dimension and more decision steps.

3.2 OVERALL ARCHITECTURE

Fig. 3 depicts the TabNet architecture. Tabular data inputs are comprised of numerical and categorical
features. We use the raw numerical features and we consider mapping of categorical features with

3

Under review as a conference paper at ICLR 2020

Mask
M: [1, 0]

Mask
M: [0, 1]

!"

!#

FC
W: [$", - $", 0, 0]

b: [-a $", a $", -1, -1]

%

&

[!", !#]

[!"] [!#]
!" > %
!# < &

!" > %
!# > &

!" < %
!# > &

!" < %
!# < &

$"!" − $"%
−$"!" + $"%

−1
−1

FC
W: [0, 0, $# , - $#]

b: [-1, -1, -d $#, d $#]

−1
−1

$#!# − $#&
−$#!# + $#&

ReLU

+ Softmax

ReLU

Figure 2: Illustration of decision tree-like classification using conventional neural network blocks
and the corresponding two-dimensional manifold (x1 and x2 are the input dimensions, and a and d
are constants). By employing multiplicative sparse masks to inputs, the relevant features are selected.
The selected features are linearly transformed and after a bias addition (to represent boundaries),
ReLU function performs region selection by zeroing the regions that are on the negative side of the
boundary. Aggregation of multiple regions is based on the addition operation. As C1 and C2 get
larger, the decision boundary gets sharper due to the softmax.

Features

Feature
transformer

MaskAttentive
transformer

+

Step 1

Feature
transformer

Attentive
transformer

BN

+FC BN

G
LU

FC BN

G
LU +FC BN

G
LU

0.5

+FC BN

G
LU

0.5 0.5

Shared across decision steps Decision step dependent

Split Split

FC BN

Sparsem
ax

+

Prior scales

+
…

ReLU

MaskAttentive
transformer

Split

ReLU

Step 2

Output

+

Feature
transformer

Feature
transformer

Agg.

Feature
attributes

+

Agg.

+ …

…

FC

(a) TabNet architecture

Features

Feature
transformer

Feature
transformer

MaskAttentive
transformer

+

x Nsteps

Feature
transformer

Attentive
transformer

Softmax

BN

+FC BN

G
LU

FC BN

G
LU +FC BN

G
LU

0.5

+FC BN

G
LU

0.5 0.5

Shared across decision steps Decision step dependent

Split Split

FC BN

Sparsem
ax

+

Prior scales

+

…

(b) Feature transformer

Features

Feature
transformer

Feature
transformer

MaskAttentive
transformer

+

x Nsteps

Feature
transformer

Attentive
transformer

Softmax

BN

+FC BN

G
LU

FC BN

G
LU +FC BN

G
LU

0.5

+FC BN

G
LU

0.5 0.5

Shared across decision steps Decision step dependent

Split Split

FC BN

Sparsem
ax

+

Prior scales

+

…

(c) Attentive transformer

Figure 3: (a) TabNet architecture, composed of feature transformer, attentive transformer and feature
masking at each decision step. Split block divides the processed representation into two, to be
used at the attentive transformer of the subsequent step and to be used towards construction of
the overall output. At each decision step, its feature selection mask can provide insights about its
functionality, and the masks can be aggregated (using the Agg. block) ultimately to obtain global
feature important attribution behavior. (b) A feature transformer block example – 4-layer network is
shown, where 2 of them are shared across all decision steps and 2 of them are decision step-dependent.
Each layer is composed of a fully-connected layer, batch normalization and GLU nonlinearity. (c)
An attentive transformer block example – a single layer mapping is modulated with a prior scale
information, which aggregates how much each feature has been used before the current decision
step. Normalization of the coefficients is employed using sparsemax (Martins & Astudillo, 2016) for
sparse selection of the most salient features at each decision step.

4

Under review as a conference paper at ICLR 2020

trainable embeddings1. We do not consider any global normalization of features, but merely apply
batch normalization. We pass the same D-dimensional features f ∈ <B×D to each decision step,
where B is the batch size. TabNet is based on sequential multi-step processing, with Nsteps decision
steps. The ith step inputs the processed information from the (i− 1)th step to decide which features
to use and outputs the processed feature representation to be aggregated into the overall decision.
The idea of top-down attention in sequential form is inspired from its applications in processing
visual and language data such as for visual question answering (Hudson & Manning, 2018) or in
reinforcement learning (Mott et al., 2019) while searching for a small subset of relevant information
in high dimensional input. Ablation studies in Appendix focus on the impact of various TabNet design
choices, explained next. Overall, the performance is not too sensetitive to most hyperparameters, and
guidelines on selection of the important hyperparameters are also provided in Appendix.
Feature selection: We employ a learnable sparse mask M[i] ∈ <B×D for soft selection of the
salient features. Through sparse selection of the most salient features, the learning capacity of a
decision step is not wasted on irrelevant features, and thus the model becomes more parameter
efficient. The masking is in multiplicative form, M[i] · f . We use an attentive transformer (see Fig. 3)
to obtain the masks using the processed features from the preceding step, a[i− 1]:

M[i] = sparsemax(P[i− 1] · hi(a[i− 1])). (1)

Sparsemax normalization (Martins & Astudillo, 2016) encourages sparsity by mapping the Euclidean
projection onto the probabilistic simplex, which is observed to be superior in performance and
aligned with the goal of sparse feature selection for most real-world datasets. Note that Eq. 1 has
the normalization property,

∑D
j=1 M[i]b,j = 1. hi is a trainable function, shown in Fig. 3 using a

fully-connected layer, followed by batch normalization. P[i] is the prior scale term, denoting how
much a particular feature has been used previously:

P[i] =

i∏
j=1

(γ −M[j]), (2)

where γ is a relaxation parameter – when γ = 1, a feature is enforced to be used only at one decision
step and as γ increases, more flexibility is provided to use a feature at multiple decision steps. P[0]
is initialized as all ones. To further control the sparsity of the selected features, we propose sparsity
regularization in the form of entropy (Grandvalet & Bengio, 2004):

Lsparse = −
1

Nsteps ·B
∑Nsteps

i=1

∑B

b=1

∑D

j=1
Mb,j[i] log(Mb,j[i] + ε), (3)

where ε is a small number for numerical stability. We add the sparsity regularization to the overall
loss, with a coefficient λsparse. Sparsity may provide a favorable inductive bias for convergence to
higher accuracy for some datasets where most of the input features are redundant.
Feature processing: We process the filtered features using a feature transformer (see Fig. 3) to
obtain the features that are split for the decision step output and information for the subsequent step:

[d[i],a[i]] = fi(M[i] · f), (4)

where d[i] ∈ <B×Nd and a[i] ∈ <B×Na . For parameter-efficient learning and efficient convergence
with the high model capacity, a feature transformer should comprise layers that are shared across
all decision steps (as the same features are input across different decision steps), as well as decision
step-dependent layers. In Fig. 3, we show the implementation of a block as concatenation of two
shared layers and two decision step-dependent layers. Each fully-connected layer is followed by
batch normalization and gated linear unit (GLU) nonlinearity (Dauphin et al., 2016) 2, eventually
connected to a normalized residual connection with normalization. Normalization with

√
0.5 helps to

stabilize learning by ensuring that the variance throughout the network does not change dramatically,
as discussed in (Gehring et al., 2017). For faster training, we aim for very large batch sizes in practice.
To improve performance with large batch sizes, all batch normalization operations, except the one
applied to the input features, are implemented in ghost batch normalization (Hoffer et al., 2017) form,
with a virtual batch size BV and momentum mB . For the input features, we observe the benefit of

1For example, if there are three possible categories A, B and C for a particular features, they can be learned
to be mapped to scalars 0.4, 0.1, and -0.2 respectively, along with the training of the model.

2In GLU, first a linear mapping is applied to the intermediate representation and the dimensionality is
doubled, and then second half of the output is used to determine nonlinear processing on the first half.

5

Under review as a conference paper at ICLR 2020

low-variance averaging and hence avoid ghost batch normalization. After the last layer, we split the
processed representation into d[i] and a[i]. Inspired by decision-tree like aggregation as in Fig. 2, we
construct the overall decision embedding as:

dout =

Nsteps∑
i=1

ReLU(d[i]). (5)

Finally, we apply a linear mapping Wfinaldout, for the final decision. When discrete outputs are
required, we additionally employ a softmax function during training (and argmax during inference).

4 EXPERIMENTS

We evaluate the performance of TabNet in wide range of problems, that contain regression or
classification tasks. We specifically focus on tabular datasets with published benchmarks, based on
notable tree-based and neural network-based approaches.

For all datasets, categorical inputs are mapped to a single-dimensional trainable scalar with a
learnable embedding3 and numerical columns are input without and preprocessing.4 We use standard
classification (softmax cross entropy) and regression (mean squared error) loss functions and we
train until convergence. Hyperparameters of the TabNet models are optimized on a validation set and
listed in Appendix. TabNet performance is not very sensitive to most hyperparameters as shown with
ablation studies in Appendix. In all of the experiments where we cite results from other papers, we
use the same training, validation and testing data split with the original work. Adam optimization
algorithm (Kingma & Ba, 2014) and Glorot uniform initialization are used for training of all models.

4.1 PERFORMANCE

Comparison to methods that integrate explicit feature selection. For this comparison, we con-
sider the 6 synthetic tabular datasets from (Chen et al., 2018). As the datasets are small (10k training
samples), efficient feature selection is crucial for high performance in this task. The synthetic datasets
are constructed in such a way that only a subset of the features determine the output. For Syn1, Syn2
and Syn3 datasets, the ‘salient’ features are the same for all instances, so that an accurate global
feature selection mechanism should be optimal. E.g., the ground truth output of the Syn2 dataset
only depends on features X3-X6. For Syn4, Syn5 and Syn6 datasets, the salient features are instance
dependent. E.g., for Syn4 dataset, X11 is the indicator, and the ground truth output depends on either
X1-X2 or X3-X6 depending on the value of X11. This instance dependence makes global feature
selection suboptimal, as the globally-salient features would be redundant for some instances.

Table 1: TabNet achieves high performance with small number of network parameters. Mean and std.
of test area under the receiving operating characteristic curve (AUC) on 6 synthetic datasets from
(Chen et al., 2018), for TabNet vs. other feature selection-based neural network models: No sel.:
using all input features without any feature selection, Global: using only globally-salient features,
Tree refers to Tree Ensembles (Geurts et al., 2006), LASSO: LASSO-regularized model, L2X (Chen
et al., 2018) and INVASE (Yoon et al., 2019) are instance-wise feature selection frameworks. Bold
numbers are the best method for each dataset.

Model Syn1 Syn2 Syn3 Syn4 Syn5 Syn6
No sel. .578 ± .004 .789 ± .003 .854 ± .004 .558 ± .021 .662 ± .013 .692 ± .015
Tree .574 ± .101 .872 ± .003 .899 ± .001 .684 ± .017 .741 ± .004 .771 ± .031
Lasso .498 ± .006 .555 ± .061 .886 ± .003 .512 ± .031 .691 ± .024 .727 ± .025
L2X .498 ± .005 .823 ± .029 .862 ± .009 .678 ± .024 .709 ± .008 .827 ± .017
INVASE .690 ± .006 .877 ± .003 .902 ± .003 .787 ± .004 .784 ± .005 .877 ± .003
Global .686 ± .005 .873 ± .003 .900 ± .003 .774 ± .006 .784 ± .005 .858 ± .004
TabNet .682 ± .005 .892 ± .004 .897 ± .003 .776 ± .017 .789 ± .009 .878 ± .004

Table 1 shows the performance of TabNet vs. other techniques, including no selection, using only
globally-salient features, Tree Ensembles (Geurts et al., 2006), LASSO regularization, L2X (Chen

3In some problems, higher dimensional embedding mapping may slightly improve the performance, but
interpretation of individual embedding dimensions may become challenging.

4Specially-designed feature engineering, e.g. logarithmic transformation of variables highly-skewed distribu-
tions, may further improve the results but we leave it out of the scope of this paper.

6

Under review as a conference paper at ICLR 2020

et al., 2018) and INVASE (Yoon et al., 2019). We observe that TabNet outperforms all other
methods and is on par with INVASE. For Syn1, Syn2 and Syn3 datasets, we observe that the TabNet
performance is very close to global feature selection. For Syn4, Syn5 and Syn6 datasets, we observe
that TabNet improves global feature selection, which would contain redundant features. (Feature
selection is visualized in Sec. 4.2.) All other methods utilize a predictive model with 43k parameters,
and the total number of trainable parameters is 101k for INVASE due to the two other networks in
the actor-critic framework. On the other hand, TabNet is a single neural network architecture, and
the total number of parameters is 26k for Syn1-Syn3 datasets and 31k for Syn4-Syn6 datasets. This
compact end-to-end representation is one of TabNet’s valuable properties.

Comparison to models that do not employ explicit feature selection. We compare TabNet to
high-performance tabular data learning models that are demonstrated on the following problems:

• Forest cover type (Dua & Graff, 2017): Classification of forest cover type from cartographic
variables.
• Poker hand (Dua & Graff, 2017): Classification of the poker hand from the raw input features of

suit and rank attributes of the cards.
• Sarcos robotics arm inverse dynamics (Vijayakumar & Schaal, 2000): Regression for inverse

dynamics of seven degrees-of-freedom of an anthropomorphic robot arm.
• Higgs boson (Baldi et al., 2014): Distinguishing between a signal process which produces Higgs

bosons and a background process which does not.
Table 2: Performance for forest cover type dataset. The performance of the comparison models∗ are
from (Mitchell et al., 2018). AutoInt models pairwise feature interactions with an attention-base deep
neural network (Song et al., 2018). AutoML Tables (denoted as ??) is an automated machine learning
development tool based on ensemble of models including linear feed-forward deep neural network,
gradient boosted decision tree, AdaNet (Cortes et al., 2016) and ensembles (AutoML, 2019). For
AutoML Tables (??), the amount of node hours reflects the measure of the count of searched models
for the ensemble and their complexity.6 A single TabNet model, without fine-grained hyperparameter
search, can outperform the accuracy of ensemble models with very thorough hyperparameter search.

Model Test accuracy (%)
XGBoost∗ 89.34∗

LightGBM∗ 89.28∗
CatBoost∗ 85.14∗

AutoInt 90.24∗

AutoML Tables (2 node hours)?? 94.56??

AutoML Tables (5 node hours)?? 94.95??

AutoML Tables (10 node hours)?? 96.67??

AutoML Tables (30 node hours)?? 96.93??

TabNet 96.99

Table 3: Performance for poker hand induction dataset. The input-output relationship is deterministic
and hand-crafted rules implemented with several lines of code can get 100% accuracy. Yet, neural
networks and decision tree models severely suffer from the imbalanced data and cannot learn the
required sorting and ranking operations with the raw input features. The results for comparison
models∗ are from (Yang et al., 2018).

Model Test accuracy (%)
Decision tree∗ 50.0∗

Multi layer perceptron∗ 50.0∗
Deep neural decision tree∗ 65.1∗

XGBoost 71.1
LightGBM 70.0
CatBoost 66.6
TabNet 99.3

Rule-based 100.0

Tables 2-5 show the performance comparisons. We observe that TabNet outperforms multi-layer
perceptrons and the variants of ensemble decision trees on all four datasets. TabNet allocates the
learning capacity to salient features, and it yields a more compact model in terms of the number of
parameters. When the model size is constrained, we observe the superior performance of TabNet even

7

Under review as a conference paper at ICLR 2020

Table 4: Performance for Sarcos robotics arm inverse dynamics dataset. Three TabNet models of
different sizes are considered (denoted with -S, -M and -L). The performance of the comparison
models∗ are from (Tanno et al., 2018).

Model Test MSE Number of parameters
Random forest∗ 2.39∗ 16.7K

Stochastic decision tree∗ 2.11∗ 28K
Multi layer perceptron∗ 2.13∗ 0.14M

Adaptive neural tree ensemble∗ 1.23∗ 0.60M
Gradient boosted tree∗ 1.44∗ 0.99M

TabNet-S 1.25 6.3K
TabNet-M 0.28 0.59M
TabNet-L 0.14 1.75M

Table 5: Performance on Higgs boson dataset. Two TabNet models of different sizes are considered
(denoted with -S and -M). The performance of the comparison models∗ are from (Mocanu et al.,
2018). Sparse evolutionary training applies non-structured sparsity integrated into training, yielding
low number of parameters. With its compact representation, TabNet, (without any further pruning or
extra non-structured sparsity), yields almost similar performance with sparse evolutionary training for
the same number of parameters. Gradient boosted tree models are implemented using (Tensorflow,
2019), see Appendix for details.

Model Test accuracy (%) Number of parameters
Sparse evolutionary trained multi layer perceptron∗ 78.47∗ 81K

Gradient boosted tree-S 74.22 0.12M
Gradient boosted tree-M 75.97 0.69M
Multi-layer perceptron∗ 78.44∗ 2.04M
Gradient boosted tree-L 76.98 6.96M

TabNet-S 78.25 81K
TabNet-M 78.84 0.66M

compared to the decision tree variants. The performance is only slightly worse than the evolutionary
sparsification algorithms (Mocanu et al., 2018). Yet, the sparsity learned in TabNet is structured
unlike the alternative approaches – i.e. it does not degrade the operational intensity of the model
(Wen et al., 2016) and can efficiently utilize modern multi-core processors. Also note that we do not
consider any matrix sparsification techniques such as adaptive pruning (Narang et al., 2017) which
could further improve the parameter-efficiency.
4.2 INTERPRETABILITY

The feature selection masks in TabNet can be used to build insights on selected features at each step.
Such capability would not be possible for conventional neural networks with fully-connected layers,
as each subsequent layer hidden units would jointly process all features without sparsity-controlled
selection mechanism. For feature selection masks, if Mb,j[i] = 0, then jth feature of the bth sample
should have 0 contribution to the overall decision. If fi were a linear function, the coefficient Mb,j[i]
would correspond to the feature importance of fb,j. Although each decision step employs non-linear
processing, their outputs are combined later in a linear way. Our goal is to quantify an aggregate
feature importance beyond analysis of each step as well. Combination of the masks at different
decision steps require a coefficient that can weigh the relative importance of each step in the decision.
We use ηb[i] =

∑Nd

c=1 ReLU(db,c[i]) to denote the aggregate decision contribution at ith decision
step for the bth sample. Intuitively, db,c[i] < 0, then all features at ith decision step should have 0
contribution to the overall decision and as its value increases, it plays a higher role in the overall
linear combination given in Eq. 5. Scaling the decision mask at each decision step with ηb[i], we
propose the aggregate feature importance mask as:

Magg−b,j =

Nsteps∑
i=1

ηb[i]Mb,j[i]
/ D∑

j=1

Nsteps∑
i=1

ηb[i]Mb,j[i]. (6)

Normalization is used to ensure
∑D

j=1 Magg−b,j = 1 for each sample.

8

Under review as a conference paper at ICLR 2020

/

/

M[1] M[2] M[3] M[4]Magg

Syn2 dataset

X11X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Te
st

 sa
m

pl
es

M[1] M[2] M[3] M[4]Magg

Syn3 dataset

Figure 4: Feature importance masks M[i] (that indicate which features are selected at ith step) and
the aggregate feature importance mask Magg showing the global instance-wise feature selection for
Syn2 and Syn3 datasets from (Chen et al., 2018). Brighter colors show a higher value. E.g. for Syn2
dataset, only four features (X3-X6) are used.

.

M[1] M[2] M[3] M[4]Magg

Syn4 dataset
M[5]

M[1] M[2] M[3] M[4]Magg

Syn6 dataset
M[5]

Figure 5: Feature importance masks M[i] (that indicate which features are selected at ith step) and
the aggregate feature importance mask Magg showing the global instance-wise feature selection for
Syn4 and Syn6 datasets from (Chen et al., 2018). Brighter colors show a higher value. E.g. for Syn4
dataset, the chosen features depend on the value of X11.

.

9

Under review as a conference paper at ICLR 2020

Figs. 4 and 5 show the aggregate feature importance masks for the synthetic datasets discussed
in Sec. 4.1 (for better illustration here, unlike Sec. 4.1, the models are trained with 10M training
samples rather than 10K as we obtain sharper feature selection masks). The ground truth output of
the Syn2 dataset only depends on features X3-X6, and the ground truth output of the Syn3 dataset
only depends on features X7-X10. We observe that the aggregate masks are almost all-zero for
irrelevant features and they merely focus on relevant ones. For Syn4 dataset, X11 is the indicator,
and the ground truth output depends on either X1-X2 or X3-X6 depending on the value of X11. For
Syn6 dataset, X11 is the indicator, and the ground truth output depends on either X3-X6 or X7-X10

depending on the value of X11. For both, TabNet yields accurate instance-wise feature selection – it
uses majority of the weights in two masks to focus on X11, and assigns almost all-zero weights to
irrelevant features (the ones other than one of the two feature groups based on the value of X11).

(a)

Feature SHAP Skater XGBoost TabNet
Age 1 1 1 1
Capital gain 3 3 4 6
Capital loss 9 9 6 4
Education number 5 2 3 2
Gender 8 10 12 8
Hours per week 7 7 2 7
Marital status 2 6 10 9
Native country 11 11 9 12
Occupation 6 5 5 3
Race 12 12 11 11
Relationship 4 4 8 5
Work class 10 8 7 10

Importance ranking of features for Adult Census Income

(b) (c)

Figure 6: (a) Comparison to previous work for the ratio of the feature importance of “Odor” feature
to all the features of the top feature for the mushroom edibility prediction (Dua & Graff, 2017)
(task: classify whether a mushroom is edible or poisonous). With “Odor” feature only, > 98.5% test
accuracy can be obtained, so a high feature importance is expected to be assigned to it, as observed
with TabNet. (b) Comparison to previous work for importance ranking of features in the Adult Census
Income dataset (Dua & Graff, 2017) (task: distinguish whether a person’s income is above $50,000).
(c) Impact of the most important feature on the decision manifold. T-SNE of the decision manifold
for Adult Census Income test samples and the impact of the most dominant feature ‘Age’.

Fig. 6(a) shows the feature importance score of the top feature obtained with TabNet vs. other
explainability techniques from (Ibrahim et al., 2019) for mushroom edibility prediction. Mushroom
edibility is a simple pattern recognition problem - TabNet achieves 100% test accuracy. It is indeed
known (Dua & Graff, 2017) that with “Odor” feature only, a model can get > 98.5% test accuracy
(Dua & Graff, 2017), so a high feature importance is expected for it, as observed with TabNet. Fig.
6(b) shows the importance ranking of features for TabNet vs. other explainability techniques from
(Lundberg et al., 2018) (Nbviewer, 2019) for Adult Census Income prediction. TabNet achieves
85.7% test accuracy for this problem. We observe the commonality of the most important features
(“Age”, “Capital gain/loss”, “Education number”, “Relationship”) and the least important features
(“Native country”, “Race”, “Gender”, “Work class”). For the same problem, Fig. 6(c) shows the
impact of the most important feature on the output decision by visualizing the T-SNE of the decision
manifold. A clear separation between age groups is observed, underlining the importance of the
“Age” feature, as suggested by its high value in the aggregate feature importance mask of TabNet.

5 CONCLUSIONS

We propose TabNet, a novel deep learning architecture for tabular learning. TabNet utilizes a
sequential attention mechanism to choose a subset of semantically-meaningful features to process
at each decision step. The selected features are processed to the representation, that contributes to
the overall decision output and sends information to the next decision step. Instance-wise feature
selection enables efficient learning as the model capacity is fully used for the most salient features, and
also yields more interpretable decision making via visualization of selection masks. We demonstrate
that TabNet outperforms previous work across tabular datasets from different domains.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, et al. Deep speech 2:
End-to-end speech recognition in english and mandarin. arXiv:1512.02595, 2015.

AutoML. AutoML Tables – Google Cloud, 2019. URL https://cloud.google.com/
automl-tables/.

P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics with
deep learning. Nature Commun., Jul 2014.

Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of ICML
Workshop on Unsupervised and Transfer Learning, volume 27 of Proceedings of Machine Learning
Research, pp. 37–49, Bellevue, Washington, USA, 02 Jul 2012. PMLR.

J. Bao, D. Tang, N. Duan, Z. Yan, M. Zhou, and T. Zhao. Text generation from tables. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 27(2):311–320, Feb 2019.

Yael Ben-Haim and Elad Tom-Tov. A streaming parallel decision tree algorithm. J. Mach. Learn.
Res., 11:849–872, March 2010.

Catboost. Benchmarks. https://github.com/catboost/benchmarks, 2019. Accessed:
2019-11-10.

Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. arXiv:1802.07814, 2018.

Tianqi Chen and Carlos Guestrin. XGboost: A scalable tree boosting system. In KDD, 2016.

C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, et al. State-of-the-art speech recognition
with sequence-to-sequence models. In ICASSP, April 2018.

Michael Chui, James Manyika, Mehdi Miremadi, Nicolaus Henke, Rita Chung, et al. Notes from the
ai frontier. McKinsey Global Institute, 4 2018.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and Yann LeCun. Very deep convolutional networks
for natural language processing. arXiv:1606.01781, 2016.

Corinna Cortes, Xavi Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Adanet: Adaptive
structural learning of artificial neural networks. arXiv:1607.01097, 2016.

Zihang Dai, Zhilin Yang, Fan Yang, William W. Cohen, and Ruslan Salakhutdinov. Good semi-
supervised learning that requires a bad GAN. arxiv:1705.09783, 2017.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. arXiv:1612.08083, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. arxiv:1810.04805, 2018.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017. URL http://archive.
ics.uci.edu/ml.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional
sequence to sequence learning. arXiv:1705.03122, 2017.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine Learning,
63(1):3–42, Apr 2006. ISSN 1573-0565. doi: 10.1007/s10994-006-6226-1.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

K. Grabczewski and N. Jankowski. Feature selection with decision tree criterion. In HIS), Nov 2005.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In NIPS
2004, 2004.

11

https://cloud.google.com/automl-tables/
https://cloud.google.com/automl-tables/
https://github.com/catboost/benchmarks
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Under review as a conference paper at ICLR 2020

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. J. Mach.
Learn. Res., 3:1157–1182, March 2003.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv:1512.03385, 2015.

Tin Kam Ho. The random subspace method for constructing decision forests. IEEE Trans. on PAMI,
20(8):832–844, Aug 1998.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. arXiv:1705.08741, 2017.

Drew A. Hudson and Christopher D. Manning. Compositional attention networks for machine
reasoning. arXiv:1803.03067, 2018.

K. D. Humbird, J. L. Peterson, and R. G. McClarren. Deep neural network initialization with decision
trees. IEEE Transactions on Neural Networks and Learning Systems, 2018.

Mark Ibrahim, Melissa Louie, Ceena Modarres, and John W. Paisley. Global explanations of neural
networks: Mapping the landscape of predictions. arXiv:1902.02384, 2019.

Kaggle. Rossmann store sales. https://www.kaggle.com/c/rossmann-store-sales,
2019a. Accessed: 2019-11-10.

Kaggle. Historical data science trends on Kaggle. https://www.kaggle.com/shivamb/
data-science-trends-on-kaggle, 2019b. Accessed: 2019-04-20.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, et al. Lightgbm: A highly efficient
gradient boosting decision tree. In NIPS. 2017.

Guolin Ke, Jia Zhang, Zhenhui Xu, Jiang Bian, and Tie-Yan Liu. TabNN: A universal neural
network solution for tabular data, 2019. URL https://openreview.net/forum?id=
r1eJssCqY7.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2014.

P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulò. Deep neural decision forests. In ICCV,
2015.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural networks for text
classification. In AAAI, 2015.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui. Table-to-text generation by
structure-aware seq2seq learning. arXiv:1711.09724, 2017.

Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee. Consistent individualized feature attribution for
tree ensembles. arXiv:1802.03888, 2018.

Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian
Nowozin, and Cheng Zhang. EDDI: efficient dynamic discovery of high-value information with
partial VAE. arXiv:1809.11142, 2018.

Freddie Mac. Loan level dataset. http://www.freddiemac.com/research/datasets/
sf_loanlevel_dataset.page, 2019. Accessed: 2019-3-10.

André F. T. Martins and Ramón Fernández Astudillo. From softmax to sparsemax: A sparse model
of attention and multi-label classification. arXiv:1602.02068, 2016.

Rory Mitchell, Andrey Adinets, Thejaswi Rao, and Eibe Frank. Xgboost: Scalable GPU accelerated
learning. arXiv:1806.11248, 2018.

Decebal Mocanu, Elena Mocanu, Peter Stone, Phuong Nguyen, Madeleine Gibescu, and Antonio
Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by
network science. Nature Communications, 9, 12 2018.

12

https://www.kaggle.com/c/rossmann-store-sales
https://www.kaggle.com/shivamb/data-science-trends-on-kaggle
https://www.kaggle.com/shivamb/data-science-trends-on-kaggle
https://openreview.net/forum?id=r1eJssCqY7
https://openreview.net/forum?id=r1eJssCqY7
http://www.freddiemac.com/research/datasets/sf_loanlevel_dataset.page
http://www.freddiemac.com/research/datasets/sf_loanlevel_dataset.page

Under review as a conference paper at ICLR 2020

Alex Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo J. Rezende. S3TA: A
soft, spatial, sequential, top-down attention model, 2019. URL https://openreview.net/
forum?id=B1gJOoRcYQ.

Sharan Narang, Gregory F. Diamos, Shubho Sengupta, and Erich Elsen. Exploring sparsity in
recurrent neural networks. arXiv:1704.05119, 2017.

Nbviewer. Notebook on Nbviewer, 2019. URL https://nbviewer.jupyter.org/
github/dipanjanS/data_science_for_all/blob/master/tds_model_
interpretation_xai/Human-interpretableMachineLearning-DS.ipynb#.

N. C. Oza. Online bagging and boosting. In 2005 IEEE International Conference on Systems, Man
and Cybernetics, volume 3, pp. 2340–2345 Vol. 3, Oct 2005.

German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. arXiv:1802.07569, 2018.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. In NIPS, pp. 6638–6648. 2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks. arXiv:1511.06434, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv:1409.1556, 2014.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang. Au-
toint: Automatic feature interaction learning via self-attentive neural networks. arxiv:1810.11921,
2018.

Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, Antonio Criminisi, and Aditya V. Nori.
Adaptive neural trees. arXiv:1807.06699, 2018.

Tensorflow. Classifying higgs boson processes in the higgs data set, 2019. URL https://github.
com/tensorflow/models/tree/master/official/boosted_trees.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, et al. Wavenet:
A generative model for raw audio. arXiv:1609.03499, 2016.

Sethu Vijayakumar and Stefan Schaal. Locally weighted projection regression: An o(n) algorithm for
incremental real time learning in high dimensional space. In ICML, 2000.

Suhang Wang, Charu Aggarwal, and Huan Liu. Using a random forest to inspire a neural network
and improving on it. In SDM, 2017.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. arXiv:1608.03665, 2016.

Yongxin Yang, Irene Garcia Morillo, and Timothy M. Hospedales. Deep neural decision trees.
arXiv:1806.06988, 2018.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. INVASE: Instance-wise variable selection
using neural networks. In ICLR, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv:1605.07146, 2016.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv:1710.09412, 2017.

13

https://openreview.net/forum?id=B1gJOoRcYQ
https://openreview.net/forum?id=B1gJOoRcYQ
https://nbviewer.jupyter.org/github/dipanjanS/data_science_for_all/blob/master/tds_model_interpretation_xai/Human-interpretable Machine Learning - DS.ipynb#
https://nbviewer.jupyter.org/github/dipanjanS/data_science_for_all/blob/master/tds_model_interpretation_xai/Human-interpretable Machine Learning - DS.ipynb#
https://nbviewer.jupyter.org/github/dipanjanS/data_science_for_all/blob/master/tds_model_interpretation_xai/Human-interpretable Machine Learning - DS.ipynb#
https://github.com/tensorflow/models/tree/master/official/boosted_trees
https://github.com/tensorflow/models/tree/master/official/boosted_trees

Under review as a conference paper at ICLR 2020

A SIMPLIFIED DIAGRAM FOR TABNET FEEDFORWARD PASS

Features

Attentive
transformer

h1()

+

Step 1

BN

Split Split

ReLU

Split

ReLU

Step 2

Output

Feature
transformer

f1()

FC

["#, "%, "&]

Mask
M[1]=[1,0,0]

Mask
M[2]=[0,0,1]

[("#, ("%, ("&]

d[)] d[*]

Attentive
transformer

h2()

Feature
transformer

f2()

[("#, ("%, ("&] [("#, ("%, ("&]

[("#, 0,0] [0,0, ("&]

a[,] a[)]

Feature
transformer

f0()

Figure 7: Simplified diagram for TabNet feedforward pass for an input with 3 features, assuming
Nsteps = 2. At the first step, the model selects only the first feature, and applies feature processing
on it. At the second step, the model selects the last feature, and applies the feature processing on it.
Lastly, the two outputs are combined for the final decision.

B ADDITIONAL RESULTS

B.1 RETAIL DATASET WITH TIME COMPONENT

In this section, we show additional results on a real-world tabular data learning problem - Rossmann
store sales forecasting (Kaggle, 2019a). This dataset has time-dependent features. Time information
is input as day, month, and year columns. We observe that TabNet outperforms alternative methods
that are commonly used for such problems.

Table 6: Performance for Rossmann store sales dataset (Kaggle, 2019a). We use the exactly same
preprocessing and data split with (Catboost, 2019) - data from 2014 is used for training and validation,
whereas 2015 is used for testing. The performance of the comparison models∗ are from (Catboost,
2019).

Model Test MSE
XGBoost∗ 490.83∗

LightGBM∗ 504.76∗
CatBoost∗ 489.75∗

TabNet 485.12

B.2 KDD DATASETS

Table 7: Performance on three KDD datasets on Customer Relationship Management: Appetency,
Churn and Upselling. We apply the similar preprocessing and data partitioning as (Prokhorenkova
et al., 2018). The performance of the comparison models∗ are from (Prokhorenkova et al., 2018).

Model Appetency test
accuracy (%)

Churn test
accuracy (%)

Upselling test
accuracy (%)

XGBoost∗ 98.2∗ 92.7∗ 95.1∗
CatBoost∗ 98.2∗ 92.8∗ 95.1∗

TabNet 98.2 92.7 95.0
We experiment TabNet on four KDD datasets: the three Customer Relationship Management and
Census Income. These datasets show saturated behavior in achievable performance (even simple

14

Under review as a conference paper at ICLR 2020

Table 8: Performance for KDD Census Income (Dua & Graff, 2017). The task is income prediction
from demographic and employment related variables. The performance of the comparison models∗
are from (Oza, 2005).

Model Test accuracy (%)
XGBoost 95.76
CatBoost 95.72

Multi-layer perceptron∗ 95.19
Boosting, Multi-layer perceptron∗ 94.86
Bagging, Multi-layer perceptron∗ 95.33

TabNet 95.49

models yield similar results). For these cases, TabNet shows very similar (or slightly worse) perfor-
mance than XGBoost and CatBoost, that are known to be very robust as they contain high amount of
ensembles.

B.3 LOAN DELINQUENCY PREDICTION

Table 9: Performance for loan delinquency prediction on a proprietary dataset, constructed from
(Mac, 2019). The task is to classify loan delinquency status (among four categories), from many
input features including personal information and financial status. The training dataset consists of
93k samples. The dataset is highly imbalanced as the delinquency situation is observed rarely.

Model Test mean per class accuracy
XGBoost 0.55

H2OAutoML (with 15 models) 0.60
Multi-layer perceptron 0.46

TabNet 0.86

We consider TabNet for a real-world problem in financial services industry: loan delinquency
prediction. On a proprietary dataset, we demonstrate strong outperformance of TabNet, especially
finding rare delinquency cases without any special techniques on anomaly detection.

C EXPERIMENT HYPERPARAMETERS

For all datasets, we start hyperparameter tuning with a pre-defined value space. Nd and
Na are chosen from {8, 16, 24, 32, 64, 128}, Nsteps is chosen from {3, 4, 5, 6, 7, 8, 9, 10}, γ is
chosen from {1.0, 1.2, 1.5, 2.0}, λsparse is chosen from {0, 0.000001, 0.0001, 0.001, 0.01, 0.1},
B is chosen from {256, 512, 1024, 2048, 4096, 8192, 16384, 32768}, BV is chosen from
{256, 512, 1024, 2048, 4096} and mB is chosen from {0.6, 0.7, 0.8, 0.9, 0.95, 0.98}. If the model
size is not under the desired cutoff (e.g. for Table 5 comparisons), we decrease the value to satisfy
the model size constraint.

C.1 SYNTHETIC DATASETS

All TabNet models use Nd = Na = 16, B = 3000, BV = 100, mB = 0.7. For Syn1 we use
λsparse = 0.02, Nsteps = 4 and γ = 2.0; for Syn2 and Syn3 we use λsparse = 0.01, Nsteps = 4
and γ = 2.0; and for Syn4, Syn5 and Syn6 we use λsparse = 0.005, Nsteps = 5 and γ = 1.5. Each
feature transformer block uses two shared and two decision step-dependent fully-connected layer,
ghost batch normalization and GLU blocks. All models use Adam optimization a learning rate of
0.02 (decayed 0.7 every 200 iterations with an exponential decay) for 4k iterations.

For visualizations in Section 4.2, we also train TabNet models with datasets of size 10M samples.
For this case, we choose Nd = Na = 32, λsparse = 0.001, B = 10000, BV = 100, mB = 0.9.
Adam optimization is used with a learning rate of 0.02 (decayed 0.9 every 2k iterations with an
exponential decay) for 15k iterations. For Syn2 and Syn3, Nsteps = 4 and γ = 2. For Syn4 and
Syn6, Nsteps = 5 and γ = 1.5.

15

Under review as a conference paper at ICLR 2020

C.2 FOREST COVER TYPE DATASET

We use the exact same partitioning of the train, evaluation and test datasets with (Mitchell et al.,
2018) for a fair comparison.

TabNet model uses Nd = Na = 64, λsparse = 0.0001, B = 16384, BV = 512, mB = 0.7,
Nsteps = 5 and γ = 1.5. Each feature transformer block uses two shared and two decision step-
dependent fully-connected layer, ghost batch normalization and GLU blocks. Adam optimization is
used with a learning rate of 0.02 (decayed 0.95 every 0.5k iterations with an exponential decay) for
130k iterations.

C.3 POKER HANDS DATASET

TabNet uses Nd = 24, Na = 8, λsparse = 0.001, B = 4096, BV = 256, mB = 0.8, Nsteps = 4
and γ = 1.5. Each feature transformer block uses two shared and two decision step-dependent
fully-connected layer, ghost batch normalization and GLU blocks. Adam optimization is used with a
learning rate of 0.02 (decayed 0.9 every 10k iterations with an exponential decay) for 71k iterations.

C.4 SARCOS DATASET

TabNet-S model uses Nd = Na = 8, λsparse = 0.0001, B = 4096, BV = 256, mB = 0.9,
Nsteps = 3 and γ = 1.2. Each feature transformer block uses one shared and two decision step-
dependent fully-connected layer, ghost batch normalization and GLU blocks. Adam optimization is
used with a learning rate of 0.01 (decayed 0.95 every 8k iterations with an exponential decay) for
600k iterations.

TabNet-M model uses Nd = Na = 64, λsparse = 0.0001, B = 4096, BV = 128, mB = 0.8,
Nsteps = 7 and γ = 1.5. Each feature transformer block uses two shared and two decision step-
dependent fully-connected layer, ghost batch normalization and GLU blocks. Adam optimization is
used with a learning rate of 0.01 (decayed 0.95 every 8k iterations with an exponential decay) for
600k iterations.

The TabNet-L model uses Nd = Na = 128, λsparse = 0.0001, B = 4096, BV = 128, mB = 0.8,
Nsteps = 5 and γ = 1.5. Each feature transformer block uses two shared and two decision step-
dependent fully-connected layer, ghost batch normalization and GLU blocks. Adam optimization is
used with a learning rate of 0.02 (decayed 0.9 every 8k iterations with an exponential decay) for 600k
iterations.

C.5 HIGGS DATASET

TabNet-S model uses Nd = 24, Na = 26, λsparse = 0.000001, B = 16384, BV = 512, mB = 0.6,
Nsteps = 5 and γ = 1.5. Each feature transformer block uses two shared and two decision step-
dependent fully-connected layer, ghost batch normalization and GLU blocks. Adam optimization is
used with a learning rate of 0.02 (decayed 0.9 every 20k iterations with an exponential decay) for
870k iterations.

TabNet-M model uses Nd = 96, Na = 32, λsparse = 0.000001, B = 8192, BV = 256, mB = 0.9,
Nsteps = 8 and γ = 2.0. Each feature transformer block uses two shared and two decision step-
dependent fully-connected layer, ghost batch normalization and GLU blocks. Adam optimization is
used with a learning rate of 0.025 (decayed 0.9 every 10k iterations with an exponential decay) for
370k iterations.

For gradient boosted trees, we use the implementation (Tensorflow, 2019). We choose the learning
rate of 0.1 and optimize the maximum depth to 8, based on the performance. The Gradient boosted
tree-S model uses 50 trees, the Gradient boosted tree-M model uses 300 trees and the Gradient
boosted tree-L model uses 3000 trees.

C.6 MUSHROOM EDIBILITY DATASET

TabNet model uses Nd = Na = 8, λsparse = 0.001, B = 2048, BV = 128, mB = 0.9, Nsteps = 3
and γ = 1.5. Each feature transformer block uses two shared and two decision step-dependent

16

Under review as a conference paper at ICLR 2020

fully-connected layer, ghost batch normalization and GLU blocks. Adam optimization is used with a
learning rate of 0.01 (decayed 0.8 every 400 iterations with an exponential decay) for 10k iterations.

C.7 ADULT CENSUS INCOME DATASET

TabNet model uses Nd = Na = 16, λsparse = 0.0001, B = 4096, BV = 128, mB = 0.98,
Nsteps = 5 and γ = 1.5. Each feature transformer block uses two shared and two decision step-
dependent layer, ghost batch normalization and GLU blocks. Adam optimization is used with a
learning rate of 0.02 (decayed 0.4 every 2.5k iterations with an exponential decay) for 7.7k iterations.

When only 40 labeled examples are used instead of the full dataset, based on re-optimization of
hyperparameters on the validation set, we modify B = 128, λsparse = 0.01 and the learning rate of
0.005 (decayed 0.95 every 10 iterations with an exponential decay) for 100 iterations.

C.8 ROSSMANN DATASET

TabNet model uses Nd = Na = 32, λsparse = 0.001, B = 4096, BV = 512, mB = 0.8,
Nsteps = 5 and γ = 1.2. Each feature transformer block uses two shared and two decision step-
dependent fully-connected layer, ghost batch normalization and GLU blocks. Adam optimization is
used with a learning rate of 0.002 (decayed 0.95 every 2000 iterations with an exponential decay) for
15k iterations.

D GUIDELINES FOR HYPERPARAMETER SELECTION

We consider datasets ranging from ∼10K to ∼10M training points, with varying degrees of fitting
difficulty. TabNet obtains high performance for all with a few general principles on hyperparameter
selection:

• Most datasets yield the best results for Nsteps ∈ [3, 10]. Typically, we observe that when
there are more information-bearing features, the optimal value of Nsteps tends to be higher.
On the other hand, increasing it beyond some value may adversely affect training dynamics
as some paths in the network becomes deeper and there are more potentially-problematic
ill-conditioned matrices. A very high value of Nsteps typically suffers from overfitting and
yields poor generalization.

• Adjustment of the values of Nd and Na is the most efficient way of obtaining a trade-off
between performance and complexity. Nd = Na is a reasonable choice for most datasets. A
very high value of Nd and Na may suffer from overfitting and yield poor generalization.

• An optimal choice of γ can have a major role on the overall performance. Typically a larger
Nsteps value favors for a larger γ.

• A large batch size is beneficial for performance - if the memory constraints permit, as large
as 1-10 % of the total training dataset size is suggested. The virtual batch size is typically
much smaller than the batch size.

• Initially large learning rate is important, which should be gradually decayed until conver-
gence.

When the model size is constrained, the hyperparameter search becomes more complicated. Because
the optimal ways to increase the representation capacity may be chosen among different options, such
as increasing the number of steps or the unit size. For example, increasing the number of units while
slightly decreasing the step size can be a better way of optimal utilization of the limited capacity
constrained by the size on the number of parameters.

E ABLATION STUDIES

In Table 10, we show the impact of various design and hyperparameter choices. For all cases, the
number of iterations is optimized on the validation set.

17

Under review as a conference paper at ICLR 2020

Table 10: Ablation studies for the TabNet model for the forest cover type dataset.

Ablation cases Test accuracy %
(difference)

Number of
parameters

Base (Nd = Na = 64, γ = 1.5, Nsteps = 5,
λsparse = 0.0001, feature transformer block composed
of two shared and two decision step-dependent layers,

B = 16384)

96.99 (0) 470k

Decreasing capacity via number of units (with
Nd = Na = 32) 94.99 (-2.00) 129k

Decreasing capacity via number of decision steps (with
Nsteps = 3) 96.22 (-0.77) 328k

Increasing capacity via number of decision steps (with
Nsteps = 9) 95.48 (-1.51) 755k

Decreasing capacity via all-shared feature transformer
blocks 96.74 (-0.25) 143k

Increasing capacity via decision step-dependent feature
transformer blocks 96.76 (-0.23) 703k

Replacing feature transformer block with a single shared
layer 95.32 (-1.67) 35k

Replacing feature transformer block with a single shared
layer, with ReLU instead of GLU 93.92 (-3.07) 27k

Replacing feature transformer block with two shared
layers 96.34 (-0.66) 71k

Replacing feature transformer block with two shared
layers and 1 decision step-dependent layer 96.54 (-0.45) 271k

Replacing feature transformer block with a single
decision-step dependent layer 94.71 (-0.28) 105k

Replacing feature transformer block with a single
decision-step dependent layer, with Nd = Na = 128

96.24 (-0.75) 208k

Replacing feature transformer block with a single
decision-step dependent layer, with Nd = Na = 128 and

replacing GLU with ReLU
95.67 (-1.32) 139k

Replacing feature transformer block with a single
decision-step dependent layer, with Nd = Na = 256 and

replacing GLU with ReLU
96.41 (-0.58) 278k

Reducing the impact of prior scale (with γ = 3.0) 96.49 (-0.50) 470k
Increasing the impact of prior scale (with γ = 1.0) 96.67 (-0.32) 470k

No sparsity regularization (with λsparse = 0) 96.50 (-0.49) 470k
High sparsity regularization (with λsparse = 0.01) 93.87 (-3.12) 470k

Small batch size (B = 4096) 96.42 (-0.57) 470k

18

Under review as a conference paper at ICLR 2020

Obtaining high performance necessitates appropriately-adjusted model capacity based on the char-
acteristics of the dataset. Decreasing the number of units Nd, Na or the number of decision steps
Nsteps are efficient ways of gradually decreasing the capacity without significant degradation in
performance. On the other hand, increasing these parameters beyond some value causes optimization
issues and do not yield performance benefits.

Replacing the feature transformer block with a very simpler alternative, such as a single shared layer,
can still give strong performance while yielding a very compact model architecture. This shows the
importance of the inductive bias introduced with feature selection and sequential attention.

To push for the performance further, increasing the depth of the feature transformer is the effective
approach. While increasing the depth, parameter sharing between feature transformer blocks across
different decisions is an efficient way to decrease model size without significant degradation from
performance. We indeed observe the benefit of partial parameter sharing, compared to fully decision
step-dependent blocks or fully shared blocks. We observe the empirical benefit of GLU, compared to
conventional nonlinearities like ReLU.

The strength of sparse feature selection depends on the two parameters we introduce: γ and λsparse.
We show that optimal choice of these two is important for performance. A γ close to 1, or a high
λsparse may yield too tight constraints on the strength of sparsity and may hurt performance. On the
other hand, there is still the benefit of a sufficient low γ and sufficiently high λsparse, to aid learning
of the model via a favorable inductive bias.

Lastly, given the fixed model architecture, we show the benefit of large-batch training, enabled by
ghost batch normalization (Hoffer et al., 2017). The optimal batch size for TabNet seems considerably
higher than the conventional batch sizes used for other data types, such as images or speech.

F MIXUP TRAINING

In (Zhang et al., 2017), mixup training was shown to be beneficial for tabular data learning, on
small-scale datasets with simple neural network models comprising fully-connected layers. We
experiment mixup training with TabNet and did not observe superior performance compared to
standard softmax training. For Covertype dataset, the best mixup model (for mixup parameter α=0.3)
yields a test accuracy of 96.28%, roughly 0.7% lower than softmax training. For Higgs dataset, for
the best TabNet-S model, the best mixup model (for mixup parameter α=0.1) yields a test accuracy
of 78.11%, roughly 0.1% lower than softmax training. We hypothesize that linearization of the inputs
may cause significant shifts in the input distribution and thus adversely affect the feature selection
blocks of TabNet.

G SEMI-SUPERVISED LEARNING

Feature
transformer Step 1

+

Step 2

Encoded representation

…
Reconstructed features

FC

Feature
transformer

FC

Figure 8: Decoder architecture to transform the encoded representation into reconstructed tabular
data features. Each decision step is composed of a feature transformer block (see Fig. 3), and a
fully-connected layer.

We explore the capability of TabNet in learning semantically-meaningful representations by integrat-
ing it into an autoencoder framework (Baldi, 2012). For this purpose, we propose a simple decoder
architecture, shown in Fig. 8. The decoder is composed of a feature transformer block (as given
in Fig. 3), followed by a fully-connected layer at each decision step. Different decision steps are
summed to output the reconstructed features.

19

Under review as a conference paper at ICLR 2020

We propose an additive reconstruction loss (with a coefficient λunsup) between the input features X
and the reconstructed features X̂. The reconstruction loss (computed over unlabeled data batch of
size BU) is in the form of L2 loss, normalized with the population standard deviation of the ground
truth data, and scaled by S:

Lunsup(X̂,X) =
1

BU ·D

BU∑
b=1

D∑
j=1

∣∣∣∣∣∣ (X̂b,j −Xb,j) · Sb,j√
1

BU

∑BU

b=1(Xb,j − 1
BU

∑BU

b=1 Xb,j)2

∣∣∣∣∣∣
2

(7)

Normalization with the input value is observed to be crucial, as the tabular data features may have
very different ranges. A straightforward approach in conventional reconstruction loss is scaling with a
uniform mask, Sb,j = 1/D. As a more promising alternative, we propose that scaling should be based
on feature importance values, such that the autoencoder should prioritize learning the representation
for features that are the most important for decision making. We use the feature important mask
Sb,j = M′agg−b,j/

∑D
j=1 M

′
agg−b,j to promote learning for the most salient features. M′agg is

inferred from the TabNet for the batch of unlabeled training samples, and fixed in the computation of
loss to avoid the trivial solutions of fitting the easiest features.

For semi-supervised learning experiments, we consider the Adult Census Income dataset. We
randomly choose 50 samples as the labeled set. We fix the TabNet model with the aferomentioned
hyperparameters. As the original learning hyperparameters overfit very quickly for 50 samples, we
reoptimize the learning rate to 0.01 (decayed 0.9 every 100 iterations with an exponential decay) and
trained for 800 iterations. For the autoencoder, we also fix the TabNet architecture, and optimize
the decoder and learning hyperparameters. We use a decoder architecture with Nd = Na = 16,
B = 128, and mB = 0.98. We use an unlabeled batch size of BU = 2048. The model with uniform
masking uses λunsup = 0.2, λsparse = 0.005, the number of decoder steps of Nsteps = 6 and a
learning rate of 0.005 (decayed 0.95 every 4k iterations with an exponential decay) and trained for
20.6k iterations. The model with feature importance mask uses λunsup = 0.1, λsparse = 0.005, the
number of decoder steps of Nsteps = 4 and a learning rate of 0.01 (decayed 0.9 every 10k iterations
with an exponential decay) and trained for 63k iterations. Since feature importance masking focuses
on reconstructing the most salient features, the learning capacity of the optimal decoder is lower.

Table 11: Results for semi-supervised learning for Adult Census Income, along with the supervised
learning benchmarks. 50 samples with labels are randomly chosen from the training dataset. We
reoptimize the learning hyperparameters on a separate validation set for a fair comparison.

Dataset Learning setting Test accuracy (%)
50 labeled Fully-supervised 76.8

50 labeled + 26015 unlabeled Semi-supervised (autoencoder with
uniform mask)

78.9

50 labeled + 26015 unlabeled Semi-supervised (autoencoder with
feature importance mask)

80.6

26065 labeled Fully-supervised 85.7

Table 11 shows the semi-supervised learning performance, along with the two supervised learning
benchmarks: when trained without additional unlabeled data and when trained after labeling the entire
dataset. We observe a significant boost in performance with the contributions from the unlabeled
data, closing the gap towards the supervised learning baseline of the entire dataset. Focusing on the
most important features in autoencoding helps improving the semi-supervised learning performance.

20

