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Abstract—Basis pursuit is a compressed sensing opti-
mization in which the ¢;-norm is minimized subject to
model error constraints. Here we use a deep neural net-
work prior instead of /;-regularization. Using known noise
statistics, we jointly learn the prior and reconstruct images
without access to ground-truth data. During training, we
use alternating minimization across an unrolled iterative
network and jointly solve for the neural network weights
and training set image reconstructions. At inference, we
fix the weights and pass the measurements through the
network. We compare reconstruction performance between
unsupervised and supervised (i.e. with ground-truth) meth-
ods. We hypothesize this technique could be used to learn
reconstruction when ground-truth data are unavailable,
such as in high-resolution dynamic MRI.

I. INTRODUCTION

Deep learning in tandem with model-based iterative
optimization [2]]-[6], i.e. model-based deep learning, has
shown great promise at solving imaging-based inverse
problems beyond the capabilities of compressed sens-
ing [7]. These networks typically require hundreds to
thousands of examples for training, consisting of pairs
of corrupted measurements and the desired ground-truth
image. The reconstruction is then trained in an end-to-end
fashion, in which data are reconstructed with the network
and compared to the ground-truth result. in many cases,
collecting a large set of fully sampled data for training
is expensive, impractical, or impossible.

In this work, we present an approach to model-based
deep learning without access to ground-truth data [8]-
[10]. We take advantage of (known) noise statistics for
each training example and formulate the problem as an
extension of basis pursuit denoising [11] with a deep
convolutional neural network (CNN) prior in place of
image sparsity. During training, we jointly solve for the
CNN weights and the reconstructed training set images.
At inference time, we fix the weights and pass the
measured data through the network.

As proof of principle, we apply the technique to under-
sampled, multi-channel magnetic resonance imaging
(MRI). We compare our Deep Basis Pursuit (DBP)
formulation with and without supervised learning, as
well as to MoDL [6]], a recently proposed unrolled model-
based network that uses ground-truth data for training.
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We show that in the unsupervised setting, we are able to
approach the image reconstruction quality of supervised
learning, thus opening the door to applications where
collecting fully sampled data is not possible.

II. BACKGROUND
A. Imaging Model

We focus on the discretized linear signal model under
additive white Gaussian noise:

y=Ax + v, (D)

where & € CV is the vectorized unknown image, A €
CMxN s the discretized forward model describing the
imaging system, y € CM is a vector of the acquired
measurements, and v ~ A, (0,521) is a complex-valued
Gaussian noise vector. We are interested in the ill-posed
regime, where M < N. To make the inverse problem
well-posed,  is commonly solved through a regularized
least-squares:

1
argmin 3 [|y — Az|; + AQ(x), 2

where Q(x) is a suitable regularization term, and A > 0
is the strength of the regularization.

An alternative, equivalent formulation that directly ac-
counts for the model error due to noise is the constrained
problem:

Q=)
ly — Azl, <,

arg min
® 3)

subject to

where € = o+/M is the square-root of the expected
noise power in the measurements. When an ¢;-norm is
used for regularization, this is known as basis pursuit
denoising [11]], and provides an intuitive formulation as
it finds the best (sparsist) representation given a noise
error constraint.

B. Deep Learning Image Reconstruction

CNNs have recently been used to solve imaging inverse
problems, relying on the network architecture and training
data to learn the inverse mapping. When a large corpus of
training data is available, it is possible to learn the inverse
mapping directly from under-sampled measurements,
typically by first transforming the measurements to the
image domain either through the adjoint operation A*y
or through a conventional reconstruction. Except for the
initial transformation, these models do not take advantage
of knowledge of the imaging system in the network
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architecture. Thus, they require substantial training data
and are prone to overfitting and CNN artifacts [[12].

More recently, network architectures that combine both
CNN blocks and data consistency blocks incorporating
knowledge of the forward model have grown in popularity,
as they allow for robustness against CNN artifacts and
training with limited data [3], [[6]. These architectures are
inspired by conventional first-order iterative algorithms
intended to solve the unconstrained problem [2)} and
typically alternate between data consistency and manifold
projection. To facilitate training with backpropagation,
the iterative algorithms are unrolled for a finite number
of steps and optimized in an end-to-end manner. As
the network is differentiable, gradient updates can be
computed through the application of the forward operator
with auto-differentiation.

For a particular network architecture, we can view the
image reconstruction as a feed-forward network

Ty = Fu (Y3 A), “4)

where JF, is a deep network parameterized by weights
w that operates on the measurements and optionally
incorporates knowledge of the forward model. Given a
training set of inputs {y(, A®W}L | and corresponding
ground-truth images {x(¥}~ |, the network weights
can be trained in a traditional end-to-end fashion by
minimizing the average training loss as measured by the
loss function L:

L
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For inference, the weights are fixed and new measure-
ments are reconstructed through a forward pass of

®)

III. PROPOSED METHOD

Inspired by other model-based deep learning archi-
tectures [2]-[6], we propose a new unrolled network
based on basis pursuit denoising, which we call Deep
Basis Pursuit (DBP). We assume the noise statistics of
the measurements are known and we use them to self-
regularize the solution. In turn, we propose to train in an
unsupervised fashion in the measurement domain, taking
advantage of explicit control of the error between the
measurements and the output of the network. We first
describe the DBP model, and then discuss training the
in an unsupervised fashion without ground-truth data.

A. Deep Basis Pursuit

We combine the data consistency constraint of basis
pursuit denoising [(3)] with the ¢>-norm incorporating a
CNN auto-encoder. The DBP optimization is given by

. 1 2
argmin - o [N ()13 (6)

subject to  [ly — Az, <,

where Ny () = ¢ — Ry () is a CNN parameterized
by weights w that aims to estimate noise and aliasing
(4], [6]. In other words, R.,(x) represents a denoised
version of x. In this way, we seek to find the "cleanest"
representation of x while allowing for the expected data
inconsistency due to noise.

To approximately solve [(6)] we consider an alternating
minimization [6]], repeated N7 times:

)

.1
Tj = argmin o |l — rng st |ly — Azx|, <e. (8)

Tk = Ruw(Tr-1),

Subproblem is a forward pass through the CNN.
Subproblem [(8)] is convex and can solved with ADMM
[13]]. We introduce the slack variable z = Ax and the
dual variable u, and apply the following update steps,
repeated Ny times:

x; = (pATA+ I)f1 (pA* (zi—1 —wi—1) +711), (9
z; =y + L2Proj (Az; + w1 — y,¢€), (10)
u =u—1 + Az + 2, (11

where p > 0 is the ADMM penalty parameter and
L2Proj(z,€) is the projection of z onto the ¢5-ball of
radius e. The update steps are amenable to matrix-free
optimization, as the forward and adjoint calculations can
be represented as computationally efficient operators. In
particular, subproblem can be approximately solved
with V3 iterations of the Conjugate Gradient Method.
Altogether, we can view DBP as an unrolled optimiza-
tion alternating between CNN layers and data consistency
layers, as shown in At each layer, the same
CNN is used, though it is possible in general to relax
this requirement [4]. For a fixed CNN R,,, the DBP
model is a special case of [(4)} & = Fu(y; A, €), where
w = (w, p) are the network parameters, and the network
uses measurements together with knowledge of the system
and noise power to return an estimate of the image.
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N, times

N, times
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N, = 5 unrolls | N, = 2 ADMM iterations | N, = 6 Conjugate Gradient iterations

Fig. 1. DBP network architecture, consisting of N1 unrolled iterations
alternating between CNN layers and data consistency layers. The data
consistency layer is solved through N2 unrolled ADMM iterations.

B. Unsupervised Learning

When both input {y*, A® 1L and ground-truth
{21 | training data are available, the network weights
can be trained in a traditional end-to-end fashion accord-
ing to When ground-truth data are not available, we



consider a loss function £ imposed in the measurement
domain:

L
ngn%z.c (A<l>§:5;>,y<l>). (12)
1=1

The measurement loss can be a useful surrogate for
the true loss, as the measurements contain (noisy)
information about the ground-truth image [9]], [[14]. Thus,
we may hope to learn about the image statistics given
a large-enough training set that includes a diversity of
measurements.

IV. METHODS

We consider the application to under-sampled, multi-
channel MRI. The MRI reconstruction task is well-suited
to DBP, as the noise statistics are Gaussian and can
be measured during a short pre-scan. We first describe
the multi-channel MRI forward operator and general
sampling strategy. Then we discuss the experimental
setup, including the dataset and implementation details.

A. Multi-channel MRI forward operator

In multi-channel MRI, the signal is measured by
an array of receive coils distributed around an object,
each with a spatially-varying sensitivity profile. In the
measurement model, the image is linearly mixed with
each coil sensitivity profile, Fourier transformed, and
sampled. We can describe the measurement model
as A = [(PFS))T (PFSc)T]" e cMx¥,
where C' is the number of receive coils, S, € CN*N
is a diagonal operator containing the spatial sensitivity
profile of the ¢! coil along the diagonal, F' is the Fourier
transform operator, and P € {0,1} ¥ is a diagonal
operator that selects the sampled frequencies.

B. Experimental setup

Data: We used the "Stanford Fully Sampled 3D FSE
Knees" dataset from mridata.org, containing 3D Cartesian
proton-density knee scans of 20 healthy volunteers. Each
3D volume consisted of 320 slices with matrix size
320 % 256 and was scanned with an 8-channel receive coil
array. Although each slice is fully sampled, in practice the
“ground-truth” data itself has noise. To aid in experimental
comparison, ‘“noise-free” ground-truth data were created
by averaging the data from seven adjacent slices. For
each slice, the spatial sensitivity profiles of each coil were
estimated using ESPIRIT [[15], a self-calibrated parallel
imaging method. Ground-truth images were reconstructed
by solving [(2)] using the fully sampled data without
regularization. Each slice was then passed through the
forward model and retrospectively under-sampled using
a different variable-density Poisson-disc sampling pattern
[7]], [16] with a 16 x 16 calibration region and acceleration

factor R ~ 12. Slices from the first 16 volunteers were
used for training, discarding the first and last 20 edge
slices of each volume (4,384 slices). Similarly, slices
from the next two volunteers were used for validation
(548 slices), and slices from the last two volunteers were
used for testing (548 slices). We added complex-valued
Gaussian noise with standard deviation ¢ = 0.01 to the
noise-free, averaged data.

Implementation: For all experiments we used a Eu-
clidean norm loss function for training. When training
with ground-truth (supervised), the loss was applied
in the image domain. For unsupervised training, the
loss was applied in the measurement (Fourier) domain.
We used a U-Net architecture [17] for the CNN auto-
encoder, with separate input channels for the real and
imaginary components. The U-Net consisted of three
encoding layers with ReLU activation functions and 64,
128, and 256 channels, respectively, followed by three
similar decoding layers. A final convolutional layer with
no activation function mapped the decoder back to two
channels. All convolutions used a 3 x 3 kernel size. For
comparison, MoDL [6] was also implemented using the
same unrolled parameters and CNN architecture. All
networks were implemented in PyTorch.

Evaluation: DBP was separately trained with and
without ground-truth data. We also trained MoDL with
ground-truth data. In addition, we also evaluated parallel
imaging and compressed sensing (PICS) [[7] using BART
[[16], with ¢;-Wavelet regularization parameter optimized
over the validation set. Normalized root mean-squared
error (NRMSE) was used to compare reconstructions.

Mean normalized root mean-squared error (NRMSE) during training
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Fig. 2. Mean NRMSE on training set for supervised and unsupervised
DBP. Unsupervised DBP has a performance drop (red double-arrow),
and noisier updates (red circles).

V. RESULTS

shows the mean NRMSE on the training set for
each epoch. In addition to a performance gap between
supervised and unsupervised learning, unsupervised DBP
has noisier updates, likely because the loss function
in the measurement domain is a noisy surrogate to
the NRMSE. [Fig. 3] shows the NRMSE across the
validation set for different numbers of unrolls during
inference. Even though the networks were trained with
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5 unrolls, best performance is seen for different number
of unrolls (6, 10 and 12 for MoDL, unsupervised DBP,
and supervised DBP, respectively). Compared to MoDL,
the DBP formulation behaves more stably as the number
of unrolls increases, which may be due to the hard data
consistency constraint.

Mean normalized root mean-squared error (NRMSE) vs. number of unrolls

0.250
=i~ MoDL

Supervised DBP
~®- Unsupervised DBP

0.225
L 0.200
]
S 0175
@
Z 0.150
c
@ 0.125
Q
= 0.100

0.075

0.050
2 4 6 8 10 12 14 16 18 20

. Number of unrolls . L
Fig. 3. Mean NRMSE vs. number of rolls at inference time on validation

set. All networks were trained with 5 unrolls.

shows a box plot of the NRMSE on the test set
for the different networks and for PICS. Both 5 unrolls
and the validation-optimized number of unrolls are shown.
At the optimal number of unrolls, unsupervised DBP
outperforms PICS.
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Fig. 4. Box plot of test set NRMSE for supervised and unsupervised
DBP at two different unrolls — the first matching unrolls at training,
and the second chosen to minimize validation set mean NRMSE. Also
shown is PICS NRMSE for optimized regularization on validation set.
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shows some of the intermediate output stages
for the supervised and unsupervised DBP networks,
indicating that similar structure is learned in both CNNS;
however, the supervised DBP appears to better amplify
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and denoise features in the image. The magnitude
reconstructions and error maps of a representative slice
from the test set are shown in Supervised DBP
achieves the lowest error, followed by unsupervised DBP,
PICS, and MoDL. Small details in edge sharpness are
retained with DBP, but reduced with MoDL and PICS.

Ground truth MoDL
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Unsup. DBP PICS
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Fig. 6. Comparison of different reconstruction methods to ground-truth
image from the test set.

VI. DISCUSSION AND CONCLUSION

There are strong connections to iterative optimization
and unrolled deep networks [[10], [18]], [19]. Jointly
optimizing over the images and weights could be viewed
a non-linear extension to dictionary learning. Nonetheless,
there is a cost in reconstruction error when moving to
unsupervised learning, highlighting the importance of a
large training data set to offset the missing ground-truth
information. The choice of measurement loss function and
data SNR may also greatly impact the quality. Fortunately,
in many practical settings there is an abundance of under-
sampled or corrupted measurement data available for
training.

In conclusion, the combination of basis pursuit de-
noising and deep learning can take advantage of under-
sampled data and provide a means to learn model-based
deep learning reconstructions without access to ground-
truth images.

Fig. 5. Output images after different layers in the unrolled network: 7, and aj, are the k™" application of the CNN and the data consistency
updates, respectively. The supervised CNN amplifies and denoises features to a greater effect compared to the unsupervised CNN.
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