Published as a workshop paper at ICLR 2019

ADVERSARIAL LEARNING OF GENERAL TRANSFOR-
MATIONS FOR DATA AUGMENTATION

Saypraseuth Mounsaveng'-2, David Vazquez?, Ismail Ben Ayed', and Marco Pedersoli'

'ETS Montréal, QC, Canada
’Element Al
saypraseuth.mounsaveng. 1 @etsmtl.net, dvazquez@elementai.com, {ismail.benayed,
marco.pedersoli} @etsmtl.ca

ABSTRACT

Data augmentation (DA) is fundamental against overfitting in large convolutional
neural networks, especially with a limited training dataset. In images, DA is usu-
ally based on heuristic transformations, like geometric or color transformations.
Instead of using predefined transformations, our work learns data augmentation
directly from the training data by learning to transform images with an encoder-
decoder architecture combined with a spatial transformer network. The trans-
formed images still belong to the same class but are new, more complex samples
for the classifier. Our experiments show that our approach is better than previous
generative data augmentation methods, and comparable to predefined transforma-
tion methods when training an image classifier.

1 INTRODUCTION

Convolutional neural networks have shown impressive results in visual recognition tasks. However,
for proper training and good performance, they require large labeled datasets. If the amount of
training data is small, data augmentation is an effective way to improve the final performance of
the network (Hernandez-Garcia & Konig| (2018); Perez & Wang (2017)). In images, data augmen-
tation (DA) consists of applying predefined transformations such as flip, rotations or color changes
(Krizhevsky et al.|(2012); |Ciresan et al.|(2012)). This approach provides consistent improvements
when training a classifier. However, the required transformations are dataset dependent. For in-
stance, flipping an image horizontally makes sense for natural images, but produces ambiguities on
datasets of numbers (e.g. 2 and 5).

Several recent studies investigate automatic DA learning as a method to avoid the manual selec-
tion of transformations. Ratner et al.| (2017 define a large set of transformations and learn how to
combine them. This approach works well however, as it is based on predefined transformations, it
prevents the model from finding other transformations that could be useful for the classifier. Al-
ternatively, (Chongxuan et al.| (2017) and Tran et al.| (2017) generate new samples via a generative
adversarial networks model (GAN) from the probability distribution of the data p(X), while |Anto-
niou et al.| (2018)) learn the transformations of images, instead of generating images from scratch.
These alternative methods show their limits when the number of training samples is low, given the
difficulty of training a high-performing generative model with a reduced dataset. |Hauberg et al.
(2016) learn the natural transformations in a dataset by aligning pairs of samples from the same
class. This approach produces good results on easy datasets like MNIST however, it does not appear
to be applicable to more complex datasets.

Our work combines the advantages of generative models and transformation learning approaches in
a single end-to-end network architecture. Our model is based on a conditional GAN architecture
that learns to generate transformations of a given image that are useful for DA. In other words, in-
stead of learning to generate samples from p(X), it learns to generate samples from the conditional
distribution p(X|X), with X a reference image. As shown in Fig. b), our approach combines a
global transformation defined by an affine matrix with a more localized transformation defined by

Published as a workshop paper at ICLR 2019

)
hot in clasg c=1 dissimilar

DC c DP
)) [}
(v) =) (Cy)
[G(x,-/z),yi] [G(x;, z)] [xx,G(xl,z)]
A
G
(a) Overview of model architecture. (b) Architecture of G.

Figure 1: Our model (a) A classifier C' receives augmented images from a generator G constrained
by two discriminators D¢ and DP. The class discriminator D¢ ensures that the generated image
G(w;, z) belongs to the same class y; as the input image x;. The dissimilarity discriminator D
ensures that the transformed sample G(x;, z) is dissimilar from the input sample x; but similar to
a sample x; from the same class. (b) Given an input image z; and a random noise vector z, our
generator first performs a global transformation using a spatial transformer network followed by
more localized transformations using a convolutional encoder-decoder network.

a convolutional encoder-decoder architecture. The global transformations are learned by an adap-
tation of spatial transformer network (STN) (Jaderberg et al.[(2015)) so that the entire architecture
is differentiable and can be learned with standard back-propagation. In its normal use, the purpose
of STN is to learn how to transform the input data, so that the model becomes invariant to certain
transformations. In contrast, our approach uses STN to generate augmented samples in an adversar-
ial way. With the proposed model we show that, for optimal performance, it is important to jointly
train the generator of the augmented samples with the classifier in an end-to-end fashion. By doing
that, we can also add an adversarial loss between the generator and classifier such that the generated
samples are difficult, or adversarial, for the classifier.

To summarize, the contributions of this paper are: i) We propose a DA network that can automat-
ically learn to generate augmented samples without expensive searches for the optimal data trans-
formations; ii) Our model trains jointly with a classifier, is fully differentiable, trainable end-to-end,
and can significantly improve the performance of any image classifier; iii) In low-data regime it
outperforms models trained with strong predefined DA; iv) Finally, we notice that, for optimal per-
formance, it is fundamental to train the model jointly with the image classifier.

2 OUR APPROACH

We propose a GAN based architecture that learns to augment training data for image classification.
As shown in Fig. [T(a), this architecture involves four modules: a generator to transform an input
image, two discriminators and a classifier to perform the final classification task. In Fig. [T[b) we
show the structure of the generator. Instead of generating a new image, as in most GAN models, our
generator learns to transform the input image. Our intuition is that learning an image transformation
instead of learning a mapping from noise to image is an easier task in low data regime.

Given an input image x; and a noise vector z, F/yc converts them into a small representation that
is passed to 7' to generate an image and noise dependent affine transformation (similar to spatial
transformer networks STN) of the original image. This transformed image is then passed to a U-Net
network (Ronneberger et al.| (2015)) represented by En¢ and Dgc. While in the original paper
STN was used for removing invariances from the input data, the proposed model generates samples
with transformations that can help to learn a better classifier.

The generator is supported by two discriminators. The first one, the class discriminator D, ensures
that the generated sample belongs to the same class as the input sample. The second one, the
dissimilarity discriminator D?, forces the transformed sample to be dissimilar to the input sample
but similar to a sample from the same class. This is necessary to prevent the generator from learning
the identity transformation. More details about the different networks and the loss functions used to
train the model can be found in Appendices[A]and

Published as a workshop paper at ICLR 2019

3 EXPERIMENTS

In this section, we present several experiments to better understand our model and compare it with
the state-of-the-art in automatic DA. We test our approach on MNIST, Fashion-MNIST, SVHN, and
CIFAR-10, both in full dataset and low-data regime.

3.1 COMPARISON WITH STANDARD DATA AUGMENTATION

In this series of experiment, we compare the efficiency of the DA learned by our model to a heuris-
tically chosen DA. We consider two different levels of DA. Light DA refers to random padding of 4
pixels on each side of the image, followed by a crop back to the original image dimensions. Strong
DA adds to the previous transformations also rotation in range [-10, 10] degrees and scaling, with
factor in range [0.5, 2]. For CIFAR10, DA also includes a horizontal image flip.

In a first experiment, we compare the accuracy of the baseline classifier, the baseline with DA, and
our DA model while increasing the number of training samples. In our model, the classifier is trained
jointly with the generator.

90 -

80

70 -

Accuracy

60 - Baseline
@ Baseline + light DA
50 - —e— Baseline + strong DA |

—&— Our Model

4 Il Il Il Il I I
0 1000 2000 4000 10000 25000 60000

Training Samples
Figure 2: Classification Accuracy vs number of training samples on CIFAR10. Our method is
effective when the number of samples is reduced. However for too few samples, normal DA is still
slightly better.

In Fig. 2] we notice that for very few samples (1000) the predefined DA is still better than our
approach. This is probably because when the training dataset is too small, the generator produces
poor samples that are not helpful for the classifier. When the number of samples increases, our
approach obtains a much better accuracy than strong DA. For instance, at 4000 training samples, the
baseline obtains an accuracy of 66%, the predefined DA approach 76%, and our model 80.5%, thus
a net gain of 14 points compared to the baseline and 4 points compared to strong DA model. If we
add more examples, the gap between our learned DA and the strong DA tends to reduce. With the
full dataset we reach about a half point better than the strong DA.

In a second experiment, we compare different types of DA on four datasets with a reduced number
of samples.

MNIST | FMNIST | SVHN | CIFAR10
Method ‘ 550 550 ‘ 1000 ‘ 4000
Baseline 90.81 79.02 79.55 66.73
Baseline + light DA 97.55 78.96 84.48 74.76
Baseline + strong DA 98.50 80.37 84.33 77.74
Our best model 98.61 82.43 86.07 80.5

Table 1: Comparison with DA on different datasets. In low data regime, our model performs
better than light and strong DA on the four considered datasets.

As shown in Tab. 1} our best model is always performing better than light DA and strong DA. This
means that our DA model learns transformations that are more useful for the final classifier. Notice
that in FMNIST light DA decreases performance of the final classifier. This suggests that DA is
dataset dependent and transformations producing useful new samples in some domains might not be
usable in others.

Published as a workshop paper at ICLR 2019

3.2 JOINT TRAINING

In this experiment, we report the performance of our method on Joint training and Separate training
and compare them with a Baseline model trained without DA. In Joint training the generator of aug-
mented images and the classifier are trained simultaneously in an end-to-end training. In Separate
training instead, the generator is first trained to generate augmented images, and these images are
then used as DA to improve the classifier.

Baseline

80 |- - ———* 1 . .
T 4:/_/0 Baseline + light DA
o I —e— Baseline + strong DA
5 g:’:/& — —o— Separate training
s 70 >~ - |- Joint training
3 —
121 T
< ~_
e
60 |- 1
200 500 700 1000
Training Epochs

Figure 3: Classification Accuracy over epochs on 4000 samples of CIFAR10. We compare a
baseline classifier with no DA and our joint training with a separate DA training in which samples
are collected after 200, 500, 700 and 1000 training epochs.

In Fig.[3] we notice the different behavior of the two methods. In the early phase of training, at epoch
200, both Separate training (beige bar) and the Joint training (red bar) perform above 70%, whereas
Baseline has a much lower accuracy. However, with additional training epochs, the performance
of Separate training decreases while Baseline and Joint training accuracies increase. We believe
that for good performance in DA it is not just about generating plausible augmented samples, but
also about generating the right samples at the right moment, as in curriculum learning (Bengio et al.
(2009)). From this experiment, it seems clear that for DA based on generic transformations (in
contrast to predefined transformations as in (Ratner et al.|(2017))), the joint training of the generator
and the classifier is important for optimal performance. This can explain why DAGAN (Antoniou
et al.|(2018)) seems to work only with a very reduced set of examples.

3.3 COMPARISON WITH STATE OF THE ART

MNIST | CIFAR10 | CIFAR10

Method Model 550 4000 Full
Baseline ConvNet 90.81 66.23 89.88
Bayesian DA [Tran et al.|(2017) ResNet18 - - 91.0
DADA |Zhang et al.|(2019) ResNet56 - 79.3 -
TANDA [Ratner et al.|(2017)(MF) ResNet56 96.5 79.5 94.4
TANDA Ratner et al.|(2017)(LSTM) | ResNet56 96.7 81.5 94.0
Our model ConvNet 96.0 80.5 93.0

Table 2: Automatic DA Methods. We compare the accuracy of our model with other methods
performing automatic DA on MNIST and CIFAR10.

In Tab. 2} we compare our method with other approaches for automatic DA. Compared with TANDA
(Ratner et al.| (2017)), our method obtains slightly lower accuracies. However, TANDA is based on
the selection of multiple predefined transformations. This means that its learning is reduced to a set
of manually selected transformation, which, we believe, reduces the search space and facilitates the
task. Also, TANDA uses an additional standard DA based on image crop, while our method does not
need any additional DA.

On the other hand, our method compares favorably to Bayesian DA (Tran et al.| (2017)) and DADA
(Zhang et al.| (2019)), both based on GAN models with a larger neural network for the classifier.
This shows that our combination of global and local transformations helps to improve the final
performance of the method.

4 CONCLUSION

In this work, we have presented a new approach for improving the learning of a classifier through an
automatic generation of augmented samples. The method is fully differentiable and can be learned
end-to-end. In our experiments, we have shown several elements contributing to an improved clas-
sification performance. First, the generator and the classifier should be trained jointly. Second, the

Published as a workshop paper at ICLR 2019

combined use of global transformations with STN and local transformation with U-Net is essen-
tial to reach the highest accuracy levels. For future work, we want to include more differentiable
transformations such as deformations and color transformations and evaluate how these additional
sample augmentations affect the final accuracy.

REFERENCES

Antreas Antoniou, Amos Storkey, and Harrison Edwards. Augmenting image classifiers using data augmenta-
tion generative adversarial networks. In International Conference on Artificial Neural Networks, pp. 594—
603. Springer, 2018.

Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In International
Conference on Machine Learning (ICML), 2009.

LI Chongxuan, Taufik Xu, Jun Zhu, and Bo Zhang. Triple generative adversarial nets. In Advances in Neural
Information Processing Systems (NeurlPS), 2017.

Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jiirgen Schmidhuber. Deep big multilayer
perceptrons for digit recognition. Neural Networks Tricks of the Trade, 1:581-598, 2012.

Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and Ruslan R Salakhutdinov. Good semi-supervised
learning that requires a bad gan. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

Sgren Hauberg, Oren Freifeld, Anders Boesen Lindbo Larsen, John Fisher, and Lars Hansen. Dreaming more
data: Class-dependent distributions over diffeomorphisms for learned data augmentation. In Artificial Intel-
ligence and Statistics (AISTATS), 2016.

Alex Herndndez-Garcia and Peter Konig. Data augmentation instead of explicit regularization. arXiv preprint
arXiv:1806.03852, 2018.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Advances in
Neural Information Processing Systems (NeurlPS), 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoftrey E Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems (NeurlPS), 2012.

Luis Perez and Jason Wang. The effectiveness of data augmentation in image classification using deep learning.
arXiv preprint arXiv:1712.04621, 2017.

Alexander J Ratner, Henry Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher Ré. Learning to com-
pose domain-specific transformations for data augmentation. In Advances in Neural Information Processing
Systems (NeurlPS), 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted intervention
(MICCAI), 2015.

Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, and Ian Reid. A bayesian data augmentation approach
for learning deep models. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

Xiaofeng Zhang, Zhangyang Wang, Dong Liu, and Qing Ling. Dada: Deep adversarial data augmentation
for extremely low data regime classification. In IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2019.

Published as a workshop paper at ICLR 2019

APPENDIX A LOSS FUNCTIONS

Generator. The role of the generator G, is to learn which transformations to input images are
the most useful to train the classifier. In our intuition, learning an image transformation instead of
learning a mapping from noise to image to generate additional samples, is an easier task in low data
regime. Given an input image x; and a noise vector z, the generator G, composed of an encoder
Ene, adecoder Do and an affine transformer 7', learns a transformation of the image that helps
to train the classifier C. So, the transformation can be formulated as:

G(z,2) = Dpc(Enc(T(zi, Enc(xi, 2)), 2)) (D
The loss of the generator can be formulated as:
L = —AEu, yinpiaaomp. [108 (D9 (G2, 2),y:))]
—BEimpanta iy, 108 (DP (i, G(2;,2)))] (2)

—VEz; yinpaaia 108 (1 — Cy, (G(21))]
where z; is an input image with class label y;, G(x;, z) is a transformation of the sample z; and
a noise vector z. DY, DP and C are respectively the class discriminator, the dissimilarity dis-
criminator and the classifier and will be addressed in the following paragraphs. «, 8 and ~y are
hyper-parameters introduced to balance the three loss terms and stabilize the training of the model.

In the first term of the loss function, the probability that a pair (transformed sample, true label) is
classified as fake is minimized. In the second term, the dissimilarity between the original image
and the transformed image is maximized. Finally, in the third one, the predicted probability of the
real label for the transformed sample is minimized in order to make the classifier robust against
adversarial samples.

Class discriminator. During training, the generator is supported by two discriminators. The first
one is referred to as class discriminator D It ensures that the generated image belongs to the same
class as the original image. D¢ takes as input an image and a class label and outputs the probability
of the image to belong to that class. Its loss function is:

Lpe = _Eﬂli,yindam [IOg (DC (xia yz))}
—Es, yi~paatarz~p- [log (1- DC(G(xi7 z), ?Jz))}
The first term increases the probability of D for a real sample z; of class y;, whereas the second

term reduces D for a generated sample G/(z;, z) of the same class. In this way the discriminator
learns to distinguish between real and generated samples of a certain class.

3)

Dissimilarity discriminator. The second discriminator, called dissimilarity discriminator Db,
ensures that the generated sample is as different as possible from the original sample. D takes a
pair of samples as input, and outputs a dissimilarity score between the two samples, ranging between
0 and 1, where 0 means that the two samples are identical. Its loss function can be formulated as:

‘CDD = _]Ezi:wj""pda,tn, [log (DD(‘T’U ‘TJ))]
_EfbiNPdam,ZNPZ [10g (1 - DD (miv G(xw Z)))]
In the first term of the loss function, the dissimilarity between the original sample and another true

sample from the same class is maximized, whereas in the second one, the dissimilarity between a
true sample and the corresponding transformed sample is minimized.

“4)

Classifier. The image classifier C' is trained jointly with the generator and the two discriminators.
C' is fed with real samples as well as augmented samples, i.e. samples transformed by G. Its loss

function is:
Lo = 7]E-737',1.7I71’\‘Pdata [log (Cyz (1‘7))]
—Ea; yi~paara,z~p- [log (Cyi (G(x4, 2)))]

In the first term of the loss function, the cross entropy loss between the predicted labels of the true
samples and the true label distribution is minimized. In contrast, the cross entropy loss between
the predicted labels of the transformed samples and the true label distribution is minimized in the
second term.

&)

Published as a workshop paper at ICLR 2019

Global Loss. Finally, we want to minimize a global loss to find the optimal parameters for the
generator, discriminators and classifier. This loss is defined as:

L=Lsg+ Lpc+ Lpp + Lc (6)

During optimization, we sequentially minimize a mini-batch of each loss. Notice that L tries to
minimize the cross-entropy of D¢ of the transformed samples G(;, z), while £ pc tries to minimize
1 — D®. The same also for D? and C. This is not a problem, in fact this shows that the defined
loss is adversarial, in the sense that generator and discriminator//classifier fight to push the losses
in different directions. If the optimization is tuned properly, this mechanism generates augmented
samples that are good for training the classifier, i.e. samples that belongs to the right class but are
close to the decision boundaries.

APPENDIX B IMPLEMENTATION DETAILS

In all our experiments, we apply a basic pre-processing to the images, which consists in subtracting
the mean pixel value, and then dividing by the pixel standard deviation. The generator is a combi-
nation of a STN (Jaderberg et al.| (2015)) module followed by a U-Net (Ronneberger et al.| (2015))
network. The generator network takes as input an image and a Gaussian noise vector (100 dimen-
sions), which are concatenated in the first layer of the network. The three parameters «, 5 and -y of
the generator loss are estimated on a validation set. For the class discriminator D¢, we use the same
architecture as in|Dai et al.|(2017). The network is adapted to take as input an image and a label (as
a one hot vector). These are concatenated and given as input to the first layer of the architecture.
For the dissimilarity discriminator D, we also use the same architecture. The network is adapted
to take as input a pair of images, which are concatenated in the first layer of the architecture. For the
classifier, we use the architecture used in|Dai et al.|(2017)). We use Adam as optimization method.

Training parameters To train our model, we use following values for the optimization parame-
ters. Generator: Adam optimizer with a initial learning rate of 0.0005, a 81 value of 0.5 and a 32
value of 0.999. Class Discriminator: Adam optimizer with a initial learning rate of 0.0005, a 31
value of 0.5 and a (35 value of 0.999. As balance factor (see Sec. , we use as value for « 0.1 for
MNIST, 1 for SVHN and 0.1 for CIFAR10. Similarity Discriminator: Adam optimizer with a initial
learning rate of 0.0005, a 5, value of 0.5 and a 35 value of 0.999. As balance factor (see Sec. , we
use as value for 5 0.05 for MNIST, 1 for SVHN and 0.05 for CIFAR10. Classifier: Adam optimizer
with a initial learning rate of 0.006, a 3; value of 0.5 and a (35 value of 0.999. As balance factor (see
Sec. , we use as value for v 0.005 for MNIST, 0.0005 for SVHN and 0.001 for CIFARI10.

Detailed architectures In Tab. 3| we show the details of the classifier C, in Tab. 4 and Tab.[3] the
details of respectively the two discriminators D¢ and D . In Tab. @ we can see the details for the
generator G.

Published as a workshop paper at ICLR 2019

Classifier C
Input 32x32 Image
3x3 conv. 96 LReLU(0.2)
3x3 conv. 96 LReLLU(0.2)
3x3 conv. 96 LReL.U(0.2), 0.5 dropout
3x3 conv. 192 LReLU(0.2)
3x3 conv. 192 LReLU(0.2)
3x3 conv. 192 LReLU(0.2), 0.5 dropout
3x3 conv. 192 LReLU(0.2)
3x3 conv. 192 LReLU(0.2)
3x3 conv. 192 LReLU(0.2)
MLP 10 unit, sigmoid
10-class Softmax

Table 3: Details of C network.

Discriminator D¢

Input 32x32 Image Input One-hot class representation

3x3 conv. 48 LReLU(0.2) 32x32 deconv. 48 LReLU(0.2)

3x3 conv. 96 LReLLU(0.2)

3x3 conv. 96 LReL.U(0.2), 0.5 dropout
3x3 conv. 192 LReLU(0.2)
3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2), 0.5 dropout
3x3 conv. 192 LReLU(0.2)
1x1 conv. 192 LReLU(0.2)

1x1 conv. 192 LReLU(0.2), 0.5 dropout

MLP 1 unit, sigmoid

Table 4: Details of D network.

Discriminator D
Input 32x32 Image Input 32x32 Image
3x3 conv. 48 LReLU(0.2) | 3x3 conv. 48 LReLU(0.2)
3x3 conv. 96 LReLLU(0.2)
3x3 conv. 96 LReLLU(0.2), 0.5 dropout
3x3 conv. 192 LReLU(0.2)
3x3 conv. 192 LReLU(0.2)
3x3 conv. 192 LReLU(0.2), 0.5 dropout
3x3 conv. 192 LReLU(0.2)
1x1 conv. 192 LReLU(0.2)
1x1 conv. 192 LReLU(0.2), 0.5 dropout
MLP 1 unit, sigmoid

Table 5: Details of DL network.

Published as a workshop paper at ICLR 2019

Generator G

Input 32x32 Image 100-dim noise vector

3x3 conv. 32,batchNorm,LReLLU(0.2) -
3x3 conv. 32,batchNorm,LLReL.U(0.2) | 32x32 deconv. 32, LReLU(0.2)
Down STN
2x2 max-pooling
3x3 conv. 64,batchNorm,LReLU(0.2)
3x3 conv. 128,batchNorm,LReLU(0.2)
2x2 max-pooling
3x3 conv. 256,batchNorm,LReLU(0.2)
3x3 conv. 256,batchNorm,LReL.U(0.2)
2x2 max-pooling
3x3 conv. 512,batchNorm,LReL.U(0.2)
3x3 conv. 512,batchNorm,LReLU(0.2)
2x2 max-pooling
3x3 conv. 1024,batchNorm,L.ReL.U(0.2)
3x3 conv. 1024,batchNorm,LReL.U(0.2)
MLP 32 unit, ReLU
MLP 6 unit
Down U-Net
2x2 max-pooling
3x3 conv. 64,batchNorm,L.ReL.U(0.2)
3x3 conv. 128,batchNorm,LReL.U(0.2)
2x2 max-pooling
3x3 conv. 256,batchNorm,LReLLU(0.2)
3x3 conv. 256,batchNorm,LReL.U(0.2)
2x2 max-pooling
3x3 conv. 512,batchNorm,LReL.U(0.2)
3x3 conv. 512,batchNorm,LReL.U(0.2)
2x2 max-pooling
3x3 conv. 1024,batchNorm,LReL.U(0.2)
3x3 conv. 1024,batchNorm,LReL.U(0.2)
Up U-Net
3x3 conv. 512,batchNorm,LReL.U(0.2)
3x3 conv. 512,batchNorm,LReL.U(0.2)
3x3 conv. 256,batchNorm,LReLLU(0.2)
3x3 conv. 256,batchNorm,LReLU(0.2)
3x3 conv. 128,batchNorm,LReL.U(0.2)
3x3 conv. 128,batchNorm,LReL.U(0.2)
3x3 conv. 64,batchNorm,LReL.U(0.2)
3x3 conv. 64,batchNorm,LReL.U(0.2)
1x1 conv. (3 for color, 1 for grayscale),batchNorm,LReL.U(0.2)

Table 6: Details of G network.

APPENDIX C EXAMPLES OF TRANSFORMATIONS

Published as a workshop paper at ICLR 2019

(a) Real samples (b) Transformed samples

Figure 4: Real and transformed images from MNIST, Fashion-MNIST, SVHN and CIFARIO.
Our approach learns to apply the right transformations for each dataset. For instance on MNIST and
Fashion-MNIST there is no flip, nor zoom, because not useful, while on SVHN zoom is often used
and on CIFARI10, both zoom, flip and color changes are applied.

10

	Introduction
	Our approach
	Experiments
	Comparison with Standard Data Augmentation
	Joint Training
	Comparison with State of the Art

	Conclusion
	Loss functions
	Implementation Details
	Examples of transformations

