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ABSTRACT

One of the most prevalent symptoms among the elderly population, dementia, can
be detected by classifiers trained on linguistic features extracted from narrative
transcripts. However, these linguistic features are impacted in a similar but differ-
ent fashion by the normal aging process. Aging is therefore a confounding factor,
whose effects have been hard for machine learning classifiers to isolate.
In this paper, we show that deep neural network (DNN) classifiers can infer ages
from linguistic features, which is an entanglement that could lead to unfairness
across age groups. We show this problem is caused by undesired activations of v-
structures in causality diagrams, and it could be addressed with fair representation
learning. We build neural network classifiers that learn low-dimensional repre-
sentations reflecting the impacts of dementia yet discarding the effects of age. To
evaluate these classifiers, we specify a model-agnostic score ∆

(N)
eo measuring how

classifier results are disentangled from age. Our best models outperform baseline
neural network classifiers in disentanglement, while compromising accuracy by
as little as 2.56% and 2.25% on DementiaBank and the Famous People dataset
respectively.

INTRODUCTION

One in three seniors die of Alzheimer’s and other types of dementia in the United States (Associa-
tion, 2018). Although its causes are not yet fully understood, dementia impacts people’s cognitive
abilities in a detectable manner. This includes different syntactic distributions in narrative descrip-
tions (Roark et al., 2007), more pausing (Singh et al., 2001), higher levels of difficulty in recalling
stories (Lunsford & Heeman, 2015), and impaired memory generally (Lehr et al., 2012). Fortu-
nately, linguistic features can be used to train classifiers to detect various cognitive impairments.
For example, Fraser et al. (2013) detected primary progressive aphasia with up to 100% accuracy,
and classified subtypes of primary progressive aphasia with up to 79% accuracy on a set of 40 par-
ticipants using lexical-syntactic and acoustic features. Fraser et al. (2015) classified dementia from
control participants with 82% accuracy on narrative speech.

However, dementia is not the only factor causing such detectable changes in linguistic features of
speech. Aging also impairs cognitive abilities (Harada et al., 2013), but in subtly different ways from
dementia. For example, aging inhibits fluid cognitive abilities (e.g., cognitive processing speed)
much more than the consolidated abilities (e.g., those related to cumulative skills and memories)
(Deary et al., 2009). In other words, the detected changes of linguistic features, including more
pauses and decreased short-term memories, could attribute to just normal aging process instead of
dementia. Unfortunately, due to the high correlation between dementia and aging, it can be difficult
to disentangle symptoms are caused by dementia or aging (Murman, 2015). Age is therefore a
confounding factor in detecting dementia.

The effects of confounding factors are hard for traditional machine learning algorithms to isolate,
and this is largely due to sampling biases in the data. For example, some algorithms predict higher
risk of criminal recidivism for people with darker skin colors (Julia et al., 2016), others iden-
tify images of smiling Asians as blinking (Lee, 2009), and GloVe word embeddings can project
European-American names significantly closer to the words like ‘pleasant’ than African-American
names (Caliskan et al., 2017). It is preferable for classifiers to make decisions without biasing too
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heavily on demographic factors, and therefore to isolate the effects of confounding factors. How-
ever, as we will show in Experiments, traditional neural network classifiers bias on age to infer
dementia; this can lead to otherwise avoidable false positives and false negatives that are especially
important to avoid in the medical domain. Graphically, if both ageA and dementiaD cause changes
in a feature X , the result is a v-structure (Koller & Friedman, 2009)

A→ X ← D

which is activated upon observing X . In other words, the confounder A affects P (D|X) if we train
the classifier in traditional ways, which is to collect data points {(X, D)(i)} and to learn an inference
model P (D̂|X) approximating the affected P (D|X).

Traditionally, there are several ways to eliminate the effects of confounding factors A.

Controlling A gives a posterior distribution P (D|X, A)P (A). This is unfortunately unrealistic
for small, imbalanced clinical datasets, in which sparsity may require stratification. However, the
stratified distributions P (D|X, A) can be far from a meaningful representation of the real world (as
we will show, e.g., in Figure 2). Moreover, a discrepancy in the sizes of age groups can skew the
age prior P (A), which would seriously inhibit the generalizability of a classifier.

Controlling X Conducting a randomized control trial (RCT) on X removes all causal paths lead-
ing ”towards” the variable X , which gives a de-confounded dataset P (D|do(X)) according to the
notation in Pearl (2009). However, RCTs on X are even less practical because simultaneously con-
trolling multiple features produces exponential number of scenarios, and doing this to more than
400 features require far more data points than any available dataset.

Pre-adjusting X according to a pre-trained model X = f(A) per feature could also approx-
imately generate the dataset P (D|do(X)). However, such a model should consider participant
differences, otherwise interpolating using a fixed age A would give exactly the same features for
everybody. The participant differences, however, are best characterized via X , which are the values
you want to predict.

To overcome the various problems with these methods, we let our classifiers be aware of cogni-
tive impairments while actively filtering out any information related to aging. This is a fair
representation learning framework that protects age as a “sensitive attribute”.

Fair representation learning frameworks can be used to train classifiers to equally consider the sub-
jects with different sensitive attributes. A sensitive attribute (or “protected attribute”) can be race,
age, or other variables whose impact should be ignored. In the framework proposed by Zemel et al.
(2013), classifiers were penalized for the differences in classification probabilities among different
demographic groups. After training, the classifiers produced better demographic similarities while
compromising only a little overall accuracy. To push the fair representation learning idea further,
adversarial training can be incorporated. Goodfellow et al. (2014) introduced generative adversar-
ial networks, in which a generator and a discriminator are iteratively optimized against each other.
Incorporating adversarial training, Madras et al. (2018) proposed a framework to learn a latent rep-
resentation of data in order to limit its adversary’s ability to classify based on the sensitive attributes.

However, these approaches to fair representation learning only handle binary attributes. E.g., Madras
et al. (2018) binarized age. To apply to cognitive impairments detection, we want to represent age
on a continuous scale (with some granularity if necessary). We formulate a fairness metric for
evaluating the ability of a classifier to isolate a continuous-valued attribute. We also propose four
models that compress high-dimensional feature vectors into low-dimensional representations which
encrypt age from an adversary. We show empirically that our models achieve better fairness metrics
than baseline deep neural network classifiers, while compromising accuracies by as little as 2.56%
and 2.25% on our two empirical datasets, respectively.

MEASURING DISENTANGLEMENT

There are many measures of entanglement between classifier outcomes and specific variables. We
briefly review some relevant metrics, and then propose ours.
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TRADITIONAL METRICS

Correlation (Pearson, Spearman, etc.) is often used to compare classification outputs with compo-
nent input features. To the extent that these variables are stochastic, several information theoretic
measures could be applied, including Kullback-Leibler divergence and Jensen-Shannon divergence.
These can be useful to depict characteristics of two distributions when no further information about
available data is given.

Mutual information can depict the extent of entanglement of two random variables. If we treat age
(A) and dementia (D) as two random variables, then adopting the approach of Kwak & Choi (2002)
gives an estimation of I(A,D). However, given the size of clinical datasets, it can be challenging to
give precise estimations.

An alternative approach is to assume that these variables fit into some probabilistic models. For
example, we might assume the age variableA, dementia indicator variableD, and multi-dimensional
linguistic feature X fit into some a priori model (e.g., the v-structure mentioned above, A→ X←
D), then the mutual information between A and D is:

I(A,D) = Ep(A,D) log
p(A,D)

p(A)p(D)
= HA + HD + Ep(A,D) [ log p(A,D)]

where the entropy of age HA and of cognitive impairment HD remain constant with respect to the
input dataX , and p(A,D) =

∑
X

p(A,X, D) =
∑
X

p(A|X)p(D|X)p(X). However, this marginal-

ized probability is difficult to approximate well, because (1) the accuracy of the term p(A|X) relies
on the ability of our model to infer age from features, and (2) it is hard to decide on a good prior
distribution on linguistic features p(X). We want to make the model agnostic to age, leading to a
meaningless mutual information in the ‘ideal’ case.

In our frameworks, we do not assume specific graphical models that correlate confounds and out-
comes, and we propose more explainable metrics than the traditional statistical ones.

FAIRNESS METRICS

The literature in fairness representation learning offers several metrics for evaluating the extent of
bias in classifiers. Generally, the fairer the classifier is, the less entangled the results are with respect
to some protected features.

Demographic parity Zemel et al. (2013) stated that the fairest scenario is reached when the com-
position of the classifier outcome for the protected group is equal to that of the whole population.
While generally useful, this does not apply to our scenario, in which there really are more elderly
people suffering from cognitive impairments than younger people (see Figure 2).

Cross-entropy loss Edwards & Storkey (2016) used the binary classification loss of an adversary
that tried to predict sensitive data from latent representations, as a measure of fairness. This mea-
sure can only apply to those models containing an adversary component, not traditional classifiers.
Moreover, this loss also depends on the ability of the adversary network. For example, a value of
this loss could indicate confusing representations (so sensitive information are protected well), but
it could also indicate a weak adversary.

Equalized odds Hardt et al. (2016) proposed a method in which false positive rates should be
equal across groups in the ideal case. Madras et al. (2018) defined fairness distance as the absolute
difference in false positive rates between two groups, plus that of the false negative rates:

∆ =
∣∣p0 − p1∣∣+

∣∣n0 − n1∣∣
where pa and na correspond to the false positive rate and false negative rate, respectively, with
sensitive attribute a = 0 (a = 1).

OUR METRIC

We propose an extension of the metric used by Madras et al. (2018) to continuous sensitive at-
tributes, suitable for evaluating an arbitrary two-class classifier.
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(a) age-indep-simple (b) age-indep-autoencoder and age-
indep-entropy

(c) age-indep-consensus-net

Figure 1: Model structures. Each colored arrow denotes a neural network. The common com-
ponents are interpreters I(.), adversary A(.), and classifier C(.). In age-indep-autoencoder and
age-indep-entropy (Figure 1b), a reconstructor R(.) tries to reconstruct input data from the hidden
representation. In age-indep-consensus-nets (Figure 1c), a discriminatorD(.) tells apart from which
modality the representation originates.

First, groups of age along a scale are divided so that each group has multiple participants with both
positive and negative diagnoses, respectively. Let a be the age group each participant is in.

Then, we aim for the expected false positive (FP) rates of the classifier to be as constant as possible
across age groups. This applies likewise to the false negative (FN) rates. To measure their variability,
we use their sum of differences against the mean.

∆(Na)
eo =

Na∑
a=1

∣∣pa − p̂∣∣+

Na∑
a=1

∣∣na − n̂∣∣,
where x̂ represents the mean of variable x.

ANALYSIS OF METRIC

Special cases To illustrate the nature of our metric, we apply it to several special cases, i.e.:

1. When there is only one age group, our fairness metric has its best possible value: ∆eo = 0.
2. When there are only two age groups, our metric equals that of Madras et al. (2018).
3. In the extreme case where there are as many age groups as there are sample points (assum-

ing there are no two people with identical ages but with different diagnoses), our metric
becomes less informative, because the empirical expected false positive rates of that group
is either 0 or 1. This is a limitation of our metric, and is the reason that we limit the number
of age groups to accommodate the size of the training dataset.

Bounds Our metric is bounded. The lower bound, 0, is reached when all false positive rates are
equal and when all false negative rates are equal across age groups. Letting Na be the number of
age groups divided, an upper bound for ∆

(Na)
eo is Na for any better-than-trivial binary classifier. The

detailed proof is included in the Appendix.

Disentanglement Our fairness metric illustrates disentanglement. A higher ∆
(N)
eo corresponds to

a higher variation of incorrect predictions by the classifier across different age groups. Therefore, a
lower value of ∆

(N)
eo is desired for classifiers isolating the effects of age to a better extent. Through-

out this paper, we use the terms ‘fairness’, ‘disentanglement’, and ‘isolation’ interchangeably.

Design choices We explain a few design choices here, namely linearity and indirect optimization.

Linearity. We encourage ∆
(N)
eo to be as linear as possible, for explainability of the fairness score

itself. This eliminates possible scores consisting of higher order terms of FP / FN rates.
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Indirect optimization. We avoid directly optimizing the fairness score ∆
(N)
eo . The reasons are

twofold. On one hand, although ∆
(N)
eo is correlated to the disentanglement between age and classi-

fication, it is based on FP / FN rates and hence bears their limitations – FP / FN rates do not capture
all aspects of classifiers. Instead of making the representations beneficial for ∆

(N)
eo , we encourage

the hidden representations to be age-agnostic (we will explain how to set up age agnostic models in
the following section). On the other hand, FP / FN rates are not differentiable after all.

MODELS

In this section, we describe four different ways of building representation learning models, which
we call age-indep-simple, age-indep-autoencoder, age-indep-consensus-net, and age-indep-entropy.

AGE-INDEP-SIMPLE

The simplest model consists of an interpreter network I(.) to compress high-dimensional input data,
x, to low-dimensional representations:

z = I(x)

An adversary A(.) tries to predict the exact age from the representation:

â = A(z)

A classifier C(.) estimated the probability of label (diagnosis) based on the representation:

P (ŷ) = softmax(C(z))

Algorithm 1 Training age-indep-simple

1: Initialize I , A, C
2: for step := 1 to N do . N is a hyper-param
3: for minibatch x in training data X do
4: z = I(x), a = A(z), c = C(z)
5: Calculate La, Lc

6: min
I,C
Lc − La . backprop gradients

7: for k:=1 to K do
8: min

A
La . backprop gradients

For optimization, we set up two losses: the clas-
sification negative log likelihood loss Lc and
the adversarial (L2) loss La, where:

Lc = Ex -logP (y) La = Ex||â− a||2.

We want to train the adversary to minimize the
L2 loss, to train the interpreter to maximize it,
and to train the classifier (and interpreter) to
minimize classification loss. Overall,

min
C,I
Lc and

max
I

min
A
La.

The training steps are taken iteratively, as in previous work (Goodfellow et al., 2014).

AGE-INDEP-AUTOENCODER

The age-indep-autoencoder structure is similar to Madras et al. (2018), and can be seen as an
extension from the age-indep-simple structure. Similar to age-indep-simple, there is an interpreter
I(.), an adversary A(.), and a classifier C(.) network. The difference is that there is a reconstructor
network R(.) that attempts to recover input data from hidden representations:

x̂ = R(z)

The loss functions are set up as:

Lc = Ex -logP (y) La = Ex||â− a||2 Lr = Ex||x̂− x||2

Overall, we want to train both the interpreter and the reconstructor to minimize the reconstruction
loss term, in additional to all targets mentioned in the age-indep-simple network.

min
C,I,R

L and max
I

min
A
La where L = Lc + Lr

The detailed algorithm is similar to Algorithm 1 and is in the Appendix.
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AGE-INDEP-CONSENSUS-NET

This is another extension from the age-indep-simple structure, borrowing an idea from consen-
sus networks (Zhu et al., 2018a), i.e., that agreements between multiple modalities can result in
representations that are beneficial for classification. By examining the performance of age-indep-
consensus-net, we would like to see whether agreement between multiple modalities of data can be
trained to be disentangled from age.

Similar to age-indep-simple structures, there is also an adversary A(.) and a classifier C(.). The
interpreter, however, is replaced with several interpreters I1..M , each compressing a subset of the
input data (“modality”) into a low-dimensional representation. The key of age-indep-consensus-
network models is that these representations are encouraged to be indistinguishable. For simplicity,
we randomly divide the input features into three modalities (M = 3) with equal (±1) features. A
discriminator D(.) tries to identify the modality from which the representation comes:

m̂ = D(z)

The loss functions are set up as:

Lc = Ex-logP (y) La = Ex||â− a||2 Ld = Ex-logP (m̂)

Overall, we want to iteratively optimize the networks:

min
C,I
Lc and max

I
min
A
La and max

I
min
D
Ld

The detailed algorithm is in the Appendix. Note that we do not combine the consensus network
with the reconstructor because they do not work well with each other empirically. In one of the
experiments by Zhu et al. (2018b), each interpreter Im(.) is paired with a reconstructor Rm(.)
and the performance decreases dramatically. The reconstructor encourages hidden representations
to retain the fidelity of data, while the consensus networks urges hidden representations to keep
only the information common among modalities, which prohibits the reconstructor and consensus
mechanism to function together.

AGE-INDEP-ENTROPY

The fourth model we apply to fair representation learning is motivated by categorical GANs (Sprin-
genberg, 2016), where information theoretic metrics characterizing the confidences of predictions
can be optimized. This motivates an additional loss function term; i.e., we want to encourage the
interpreter to increase the uncertainty (i.e., to minimize the entropy) while letting the adversary
become more confident in predicting ages from representations.

Age-indep-entropy models have the same network structures as age-indep-autoencoder, except that
instead of predicting the exact age, the adversary network outputs the probability of the sample age
being larger than the mean:

P (a|I, A,x) = softmax(A(z))

This enables us to define the empirical entropy H[p] = Explog 1
p , which describes the uncertainty of

predicting age.

Formally, the loss functions are set up as follows:

Lc = Ex-logP (y)

Lr = Ex||x̂− x||2

La = Ex[-logP (a|I, A,x)] + λHH[P (â|I, A)]

where λH is a hyper-parameter. For comparison, we also include two variants, namely the age-
indep-entropy (binary) and age-indep-entropy (Honly) variants, each keeping only one of the two
terms in La. In our experiments, we show that these two terms in La are better applied together.

Overall, the training procedure is the same as age-indep-autoencoder and algorithm pseudocode is
in the Appendix:

min
C,I,R

L, and max
I

min
A
La, where L = Lc + Lr
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IMPLEMENTATION

All models are implemented in PyTorch (Paszke et al., 2017), optimized with Adam (Kingma & Ba,
2014) with initial learning rate of 3 × 10−4, and L2 weight decay 10. For simplicity, we use fully
connected networks with ReLU activations (Nair & Hinton, 2010) and batch normalization (Ioffe
& Szegedy, 2015) before output layers, for all interpreter, adversary, classifier, and discriminator
networks. Our frameworks can be applied to other types of networks in the future.

EXPERIMENTS

DATASETS

DementiaBank DementiaBank1 is the largest available public dataset for assessing cognitive im-
pairments using speech, containing 473 narrative picture descriptions from subjects aged between
45 and 90 (Becker et al., 1994). In each sample, a participant talks about what is happening in a clin-
ically validated picture. There is no time limit in each session, but the average description lasts about
a minute. 79 samples are excluded due to missing age information. In the remaining data samples,
182 are labeled ‘control’, and 213 are labeled ‘dementia’. All participants have mini-mental state
estimation (MMSE) scores (Folstein et al., 1975) between 1 and 30 2. Of all data samples containing
age information, the mean is 68.26 and standard deviation is 9.00.

Famous People The Famous People dataset (Balagopalan et al., 2018) contains 252 transcripts
from 17 people (8 with dementia including Gene Wilder, Ronald Reagan and Glen Campbell, and 9
healthy controls including Michael Bloomberg, Woody Allen, and Tara VanDerveer), collected and
transcribed from publicly available speech data (e.g., press conferences, interviews, debatse, talk
shows). Seven data samples are discarded due to missing age information. Among the remaining
samples, there are 121 labeled as control and 124 as impaired. Note that the data samples were
gathered across a wide range of ages (mean 59.25, standard deviation 13.60). For those people
diagnosed with dementia, there are data samples gathered both before and after the diagnosis, and
all of which are labeled as ‘dementia’. The Famous People dataset permits for early detection several
years before diagnosis, which is a more challenging classification task than DementiaBank.

Older participants in both DementiaBank (Figure 2a) and the Famous People dataset (Figure 2b) are
more likely to have cognitive impairments.

(a) Histogram plot for DementiaBank (b) Histogram plot for Famous People Dataset

Figure 2: Expository histogram plots for the ages of people in the impaired and control groups.

1https://dementia.talkbank.org/
2A higher MMSE score corresponds to a healthier estimated cognitive ability – scores 24 to 30 typically

indicate a healthy state, 18-23 usually indicate mild cognitive impairment (MCI), and scores below 17 indicate
dementia (or other type of cognitive impairment). To formulate a binary classification task, we label all of MCI
and dementia as ‘dementia’.
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Classifier DementiaBank Famous People
Accuracy ∆

(2)
eo ∆

(5)
eo Accuracy ∆

(2)
eo ∆

(5)
eo

Using raw features
DNN .78±.05 0.13±0.12 0.94±0.23 .59±.05 0.30±0.19 1.56±0.60
SVM .77±.05 0.17±0.13 0.93±0.29 .60±.04 0.23±0.19 1.28±0.29
Random Forest .74±.03 0.19±0.14 1.07±0.36 .56±.06 0.33±0.26 1.35±0.42
Adaboost .78±.07 0.14±0.11 0.96±0.22 .54±.04 0.23±0.14 1.36±0.57

Table 1: Accuracy and fairness (∆(2)
eo and ∆

(5)
eo ) of several traditional classifiers. DNN is the baseline

used to benchmark our neural network based representation learning models.

PREPROCESS AND FEATURE EXTRACTION

We extract 413 linguistic features from the narrative descriptions and their transcripts. These features
were previously identified as the most useful for this task (Roark et al., 2007; Fraser et al., 2015;
Lunsford & Heeman, 2015; Hernández-Domı́nguez et al., 2018). Each feature is z-score normalized.
Relevant features include:

Acoustic: mean, variance, skewness, and kurtosis of the first 42 cepstral coefficients.

Speech fluency: pause-word ratio, utterance length, number and lengths of filled/unfilled pauses.

Lexical: cosine similarity between pairs of utterances, word lengths, lexical richness (moving-
average type-token ratio, Brunet’s index, and Honoré’s statistics (Guinn & Habash, 2012)).

PoS: Number of occurrences of part-of-speech tags, tagged by SpaCy3.

Syntactic and semantic: occurrences of context-free grammar phrase types, parsed by Stanford
CoreNLP (Manning et al., 2014), and Yngve depth statistics (Yngve, 1960).

LINGUISTIC FEATURES CAN PREDICT AGE

As part of expository data analysis, we show that these linguistic features contain information in-
dicating age. Simple fully connected neural networks can predict age with mean absolute error of
15.5 ± 1.3 years (on DementiaBank4) and 14.3 ± 2.5 years (on the Famous People dataset5). This
indicates that even simple neural networks are able to infer information about age from linguistic
features. Neural classifiers can therefore also easily bias on age, given the utility of age in down-
stream tasks.

EVALUATING CLASSICAL CLASSIFIERS AND DISENTANGLEMENT METHODS

We first set up benchmarks for our classifiers. We evaluate several traditional classifiers with our
fairness metrics (∆(2)

eo and ∆
(5)
eo , corresponding to dividing ages into N = 2 and N = 5 groups

respectively). The results6 are listed in Table 1. A DNN is used as the baseline because (1) all our
models are based on neural networks, and (2) DNN classifiers have had the best (or statistically
indistinguishable from the best) accuracy on the DementiaBank and Famous People datasets.

PERFORMANCE AND DISCUSSION

We evaluate the performances of our four proposed neural networks against the DNN baseline. As
an additional ablation study, two variants of age-indep-entropy are also evaluated. Table 2 shows
classification accuracies and fairness metrics, and the DNN baseline for comparison. Several obser-
vations emerge, as discussed below.

3http://spacy.io
4Hidden layer sizes 64, 32, 8. 5-fold cross validation.
5Hidden layer sizes 32, 20, 2. 5-fold cross validation
6All accuracy and fairness results in this paper are based on 5-fold cross validations, where no speaker

occurs both in train and test data.
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Model DementiaBank Famous People
Accuracy ∆

(2)
eo ∆

(5)
eo Accuracy ∆

(2)
eo ∆

(5)
eo

DNN baseline .78±.05 0.13±0.12 0.94±0.23 .59±.05 0.30±0.19 1.56±0.60
*-simple .75±.00 0.08±0.01 0.80±0.08 .57±.05 0.24±1.90 1.47±0.57
*-autoencoder .76±.01 0.11±0.00 0.88±0.24 .55±.07 0.21±0.16 1.28±0.31
*-consensus-nets .72±.00 0.11±0.01 0.83±0.24 .58±.05 0.25±0.16 1.43±0.41
*-entropy .75±.00 0.15±0.01 0.88±0.24 .58±.06 0.23±0.16 1.35±0.44
*-entropy (binary) .72±.00 0.12±0.01 1.10±0.37 .55±.07 0.26±1.53 1.41±0.40
*-entropy (Honly) .74±.00 0.17±0.02 1.27±0.54 .53±.06 0.20±0.16 1.39±0.49

Table 2: Evaluation results of our representation learning models. The ”age-indep” prefix are re-
placed with ”*” in model names. age-indep-simple and age-indep-autoencoder have better disentan-
glement scores, while the rest two models could have better accuracy.

Accuracy The fair representation learning models compromise accuracy, in comparison to DNN
baselines. This confirms that part of the classification power of DNNs come from biasing with
regards to age. On DementiaBank, the age-indep-autoencoder reduces accuracy the least (only
2.56% in comparison to the DNN baseline). On the Famous People data, age-indep-consensus and
age-indep-entropy models compromise accuracies by only 2.25% and 2.75% respectively, which are
not statistically different from the DNN baseline7.

Disentanglement In comparison to DNN baselines, our fair representation learning models im-
prove disentanglement/fairness8, the improvements are mostly significant when measured by the
two-group scores ∆

(2)
eo . Also, the five-group scores ∆

(5)
eo are less stable for both datasets, and the

scores in the Famous People have higher variances than in DementiaBank. Following is an explana-
tion. DementiaBank has ∼400 data samples. In 5-fold cross validation, each of the five age groups
has only ∼16 samples during evaluation. Famous People data contains ∼250 samples, which in-
creases the variance. When the number of groups, N of ∆

(N)
eo , is kept small (e.g., ∼100 samples per

label per group, as in DementiaBank N = 2), the fairness metrics are stable.

Side notes The model age-indep-entropy is best used with a loss function containing both the
binary classification term and the uncertainty minimization term. As shown in Table 2, although
having similar fairness metrics9, the two variants with only one term could have lower accuracy
than age-indep-entropy.

In general, age-indep-simple and age-indep-autoencoder achieve the best fairness metrics. Notice-
ably, the better of them surpass traditional classifiers in both ∆

(2)
eo and ∆

(5)
eo .

CONCLUSION

Here, we identify the problem of entangling age in the detection of cognitive impairments. After
explaining this problem with causality diagrams, we formulate it into a fair representation learning
task, and propose a fairness score to measure the extent of disentanglement. We put forward four
fair representation learning models that learn low-dimensional representations of data samples con-
taining as little age information as possible. Our best model improves upon the DNN baseline in our
fairness metrics, while compromising as little accuracy as 2.56% (on DementiaBank) and 2.25% (on
the Famous People dataset).

7p = 0.20, 0.16 on 38-DoF one-tailed t-tests, respectively.
8On DementiaBank, p = 0.01 and 0.03 for age-indep-simple and age-indep-entropy on ∆

(2)
eo respectively;

these are significant. p = 0.08 and 0.09 on age-indep-autoencoder and age-indep-consensus-net on ∆
(2)
eo

respectively; these are marginally significant. However, these differences are not as significant on ∆
(5)
eo (0.05,

0.31, 0.44, and 0.16.). On Famous People data, the p values for our four models are 0.15, 0.05, 0.17, 0.10 on
∆

(2)
eo and 0.32, 0.03, 0.20, 0.10 on ∆

(5)
eo . These are all 38-DoF one-tailed t-tests.

9On DementiaBank, p = 0.19, 0.06 for ∆
(2)
eo and ∆

(5)
eo of age-indep-Honly against age-indep-entropy, p =

0.24, 0.22 for age-indep-binary. On Famous People, p = 0.24, 0.39 for age-indep-Honly, and p = 0.33, 0.32
for age-indep-binary. None of them are significant on 38-DoF one-tailed t-tests.
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APPENDIX 1: PROOF OF UPPER BOUND OF ∆
(Na)
eo

In this section, we detail the steps leading to an upper bound for the metric ∆
(Na)
eo .

Proposition The expectation of all false positive and false negative rates are bounded by [0, 1].

This gives an upper bound to our metric ∆
(Na)
eq ≤ 2Na. If the classifier is not trivial, there is a

tighter upper bound.

Definition A trivial binary classifier always predicts the majority class.

Lemma The expected error rate of a trivial binary classifier is no more than 0.5.

Proof of Lemma Let λ (0 ≤ λ ≤ 1) denote the composite of positive samples in the dataset. Table
3 shows the possible values of error rates. Regardless of whether the dataset has balanced classes,
the error rate of a trivial binary classifier is no more than 0.5.
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λ < 0.5 λ ≥ 0.5
Trivial prediction t 0 1
False positive rate (FP) 0 1− λ
False negative rate (FN) λ 0
Error rate (FP+FN) λ < 0.5 1− λ ≤ 0.5

Table 3: Table of values showing statistics of a trivial binary classifier.

Theorem Our score ∆Na
eo is upper bounded by Na for any non-trivial binary classifier:

Na∑
a=1

{|pa − p̂|+ |na − n̂|} ≤ Na

Proof of Theorem For each of the age groups:
|pa − p̄|+ |na − n̄|
≤ max{|pa − 0|+ |na − 0|, |pa − 0.5|+ |na − 0.5|}
≤ max{0.5, 1} = 1

Summing up the Na age groups results in our upper bound Na for non-trivial classifiers.

APPENDIX 2: ALGORITHMS FOR OUR MODELS

Following are the pseudo-code algorithms for our remaining three models; age-indep-AutoEncoder,
age-indep-ConsensusNetworks, and age-indep-Entropy.

Algorithm 2 Training age-indep-AutoEncoder

1: Initialize I , A, C, R
2: for step := 1 to N do . N is a hyper-parameter
3: for minibatch x in training data X do
4: z = I(x), a = A(z), c = C(z)
5: x̃ = R(z) . Reconstructing the original feature vector.
6: Calculate La, Lc, Lr

7: min
I,C,R

Lc − La + Lr . backprop gradients

8: for k:=1 to K do . K is a hyper-parameter
9: min

A
La . backprop gradients

Algorithm 3 Training age-indep-consensus-net

1: Each data point are split into M modalities
2: Initialize I1..M , A, C
3: for step := 1 to N do . N is a hyper-parameter
4: for minibatch x in training data X do
5: for m := 1 to M do
6: zm = Im(xm) . interpretation
7: m̂m = D(zm) . predict modality
8: âm = A(zm) . predict age group
9: P (ŷ) = softmax(C([z1, ..zM]))

10: Calculate La, Lc, Ld

11: min
I,C
Lc − La − Ld . backprop gradients

12: for k:=1 to KD do . KD is a hyper-parameter
13: min

D
Ld . optimize modality discriminator

14: for k:=1 to KA do . KA is a hyper-parameter
15: min

A
La . optimize adversary
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Algorithm 4 Training age-indep-Entropy

1: Initialize I , A, C, R
2: for step := 1 to N do . N is a hyper-parameter
3: for minibatch x in training data X do
4: z = I(x), a = A(z), c = C(z), x = R(z)
5: Calculate Lc, Lr

6: Calculate La

7: min
I,C,R

Lc − La + Lr . backprop gradients

8: for k:=1 to K do . K is a hyper-parameter
9: min

A
La . backprop gradients
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