
Under review as a conference paper at ICLR 2020

DISENTANGLED CUMULANTS HELP SUCCESSOR
REPRESENTATIONS TRANSFER TO NEW TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Biological intelligence can learn to solve many diverse tasks in a data efficient man-
ner by re-using basic knowledge and skills from one task to another. Furthermore,
many of such skills are acquired without explicit supervision in an intrinsically
driven fashion. This is in contrast to the state-of-the-art reinforcement learning
agents, which typically start learning each new task from scratch and struggle with
knowledge transfer. In this paper we propose a principled way to learn a basis set of
policies, which, when recombined through generalised policy improvement, come
with guarantees on the coverage of the final task space. In particular, we concentrate
on solving goal-based downstream tasks where the execution order of actions is not
important. We demonstrate both theoretically and empirically that learning a small
number of policies that reach intrinsically specified goal regions in a disentangled
latent space can be re-used to quickly achieve a high level of performance on
an exponentially larger number of externally specified, often significantly more
complex downstream tasks. Our learning pipeline consists of two stages. First, the
agent learns to perform intrinsically generated, goal-based tasks in the total absence
of environmental rewards. Second, the agent leverages this experience to quickly
achieve a high level of performance on numerous diverse externally specified tasks.

1 INTRODUCTION

Natural intelligence is able to solve many diverse tasks by transferring knowledge and skills from
one task to another. For example, by knowing about objects and how to move them in 3D space,
it is possible to learn how to sort them by shape or colour faster. However, many of the current
state-of-the-art artificial reinforcement learning (RL) agents often struggle with such basic skill
transfer. They are able to solve single tasks well, often beyond the ability of any natural intelligence
(Silver et al., 2016; Mnih et al., 2015; Jaderberg et al., 2017), however even small deviations from
the task that the agent was trained on can result in catastrophic failures (Lake et al., 2016; Rusu et al.,
2016). Although improving transfer in RL agents is an active area of research (Higgins et al., 2017a;
Rusu et al., 2016; Nair et al., 2018; Barreto et al., 2018; Wulfmeier et al., 2019; Torrey & Shavlik,
2010; Taylor & Stone, 2009; Thrun & Pratt, 2012; Caruana, 1997; Jaderberg et al., 2017; Riedmiller
et al., 2018), most typical deep RL agents start learning every task from scratch. This means that
each time they have to re-learn how to perceive the world (the mapping from a high-dimensional
observation to state), and also how to act (the mapping from state to action), with the majority of
time arguably spent on the former. The optimisation procedure naturally discards information that is
irrelevant to the task, which means that the learnt state representation is often unsuitable for new tasks.
Biological intelligence appears to operate differently. A lot of knowledge tends to be discovered and
learnt without explicit supervision (Tolman, 1948; Clark, 2013; Friston, 2010). This basic knowledge
can then form the behavioural basis that can be used to solve new tasks faster. In this paper we argue
that such transferable knowledge and skills should be acquired in artificial agents too. In particular,
we want to start by building agents that have the ability to discover stable entities that make up
the world and to learn basic skills to manipulate these entities. Compositional re-use of such skills
enables biological intelligence to find reasonable solutions to many naturally occurring tasks, from
goal-directed movement (controlling your own position), to food gathering (controlling the position
of fruit and and nuts), or building a simple defence system (re-positioning multiple stones into a fence
or digging a ditch). In this paper we concentrate on goal-based natural tasks that can be expressed in
natural language, and that do not require a specific execution order of actions.

1

Under review as a conference paper at ICLR 2020

Position y

Position x

Colour co
lo

ur

position x position yW

(x=5, y=6, c=2)

Idealised world state Noisy observations
MDP induced by
disentangled state

Figure 1: The idealised world state completely described by compositions of the following inde-
pendent transformations: changes in position x, y and colour. Such a state may be projected into a
high-dimensional observation, which may contain a lot of irrelevant detail, like the particular instan-
tiation of the Qbert, or the grassy background. Disentangled representations recover the meaningful
information about the independently transformable aspects of the world and disregard the irrelevant
details.

To this end, we propose a principled way to learn a small set of policies which can be re-used by the
agents to quickly produce reasonable performance on an exponentially large set of goal-driven tasks
within an environment. We propose a method on how to discover these policies in the absence of
external supervision, where the agent accumulates a transferable set of basic skills through intrinsi-
cally motivated interactions with the environment. This first stage of free play builds the foundation
to later solve many diverse extrinsically specified downstream tasks. We suggest formalising such
a two-stage pipeline as the endogenous reinforcement learning (ERL) setting, in order to provide
a consistent evaluation framework for some of the existing and future work on building RL agents
with intrinsic learning signals (Gregor et al., 2017; Eysenbach et al., 2019; Hansen et al., 2019;
Nair et al., 2018; Laversanne-Finot et al., 2018). We propose a disjoint two step research pipeline,
where the agent is allowed unlimited access to the environment in the ERL stage, where no extrinsic
rewards are provided and the agent is supposed to learn as much as it can through endogenously
(intrinsically) driven interactions with the environment. This is followed by a standard RL stage
where the success of the previous step is evaluation in terms of data-efficiency of learning on multiple
diverse extrinsically (exogenously) specified downstream tasks in the same environment. We hope
that by working in this extreme two stage setting, where the agents have to learn useful knowledge
with no access to task rewards, we can develop algorithms that learn more robust and transferable
policies even in the traditional RL setting.

In this paper we propose to use the ERL stage to discover disentangled features through task-free
interactions with the environment, and then solving a number of goal-driven self-generated tasks
specified in the learnt disentangled feature space. In particular, we suggest learning k disentangled
features, discretising them intom bins each, and learning km feature control policies that achieve the
respective bin value of the given feature. We then re-combine the feature control policies learnt in the
ERL stage to solve downstream tasks in the RL stage in a few-shot manner using Generalized Policy
Improvement (GPI) (Barreto et al., 2018). We demonstrate theoretically and empirically that our
proposed set of basis policies that learn to control disentangled features produce significantly better
generalisation over a large number of downstream tasks.

Intuitively, disentangled representations consist of the smallest set of features that represent those
aspects of the world state that are independently affected by natural transformations and together
explain the most of the variance observed in an environment (Higgins et al., 2018) (see Fig. 1). Dis-
entangled features, therefore, carve the world at its joints and provide a parsimonious representation
of the world state that also points to which aspects of the world are stable, and which can in principle
be transformed independently of each other. We conjecture that disentangled features align well
with the idealised state space in which natural tasks are defined. Hence, by learning a set of policies
that can control these features an agent will acquire a set of basis policies which spans a large set of
natural tasks defined in such an environment. Note that both disentangled features and their respective
control policies can be learnt without an externally specified task, purely in the ERL setting. We
provide both theoretical justification for this setup, as well as experimental illustrations of the benefit
of disentangled representations in a large set of tasks of varying difficulty.

2

Under review as a conference paper at ICLR 2020

Hence, the main contribution of this work is a theoretical result that extends the GPI framework to
guarantee achievability on a large set of natural goal-driven tasks given a small set of basis policies
that control disentangled features. In particular, we demonstrate that given k disentangled features
discretised intom bins, we can guarantee achievability with a deterministic policy on at least (m+1)k

downstream tasks by using GPI to recombine km feature control policies discovered and learnt purely
through intrinsically driven interactions with the environment in the total absence of environment
rewards. Our result holds for any tasks that can be specified in natural language and do not require
a particular ordering of the actions to be solved. For example, our approach would be able to solve
a task that requires sorting objects in space based on their colour or shape, or tidying up a messy
playroom by putting all the toys in a box, but it will not be able to solve a task like cooking a meal,
where the execution order of the different stages in the recipe matters.

Related work Past work on supervised and reinforcement learning has demonstrated how multi-
task learning, transfer and adaptation can provide strong performance gains across various domains
(Caruana, 1997; Thrun & Pratt, 2012; Yosinski et al., 2014; Girshick et al., 2014; Jaderberg et al.,
2017; Riedmiller et al., 2018; Wulfmeier et al., 2019). Typically these approaches use hand-crafted
auxiliary tasks to boost learning of the downstream tasks of interest, which is not scalable and comes
with no guarantees on which set of auxiliary tasks is optimal for boosting performance on a large
number of downstream tasks. A number of other past approaches shared our motivation of replacing
the hand-crafted auxiliary task specification by an automatic way of discovering a diverse and useful
set of policies in the absence of externally specified tasks. The predominant approach so far has
been to optimise an objective that encourages behaviours that are both diverse and distinguishable
from each other (Gregor et al., 2017; Eysenbach et al., 2019; Hansen et al., 2019), or to learn how to
solve intrinsic tasks sampled from a learnt representation space (Nair et al., 2018; Laversanne-Finot
et al., 2018). While these approaches have been shown to be successful on transferring the learnt
policies to solve certain downstream tasks, none of them provided theoretical guarantees on the
downstream task coverage by the basis set of policies. Such guarantees were however provided
by van Niekerk et al. (2018) and Barreto et al. (2017; 2018). These papers calculated how well a
given set of policies can be transferred to solve a wide range of downstream tasks. However, they
left the question of how to discover such a set of basis policies open. Hence, our work provides
a unique perspective by addressing both the questions of what makes a good basis set of policies
to get certain guarantees on final task coverage, and how these policies may be learnt in the ERL
setting. Other related literature worth noting is the work by Higgins et al. (2017b), who showed
that learning a downstream task policy over disentangled representations improved its robustness to
visual changes in the environment. Another piece of work (Machado et al., 2018) demonstrated the
usefulness of discovering reward-agnostic options through successor feature learning for improving
data efficiency in downstream task learning. The benefits of these options, however, were primarily
through improving exploration. No guarantees were given in terms of downstream task coverage.

2 BACKGROUND

Basic Reinforcement Learning (RL) formalism. An RL agent interacts with its environment
through a sequence of actions in such a way as to maximise the expected cumulative discounted
rewards (Sutton & Barto, 1998). The RL problem is typically expressed using the formalism of
Markov Decision Processes (MDPs) (Puterman, 1994). An MDP is a tuple M = (S,A,P,R, γ),
where S and A are the sets of states and actions, P is the transition probability that predicts the
distribution over next states given the current state and action s′ ∼P(·|s,a), R is the distribution of
rewards r∼R(s,a,s′) received for making the transition s a7→ s′, and γ ∈ [0,1) is the discount factor
used to make future rewards progressively less valuable. Given an MDP, the goal of the agent is to
maximise the expected returnGt=

∑∞
i=0γ

irt+i. This is done by learning a policy π(a|s) that selects
the optimal action a∈A in each state s∈S. A typical RL problem attempts to find the optimal policy
π∗= argmax

π
E
[∑

t≥0γ
tr|π

]
, where the expectation is taken over all possible interaction sequences

of the agent’s policy with the environment. The optimal policy is learnt with respect to a particular
task operationalised through the choice of the reward functionR(s,a,s′).

Successor Features The successor feature (SF) representation is a way of decoupling the dynamics
of an environment from its reward function. This is done by representing an environment reward

3

Under review as a conference paper at ICLR 2020

ERL RL

f1 f2
-1

1

θ

observations
(s)

disentangled features
fθ(s)

Step 1. Disentangled feature discovery
π1,1

Ѱ1,1

π1,2 π2,1 π2,2

Ѱ1,2

Ѱ2,1

Ѱ2,1

ɸ1,1

ɸ1,2 ɸ2,2

ɸ2,2

tasks are specified as
reaching bin m of feature n

ɸn,m

Step 2. Learning feature control policies Step 3. Few-shot task learning

π1,2

π2,2

Rw

Figure 2: Schematic illustration of the three steps of our method. First we use an existing method for
unsupervised disentangled feature discovery from observations obtained using an exploration policy.
We then learn control policies that learn to achieve certain uniformly spread values for the learnt
features. Finally, we use the feature control policies to solve tasks using the GPI framework. The first
two steps do not require any extrinsic rewards.

as r(s, a, s′) = φ(s,a,s′)>w where φ(s,a,s′) is a vector of environment features. Notably, this
representation does not decrease the expressivity of r since no assumptions are made on the form of
φ. Moreover, this representation allows for decomposing value functions as follows:

Qπ(s,a)=Eπ
[∞∑
k=0

γkφ(st,at,st+1)|s0 =s,at=a

]>
wj=ψ(s,a)π>wj . (1)

where ψ(s,a)π is a vector of reward-independent successor features.

GPI & GPE Generalised Policy Improvement (GPI) and Generalised Policy Evaluation (GPE)
(Barreto et al., 2017) can be used to transfer a set of existing policies to solve new tasks. The
framework is specified for a set of MDPs:

Mφ(S,A,P,γ)={Mφ(S,A,P,r,γ) | r(s,a,s′)=φ(s,a,s′)>w} (2)

induced by all possible choices of weights w that specify all possible rewards r, given a state space
S, action spaceA, transition probabilities P , discount factor γ and features φ(s,a,s′). Note that the
features are meant to be the same for all MDPs M ∈Mφ. Given a policy πi learnt to solve task i
specified bywi, we can evaluate its value under a different reward rj=φ(s,a,s′)>wj using GPE:

Qπi
j (s,a)=ψ(s,a)πi>wj (3)

using our definition of successor features defined in (1).

Hence, given a set of policies π1, π2, ..., πi induced by rewards r1, r2, ..., ri over a subset of the
MDPs M ′ ⊂Mφ, we can get a new policy πj for a new task induced by rj (note that Mj ∈Mφ,
Mj∩M ′=∅) according to:

πj(s)=argmax
a

max
i
ψ(s,a)πi>wj . (4)

3 ENDOGENOUS RL WITH GPE AND GPI

This section provides a general overview of the proposed ERL pipeline, consisting of (1) a represen-
tation learning phase, (2) an intrinsic reinforcement learning phase and (3) a few-shot learning phase
when a new task is presented, where steps 1-2 form the ERL stage, and step 3 forms the RL stage (see
Fig. 2). In Sec. 4 we will present the main theoretical contribution of our paper where we will discuss
why a particular version of the pipeline that uses disentangled features is expected to perform well in
the RL stage.

Representation learning. At the beginning of the pipeline our agents learn a parameterized
representation of the environment’s state which we use to define a set of features φ1:n(s)∈Φ⊆Rn.

4

Under review as a conference paper at ICLR 2020

Each feature φi will be used as a cumulant that gives rise to an RL task. Specifically, each feature φi
will induce an associated optimal policy πi that maximises the expected discounted sum of φi.

We propose defining features φi in the following way. Let f1:k : S 7→ [0, 1]k be an arbitrary
continuous function. We define a discretization of each fi(s) into m uniformly spaced bins:
[0,1/m),[1/m,2/m),...,[(m−1)/m,1), denoted b1,...,bm respectively. Using this notation, we can
define a set of n=mk features as follows:

φij(s,a)=1{fi(s)∈bj}, (5)
where 1{·} is the indicator function. Note that, to facilitate the exposition, we use two indices to
refer to a specific feature; obviously, we can “flatten” these indices and treat the features as a vector
if needed. Intuitively, we can think of the task induced by φij(s,a) as setting the i-th representational
latent dimension to a value in the interval bj . Specific choices of m and k in our experiments are
explained in the supplementary material.

Intrinsic RL As discussed above, each feature φij gives rise to an RL task. The second stage of our
pipeline consists of solving these tasks. Crucially, instead of computing the value function of policy
π∗ij with respect to cumulant φij only, we will compute the successor features of π∗ij with respect to
all cumulants:

ψ
π∗ij
lh (s,a)=Eπ∗ij

[∞∑
t=0

γtφlh(st,at)|s0 =s,a0 =a

]
(6)

where π∗ij(s) is one of the optimal policies induced by cumulant φij , that is, π∗ij(s) ∈
argmaxπQ

π
ij(s,π(s)).

Collectively the successor features ψ
π∗ij
lh (s,a) can be thought of as an n×nmatrix Ψ with cumulants

in one dimension and policies in the other dimension. The matrix Ψ represents the agent’s knowledge
of how to manipulate the features of the environment. We will also use our double-subscript notation
to refer to specific elements of Ψ(s,a): Ψ(lh),(ij)(s,a)=ψ

π∗ij
lh (s,a).

Few-shot learning phase Provided our agent has invested an initial effort to accurately learn the
matrix Ψ, we can now leverage it to perform few-shot learning. First, note that any linear combination
of cumulants φ1:n, φw=

∑
iwiφi, is itself a cumulant. We can then define the set of cumulants

Φ=

φw(s,a)=
∑
i,j

wijφij(s,a) |w∈Rk×m
. (7)

Given an arbitrary task, we can find a cumulant φw∈Φ that approximates the task as well as possible.
One way to do so is to selectw∈Rk×m such that

w= argmin
w′∈Rk×m

E(s,a)∼D

||∑
ij

w′ijφij(s,a)−r(s,a)||

, (8)

whereD is a distribution over S×A and ||·|| is a norm. Note that (8) is a linear regression.

Once we have computed w∈Rk×m, we can use the successor features of policy π∗ij to evaluate it on
task φw (a process sometimes referred to as Generalized Policy Evaluation or GPE):

Q
π∗ij
w (s,a)=

∑
l,h

wlhψ
π∗ij
lh (s,a), (9)

whereQ
π∗ij
w (s,a) is the action-value function of π∗ij under cumulant φw. Finally, by using GPI we can

directly compute a policy based on the known policies π∗ij :

πGPI
w (s)=argmax

a
max
ij
Q
π∗ij
w (s,a). (10)

While φw is not guaranteed to be optimal with respect to φw, its performance on this task is at least
as good, and generally better, than that of the known policies π∗ij (Barreto et al., 2017). Moreover, the
computation of πGPI

w is immediate given the matrix Ψ andw. Since we assume the matrix Ψ has been
pre-computed in the ERL phase, this essentially reduces an RL problem to the regression problem
shown in (8).

5

Under review as a conference paper at ICLR 2020

4 THEORETICAL RESULTS

This section forms the main theoretical contribution of this paper. We highlight the importance of
the choice of latent representation used in our learning pipeline. Particularly, we show that when
the agent’s latent representation exhibits a particular form of disentanglement, we can exploit this
property to both accelerate the learning of our successor feature matrix and guarantee that GPI finds
solutions to certain families of tasks.

Disentangled representations have recently been connected to symmetry transformations (Higgins
et al., 2018), a powerful idea borrowed from physics. Roughly speaking, a symmetry transformation
for a system is a transformation that leaves some property of the system unchanged. In the context of
machine learning, the idea of symmetries is generalised to any structure preserving transformation,
like a change in colour, shape, or position of an object. All of these transformations commute with
each other in the natural world and can be applied independently, hence forming a symmetry group.
This induces an MDP in the state space of discretised disentangled latent dimensions that resembles
a hypercube (see Fig. 1), where the nodes on each edge correspond to different values of a single
disentangled dimension. Due to the commutative property of disentangled transformations, it suffices
to learn how to move along the individual edges of such a hypercube to be able to reach any state inside
the hypercube. Hence, by learning a disentangled latent space with z dimensions, and discretising
them into b bins, we can re-use zb feature control policies to solve (b+ 1)z downstream goal-based
tasks, where b+1 includes the extra bin value per disentangled dimension that indicates that the value
of the corresponding dimension is irrelevant to the task. This intuition is discussed more formally next.

Optimal independent controllability Here we formalise a disentangled representation in terms
of features that can be optimally controlled without affecting other features. Let φ1:n be a set of
features and let π∗i be the optimal deterministic policy associated with the control task induced by
the cumulant 1{φi(s)∈Ri}, with Ri⊂R. Let (st)

N
t=1 be a sequence of random variables generated

by starting in state s0 following π∗i . We call φ1:n optimally independently controllable (OIC) if
E[φj(st)]=φj(s0) for all j 6= i and t∈{1,...,N}.
Note that if we use the features defined in (5) we can have control tasks induced by
1{φij(s) = 1} = 1{fi(s) ∈ bj} for j = 1,2,...,m. In this case two features φij and φhl can be
OIC only if i 6=h. We will abuse the terminology slightly and say that f1:n are OIC if any pair of the
induced features φij ,φhl is OIC when i 6= h. Without loss of generality we will assume henceforth
that we are using features defined as in (5).

An immediate consequence of a set of OIC features is that values under rewards and policies
associated with different features have a simple form:

Lemma 4.1. When f1:n are optimally independently obtainable the successor feature matrix, Ψ, has
the following form:

Ψ(lh),(ij)(s,a)=

{
1

1−γφlh(s,a) if i 6= l

Ψ
π∗ij
lh (s,a) else.

(11)

Proof. The proof follows directly from the definition of OIC features. If l 6= i then under π∗i,j
fl(st)=fl(s0), and thus φlh(st,at)=φlh(s0,at), giving:

Ψ
π∗ij
lh (s,a)=E

[∞∑
t=0

γtφlh(st,at)
∣∣π∗ij ,s0 =s,a0 =a

]
=E

[∞∑
t=0

γtφlh(s0,at)
∣∣π∗ij ,s0 =s,a0 =a

]

=
1

1−γ
φlh(s,a).

(12)

Intuitively, Lemma 4.1 states that if the feature fi associated with policy π∗ij is different from the cor-

responding feature fl used to define φlh the associated successor feature Ψ(lh),(ij)(s,a) =ψ
π∗ij
lh (s,a)

reduces to (1−γ)−1φlh(s,a). This reduces learning the matrix Ψ to learning a subset of its entries.

6

Under review as a conference paper at ICLR 2020

Guarantees for conjunctions of goal-based tasks In addition to simplifying the process of learn-
ing the successor feature matrix Ψ, features with the OIC property come with guarantees under GPI
for certain goal-based tasks. We define a goal-based task as one whose reward function has the form

RG(s)=1{s∈G} (13)

where G⊂S. Given the above definition, we say that a policy π “achieves” G if V πRG
(s)> 0 for all

s∈S .

Our uniform discretization of features f1:k into bins b1:m naturally induces a partition over of the
state-space:

B(S)={Bi1,...,ik : i1,...ik∈ [m]} (14)

where

Bi1,...,ik =

k⋂
j=1

f−1j
(
bij
)
⊂S. (15)

Intuitively, we can think of each partition Bi1,...,ik as one of the possible mk configurations of the
features φij (note that there are fewer than 2mk configurations because some of them are impossible,
as two bins associated with the same feature cannot be active at the same time). We can then think of
these partitions as goal regions analogous to (13). We now show that for any goal g∈B(S) there exist
a linear combination of the cumulants φij that leads to a GPI policy that achieves g.

Theorem 4.1. If f1:k are OIC, then for any g ∈ B(S) there exists a w ∈ Rk×m such that πGPI
w as

defined in (9) and (10) achieves g. One suchw is given bywgij=1{fi(g)=bj}.

Proof. Recall that πGPI
wg = argmaxa Q

max
wg (s,a), where Qmax

wg
(s,a) = maxij

∑
lhw

g
lhΨ

π∗ij
lh (s,a). We

begin by rearranging terms inQmax
wg :

Qmax
wg (s,a)=max

ij

∑
lh

wglhΨ
π∗ij
lh (s,a)

=max
ij

m∑
h=1

wgihΨ
π∗ij
ih (s,a)+

m∑
h=1

∑
l 6=i

wglhΨ
π∗ij
lh (s,a)

=max
ij

m∑
h=1

wgihΨ
π∗ij
ih (s,a)+

1

1−γ

m∑
h=1

∑
l 6=i

wglhφlh(s,a)

=max
ij

m∑
h=1

wgihΨ
π∗ij
ih (s,a)+

1

1−γ

m∑
h=1

k∑
l=1

wglhφlh(s,a)− 1

1−γ
wgihφih(s,a)

=C(s)+max
ij

m∑
h=1

wgih

[
Ψ
π∗ij
ih (s,a)− 1

1−γ
φih(s,a)

]

(16)

where the third equality follows from Lemma 4.1 and C(s) captures φlh(s,a) terms (which do not
depend on a or i).

First note that, from the form of wg , for each i there is exactly one j such that wgij = 1 with all other
entries being 0. Denote this j as b(i). We can then rewrite:

Qmax
wg (s,a)=C(s)+max

ij

[
Ψ
π∗ij
ib(i)(s,a)− 1

1−γ
φib(i)(s,a)

]
=C(s)+max

i

[
Ψ
π∗ib(i)
ib(i) (s,a)− 1

1−γ
φib(i)(s,a)

] (17)

Next notice that Ψ
π∗ib(i)
ib(i) (s,a)− 1

1−γφib(i)(s,a) is 0 if fi(s)∈bb(i) and Ψ
π∗ib(i)
ib(i) (s,a) otherwise, giving:

Qmax
wg (s,a)=C(s)+ max

i∈W(s)
Ψ
π∗ib(i)
ib(i) (s,a) (18)

7

Under review as a conference paper at ICLR 2020

where W(s)={i :fi(s) /∈bb(i)} or, more plainly, the set of feature indices that have not been achieved
yet. This gives

πGPIwg (s)=argmax
a

Qmax
wg (s,a)=argmax

a
max
i∈W(s)

Ψ
π∗ib(i)
ib(i) (s,a), (19)

implying that πGPI
wg will persistently pursue the “unachieved” feature (φlh = 0) that is easiest to

“achieve” (that is, to be set to φlh = 1) among the features associated with nonzero elements in wg .
This means that eventually all such features will be set to 1, which in turn implies that goal g has been
achieved.

5 SPRITEWORLD EXPERIMENTS

In this section we experimentally validate that an agent can effectively use task-free interactions with
an environment to gain a boost in data efficiency across a wide range of subsequent tasks. In particular,
we test whether an agent that uses GPI to transfer a set of feature control policies discovered in the ERL
setting has a boost in performance over a baseline DQN agent that learns each task from scratch. We
also validate whether disentangled feature control policies form a better basis for transfer compared
to entangled feature control policies, and whether our pipeline outperforms DIAYN (Eysenbach et al.,
2019), a state of the art approach for discovering a diverse set of policies in the absence of external
tasks. We chose DIAYN as our baseline, since it is the closest method to ours in terms of motivation
(e.g. it does not rely on goal-conditioning in the RL stage unlike Nair et al. (2018)), and is the current
published state-of-the-art method in its class (unlike Gregor et al. (2017); Hansen et al. (2019)).

agent

Figure 3:
Spriteworld en-
vironment. The
agent can move
up/down, left/right
and drag objects
when it steps on
them.

We validate our ideas on a toy Spriteworld environment (Watters et al., 2019)
(see Fig. 3). The environment contains an agent and two sprites. The action
space is 8-dimensional and consists of moving the agent up/down or left/right,
as well as the same four actions but for dragging objects. It is only possible
to drag objects if the agent is standing on them. Furthermore, dragging ac-
tions move the agent slower than the standard move actions. This environment
makes it easy to define a wide range of diverse natural tasks of different diffi-
culty level that can be easily expressed through language. In particular, here
we concentrate on a set of navigation based tasks, which specify a goal location
for the agent or the objects. The easiest tasks are specified in terms of the final
position of the agent (“top”, “middle”, “bottom” horizontally; and “left”, “cen-
tre” or “right” vertically). The harder tasks make the locations more specific
(by specifying both the horizontal and vertical coordinates, e.g. “top left” or
“bottom right”). We also specify equivalent tasks but in terms of the final ob-
ject position (e.g. “square at the bottom” as an easy object task, or “circle at the
top right” as a hard object task). Note that the object-based tasks are more dif-
ficult than the agent-based tasks, because the agent position can be controlled
directly in the action space, while controlling the object position requires more elaborate policies that
are also dependent on the agent position. We also specify tasks in terms of disjunctions of agent or ob-
ject goal locations (e.g. easy tasks like “agent to the left OR square to the top” or hard tasks like “agent
to the top left OR square to the top right”). Finally, our hardest tasks are specified as conjunctions of
specific locations for both objects (e.g. “square to the top left AND circle to the bottom right”). Note
that the goal locations of the downstream tasks may not be directly related to binning specified during
the ERL feature control policy learning. Indeed, GPI should be able to generalise the given set of fea-
ture control policies to solve a wider range of tasks spanned by the bin boundaries. In the Spriteworld
environment the agent receives a reward of 1 if the relevant aspects of the environment state are within
their respective goal locations, otherwise the reward is 0. Each episode terminates immediately if the
goal is achieved. The agent and the objects are initialised in random positions sampled uniformly
within the environment at the start of each episode. We evaluate the performance of our agent and the
baselines on 3 tasks sampled from each of the 7 different task classes. Given the structure of our tasks,
the average reward corresponds to the average number of episodes on which the agent solves the task.

Off-Diagonal Trick As illustrated by Lemma 4.1 when our features φ1:n are OIC, the matrix of
values Ψ(s,a) takes on a specific form where many off-diagonal entries are completely determined by
φ1:n(s,a) and γ. By assuming that a disentangled representation has the OIC property we can replace
these off-diagonal entries by their exact values, both reducing the cost of computing Ψ and associated

8

Under review as a conference paper at ICLR 2020

DQN

Disent

Ent

Disent + trick

DIAYN

Agent
easy hard

Object
easy hard

Disjunction
easy hard

Conjunction

Figure 4: Average reward achieved by the different methods across the same set of tasks. The agent
receives a reward of 1 if the goal location is reached, otherwise it receives 0. The rewards are averaged
across 3 seeds and 3 tasks per task category. Agent tasks include moving the agent to a specified
position. Easy tasks specify a vertical or a horizontal position (e.g. "get the agent to the top"). Hard
tasks specify a conjunction of a vertical and a horizontal position (e.g. "get the agent to the bottom
right"). Object tasks are similar to agent tasks but specify the goal position of one of the objects
(e.g. "get the square to the centre left"). Disjunction tasks are set by specifying a goal in terms of a
disjunction of the corresponding easy or hard agent and object tasks (e.g. "get the agent to the left
OR get the circle to the middle"). Finally, conjunction tasks are specified as a particular vertical and
horizontal position for both objects (e.g. "get the square to the top left AND the circle to the bottom
right"). GPI with disentangled features and the off-diagonal trick is able to solve all the tasks at least
50% of the time almost immediately. DQN takes orders of magnitude more steps to achieve similar
performance. DIAYN has discovered some agent control policies that allow it to solve some agent
based tasks, but it never discovered how to control objects. We used 9 bin feature discretisation to
train the feature control policies used by GPI.

error of estimating these off-diagonal terms. We denote the setting of all off-diagonal terms with index
(lh),(ij) to (1−γ)−1φij(s,a) as the “off-diagonal trick.”

Results We evaluated how well our approach works in the scenario where disentangled features are
the true x and y positions of the agent and the objects, and the entangled features are rotations of the
disentangled features. Fig. 4 demonstrates that GPI over feature control policies provides an almost
immediate boost in performance over the DQN baseline. This effect gets more prominent as the task
difficulty increases, whereby the number of steps before DQN reaches the same performance as the
GPI agent increases with task difficulty. The GPI agent is able to solve the tasks most of the time
within around 50k learning steps, while the DQN baseline typically requires > 400k steps. We also
see that GPI over disentangled features provides a significantly bigger jump in performance compared
to GPI over entangled features. Finally, it is clear that the “off-diagonal” trick works well for the
disentangled GPI, which suggests an additional benefit of better computational efficiency during ERL
learning. Moreover in our comparisons against DIAYN, we found that the competing method could
only learn to perform tasks involving the agent, failing to learn to interact with the objects. Finally,
Fig. 5 demonstrates that our results are relatively robust over the choice of the disentangled feature bin
number (m= {5,7,9}), and whether the task goal regions are set to the ERL bins exactly (aligned in
Fig. 5) or not.

Note that although we have tested our approach on a simple domain using ground truth features, our
theoretical results should hold for any complex natural environment and for any natural tasks that can
be specified in terms of disentangled transformations and that do not rely on ordered execution. This

9

Under review as a conference paper at ICLR 2020

Bin = 7, aligned

Bin = 5

Bin = 9

Bin = 7

Agent
easy hard

Object
easy hard

Disjunction
easy hard

Conjunction

Figure 5: Average reward achieved by GPI with disentangled features and the off-diagonal trick on the
same tasks as in Fig. 4, but using different numbers of feature discretisation bins. The performance of
our approach decreases with smaller numbers of bins, since GPI has fewer policies to work with, but
still significantly outperforms all baselines shown in Fig. 4 in terms of data efficiency. Aligning the
downstream tasks with the bin discretisation used to train the feature control policies (bin=7, aligned)
slightly improves the performance of our approach, especially on harder tasks.

is because disentangled representation learning aims to find a low-dimensional representation that is
equivariant with respect to symmetry transformations, which are a ubiquitous property of our world
(Livio, 2012). Hence, any arbitrarily complex natural environment should be possible to describe in
terms of a relatively small number of disentangled dimensions. We leave empirical demonstrations
on more complex environments using learnt disentangled features to future work.

6 CONCLUSIONS

We have proposed a principled way to learn and recombine a basis set of policies that guarantees
achievability for a large set of natural tasks that do not require a particular execution order of actions.
We have demonstrated that these policies can be learnt in the ERL setting, where the agent has no
access to external rewards and has to learn through intrinsically driven interactions with the environ-
ment. We theoretically justified and experimentally verified a three-stage pipeline, where the agent 1)
discovers disentangled features, 2) learns a set of basis policies through specifying intrinsic rewards
when a particular feature achieves a particular range of values, and 3) uses GPI over these policies to
bootstrap reasonable performance on a wide range of natural tasks which can be expressed in language
and which do not rely on a particular execution ordering. We have empirically demonstrated that GPI
over disentangled feature control policies produces better task coverage and learning efficiency on a
simple Spriteworld domain compared to a baseline DQN agent and DIAYN, a state-of-the-art method
for discovering diverse policies useful for downstream tasks through task-free interactions with the
environment. In the future work we would like to generalise our approach to tasks that require a
particular order of action execution, as well as to continuous action spaces.

REFERENCES

Andre Barreto, Will Dabney, Remi Munos, Jonathan Hunt, Tom Schaul, Hado van Hasselt, and David
Silver. Successor features for transfer in reinforcement learning. NIPS, 2017.

Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel
Mankowitz, Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using

10

Under review as a conference paper at ICLR 2020

successor features and generalised policy improvement. NIPS, 2018.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

A. Clark. Whatever next? predictive brains, situated agents, and the future of cognitive science. W
Behavioral and Brain Sciences, 36, 2013.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
learning skills without a reward function. ICLR, 2019.

Karl Friston. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 2010.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 580–587, 2014.

Karol Gregor, Danilo Rezende, and Daan Wierstra. Variational intrinsic control. ICLR, 2017.

Steven Hansen, Will Dabney, André Barreto, Tom Van de Wiele, David Warde-Farley, and Volodymyr
Mnih. Fast task inference with variational intrinsic successor features. arxiv, 2019.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. β-VAE: Learning basic visual concepts with a con-
strained variational framework. ICLR, 2017a.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel, Matthew
Botvinick, Charles Blundell, and Alexander Lerchner. DARLA: Improving zero-shot transfer in
reinforcement learning. ICML, 2017b.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende, and
Alexander Lerchner. Towards a definition of disentangled representations. arXiv, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. ICLR,
2017.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, pp. 1–101, 2016.

Adrien Laversanne-Finot, Alexandre Péré, and Pierre-Yves Oudeyer. Curiosity driven exploration of
learned disentangled goal spaces. arxiv, 2018.

Mario Livio. Why symmetry matters. Nature, 490:472–473, 2012.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. ICLR, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David S Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. arxiv, 2018.

M. L. Puterman. Markov Decision Processes - Discrete Stochastic Dynamic Programming. John
Wiley Sons, Inc., 1994.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van
de Wiele, Volodymyr Mnih, Nicolas Heess, and Tobias Springenberg. Learning by playing – solv-
ing sparse reward tasks from scratch. ICML, 2018.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arxiv, 2016.

11

Under review as a conference paper at ICLR 2020

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

Edward C. Tolman. Cognitive maps in rats and men. The Psychological Review, 55(4):189–208,
1948.

Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on machine learning
applications and trends: algorithms, methods, and techniques, pp. 242–264. IGI Global, 2010.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

Benjamin van Niekerk, Steven James, Adam Earle, and Benjamin Rosman. Composing value func-
tions in reinforcement learning. NeurIPS, 2018.

Weiran Wang, Xinchen Yan, Honglak Lee, and Karen Livescu. Deep variational canonical correlation
analysis. arXiv preprint arXiv:1610.03454, 2016.

Nicholas Watters, Loic Matthey, Sebastian Borgeaud, Rishabh Kabra, and Alexander Ler-
chner. Spriteworld: A flexible, configurable reinforcement learning environment.
https://github.com/deepmind/spriteworld/, 2019. URL https://github.com/deepmind/
spriteworld/.

Markus Wulfmeier, Abbas Abdolmaleki, Roland Hafner, Jost Tobias Springenberg, Michael Neunert,
Tim Hertweck, Thomas Lampe, Noah Siegel, Nicolas Heess, and Martin Riedmiller. Regularized
hierarchical policies for compositional transfer in robotics. arXiv preprint arXiv:1906.11228, 2019.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in neural information processing systems, pp. 3320–3328, 2014.

12

https://github.com/deepmind/spriteworld/
https://github.com/deepmind/spriteworld/

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 SPRITEWORLD ENVIRONMENT

The Spriteworld environment consists of a room without obstacles with an agent and two objects: a
circle and a square. The agent can take 8 agents consisting of 4 regular movements (up, down, left,
right) and 4 “dragging movements” which mirror the regular movements but move the agent half as
far. Objects in the environment can overlap and pass through each other. When the agent overlaps with
an object and executes a dragging movement, both the agent and the object are moved together. For
our experiments we use a vectorized version of our environment state as observations to our models,
consisting of 6 scalars representing the the x and y positions of the agent and each object. When the
environment is reset, both the agent and objects are randomly positioned.

A.2 LEARNING THE SUCCESSOR FEATURE MATRIX

In this section we describe the procedure for learning an approximation of our successor feature matrix
Ψ whose entries are defined by (6). It is helpful to visualize this matrix as follows:

Ψ(s,a)=
[
ψπ
∗
11(s,a) ψπ

∗
12(s,a) ··· ψπ

∗
mk(s,a)

]
where each ψπ

∗
ij corresponds to the full vector of successor features evaluated under policy π∗ij :

ψπ
∗
ij (s,a) =

[
ψ
π∗ij
11 (s,a) ψ

π∗ij
12 (s,a) ··· ψπ

∗
ij

mk(s,a)

]>
. Analogously, we also define the column vector

of corresponding cumulants asφ(s,a)=[φ11(s,a) φ12(s,a) ··· φmk(s,a)]
>.

We learn a neural network: Qθ(s;gij) :S 7→R|A|×m×k. This network maps an environment observa-
tions s to a tensor corresponding toψπ

∗
ij (s,·) — the action-values of the full set of successor features

evaluated under π∗ij . This network is illustrated below:

S
ta

te
P

ol
ic

y

10
24

10
24

10
24

10
24 |A
|

mk

where both environment state s and policy specifier gij are mapped into 1024 unit latent representa-
tions before being multiplied by each other and then followed by two more 1024 unit layers before
a tensor representing ψπ

∗
ij (s, ·) is output. All internal representations are preceded by a leaky-relu

activation with hyperparameter α=0.1.

Behavior To deal with the fact that our successor feature matrix encodes multiple distinct policies,
given by πij(s) = argmaxaQ

θ
ij(s;gij), at the beginning of each environment episode we randomly

select a feature / bin pair (i,j) and act according to πij . When storing experience tuples in our replay
buffer, we include the index ij of the policy that generated it.

Learning Largely, we train this network in a manner similar to standard DQN (Mnih et al., 2015)
along with dueling and double network architectures (Wang et al., 2016; Van Hasselt et al., 2016) and
huber loss for improved stability. We depart from standard architectural choices in how we update
each successor feature. For a given experience tuple: (s,a,s′,ij) (where ij encodes the policy that
generated the transition), we update the entire successor feature vector,ψπ

∗
ij (s,a) by minimizing:(

ψπ
∗
ij (s,a)−[φ(s,a)+γψπ

∗
ij (s′,π∗ij(s

′))]
)2
.

13

Under review as a conference paper at ICLR 2020

Sample complexity On average our agents require around 10 mln steps of interactions with the
environment to learn the matrix of successor features. This is then followed by around 50 k steps per
downstream task to solve the regression problem specified in Eq. 8 that is required to apply GPI. This
is in contrast to>500 k steps per task required by DQN to reach the same level of performance. Hence,
the 10 mln steps invested in the ERL stage are a relatively small cost for the data efficiency gains on
(m+1)k downstream tasks, wherem is the number of feature bins, andk is the number of disentangled
latent dimensions. Indeed, our GPI framework takes the following number of steps to solve all feasible
tasks in an environment: (1000+5∗(m+1)k)∗1e+4, while the equivalent number for DQN would
be (50∗(m+1)k)∗1e+4. Hence, the data efficiency of our approach becomes apparent if the number
of downstream tasks is at least 23, since 200∗5+5∗ (m+1)k < 5∗ (m+1)k+5∗9∗ (m+1)k and
(m+1)k>22.2.

14

	Introduction
	Background
	Endogenous RL with GPE and GPI
	Theoretical Results
	Spriteworld Experiments
	Conclusions
	Appendix
	Spriteworld environment
	Learning the Successor Feature Matrix

