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Abstract

The International Planning Competition 2018 consisted of
several tracks on classical, temporal and probabilistic plan-
ning. In this paper, we focus on the discrete MDP track of the
probabilistic portion of the competition.
We discuss the changes to the input language RDDL, which
give rise to new challenges for planning systems, and ana-
lyze each of the eight competition domains separately and
highlight unique properties. We demonstrate flaws of the
used evaluation criterion, the IPC score, and discuss the need
for optimal upper bounds. An evaluation of the three top-
performers, including their post-competition versions, and a
brief analysis of their performance highlights the strengths
and weaknesses of the individual approaches.

Introduction
Since 1998, the International Planning Competition (IPC)
empirically evaluates state-of-the-art planning systems on
various benchmark problems to promote research and high-
light key challenges in AI planning. Initially, the competi-
tion focused on classical planning, but other, less restrictive
competition tracks have emerged in subsequent years. Vari-
ous tracks for reasoning under uncertainty have been added
in 2004, and the probabilistic planning track, which is the
focus of this paper, was organized for the sixth time in 2018.

Many different planning techniques have been ap-
plied by the participants over the years, ranging from
determinisation-based re-planning (Yoon, Fern, and Givan
2007) over reinforcement learning with policy gradient
methods (Buffet and Aberdeen 2007) and incremental pol-
icy refinement (Teichteil-Königsbuch, Kuter, and Infantes
2010) to Monte-Carlo tree search (Keller and Eyerich 2012;
Keller and Helmert 2013). Not only planning techniques,
but also benchmark problems have evolved over time: e.g.,
the dominance of determinisation-based approaches was an-
swered with a shift to probabilistically interesting problems
(Little and Thiébaux 2007), or the probabilistic PDDL di-
alect PPDDL (Younes and Littman 2004) was replaced by
RDDL (Sanner 2010).

The latest probabilistic track also introduced a few
changes. Providing challenging problems not only for the
competition but also for future years was one of the an-
nounced aims of the organizers, so twice as many instances
were created for each domain, scaling up to larger state and

action spaces, and the used subset of RDDL was extended
to support action preconditions, finite-domain, and interme-
diate variables to be able to model more realistic planning
tasks. Additionally, time and memory limits were increased
to allow offline approaches that compute an executable pol-
icy to compete with the predominant online approaches that
interleave planning for a single state and execution of the
last decision.

Five different planning systems participated in the compe-
tition. As up to two versions of each planning system could
be submitted, seven planner variants were evaluated in terms
of the IPC score in conjunction with the two PROST (Keller
and Eyerich 2012) versions that won IPC 2011 and 2014
as a baseline. Although each participant had a unique ap-
proach, no planner dominated in every domain and the final
results are very close – the winner, PROST-DD (Geißer and
Speck 2018), and the two runner-ups, SOGBOFA (Cui and
Khardon 2018) and Random Bandit (Fern, Issakkimuthu,
and Tadepalli 2018) are separated by roughly five points.

In the first part of this paper, we describe the changes of
IPC 2018 and analyse whether the competition lives up to
its claim and introduces benchmarks with the potential of
providing challenges for MDP research in upcoming years.
We analyse the competition domains and provide properties
that set them apart from other IPC domains. The second part
of our work focuses on the evaluation metric that was used
to determine the winner of the competition. We demonstrate
that the IPC score is flawed if optimal state values of a prob-
lem are unknown, and we hope to spark a discussion among
the planning community on this topic. The final part of the
paper analyses the performance of the planners on the IPC
2018 benchmarks. We compare the results of bugfixed ver-
sions of the competition’s top-performers and give insight
into their strengths and weaknesses.

Input Language of the IPC 2018
As in the competitions in 2011 and 2014, the domains and
instances of IPC 2018 were modeled in RDDL (Sanner
2010). In RDDL, both states and actions are described com-
pactly by disjunct sets of parameterized variables and MDPs
are specified as a dynamic Bayesian net with intermediate
layers. There were some minor tweaks to the input language
that are of no interest to this paper. The major changes on ac-
tion preconditions and the introduction of finite-domain and



intermediate variables have an impact on the competition re-
sults and are discussed in the following.

Action preconditions. All RDDL domains from pre-
vious competitions come with a state-action-
constraints section that contains a finite set of formu-
las P in first-order logic over the set of state- and action
variables. Formulas containing at least one action variable
form a constraint on the set of applicable actions a in a state
s: if s, a 6|= p for at least one p ∈ P , a is not applicable
in s. Formulas without action variables, on the other hand,
were introduced to provide invariants to a planning system
and could be ignored by a planner. As the semantics of state-
action constraints were never formally specified, it was un-
clear if an action is inapplicable in a state if its application
can lead to a state where an invariant is violated. This can-
not be checked efficiently by a planner as the number of
outcomes can be prohibitively large. In previous competi-
tions, this was irrelevant as all state-action constraints were
static. For IPC 2018, state-action constraints were hence re-
placed by an action-preconditions section that con-
tains formulas that have to be considered by each planner
and checked on the current state before an action is applied,
and an invariants section that may be ignored.

In previous competitions, the number A ∈ N provided
in the max-nondef-actions specification of RDDL in-
stances has also been used to describe the applicability of
actions. As it is possible to translate this for a given set
of action variables {a1, . . . , an} to the action precondition∑n

i=1 ai ≤ A, the max-nondef-actions entry was re-
moved for simplicity of notation. A side effect of dynamic
action preconditions is that action variables carry signifi-
cantly more parameters at IPC 2018 than in previous compe-
titions to be able to “connect” action preconditions and tran-
sitions functions (conditional probability functions or CPFs
in RDDL). In turn, this leads to a higher average number of
ground action variables in the IPC 2018 instances and, due
to the exponential relationship between action variables and
actions, to a significantly higher number of actions if action
grounding is performed naively. While the set of actions that
is applicable in at least one state (i.e., the actions that need
to be grounded) is significantly smaller in most instances, it
is in general not tractable to compute this set exactly, as de-
termining if a given action is legal in at least one reachable
state is at least as hard as the bounded plan existence prob-
lem in classical planning. Previously, a small value forA has
helped to keep the number of ground actions small even if
the grounding procedure is simple. This safety net has been
removed along with the max-nondef-actions section,
and new techniques need to be developed for the challenge
of grounding RDDL actions. To make grounding simpler,
the IPC 2018 domains guarantee that an action a with true
action variables A is inapplicable in all reachable states if
there is another action a′ with true action variables A′ ⊆ A
that is inapplicable in all reachable states.

Intermediate variables. A RDDL concept that has not
been considered at IPC 2011 and 2014 are intermediate

variables, which are typically used to determine the out-
come of multiple interdependent stochastic effects. To illus-
trate the concept, assume that there is a 50% chance that
two variables v1 and v2 are both true in the next state, and
both are false otherwise. Modelling this with CPFs v′i =
Bernoulli(0.5) for i ∈ {1, 2}, where Bernoulli is a RDDL
keyword representing a Bernoulli distribution, would result
in a model where all four possible value combinations come
up with a probability of 25%. This does not reflect the de-
sired transition dynamics. An intermediate variable v with
CPF v = Bernoulli(0.5) and CPFs for v1 and v2 of the form
v′1 = v and v′2 = v lead to the described model, though.

Some of the IPC 2018 domains are modelled with in-
termediate variables, but planners were allowed to choose
between a domain version with or a compilation without
this feature. The compilation is performed by replacing in-
termediate variables with state variables and adding artifi-
cial intermediate decision steps where only a dummy action
proceed-interm-level can be applied. There are fur-
ther details to this compilation, e.g., variables are introduced
to remember which action was executed and to represent the
current level, and the horizon is increased according to the
levels of the intermediate variables. However, these are not
relevant for this paper and hence omitted.

Finite-domain variables. Finite-domain variables can be
modelled in RDDL as enum-valued variables, a feature that
has not been used in previous competitions. IPC 2018 made
this feature available to planners that support it, but also pro-
vided a compilation of finite-domain variables into binary
variables. In the classical planning setting, such a compila-
tion can be performed by replacing each finite-domain vari-
able v with domain dom(v) = {x1, . . . , xn} with binary
variables v-is-xi for i ∈ {1, . . . , n}. In the probabilistic
setting, it is possible to do the same replacement, but the
blowup is significantly larger. To illustrate this, consider a
finite-domain variable v of type enum type which is de-
fined over the values x1, x2 and x3, and assume v takes each
value with uniform probability (modelled with the RDDL
keyword Discrete). Due to the implicit dependency be-
tween the three values, we have to make sure that exactly
one value becomes true in the next state, and a translation to

v-is-x′i = Bernoulli(0.3);

for i ∈ {1, 2, 3} is hence not correct. Instead, we have to
sample these values consecutively, each time conditioned on
the variables already sampled. As state variables are sampled
at the same time, intermediate variables of the form

v-is-x1 = Bernoulli(0.3);
v-is-x2 = ¬v-is-x1 · Bernoulli(0.5);
v-is-x3 = ¬v-is-x1 · ¬v-is-x2;

are used in the compilation to model the consecutive sam-
pling (in increasing index order) properly. In this form,
• v-is-x1 becomes true with probability 1

3

• the Bernoulli(0.5) case of v-is-x2 becomes relevant in the
2
3 of the cases when v-is-x1 did not become true, resulting
in a probability of 2

3 ·
1
2 = 1

3 and



• v-is-x3 becomes true if neither of the former became true
and hence also with probability 1

3 .

If the term inside the Bernoulli statement cannot be simpli-
fied as much as here, these terms quickly grow very large.

Competition Domains
In the following, we briefly introduce the domains that were
used at IPC 2018 and highlight properties that make the do-
mains particularly challenging. We base the presented infor-
mation on the following sources1: 1) the output of a modified
version of the PROST parser, which was enhanced with ex-
pert knowledge in some domains; 2) a random walk planner
that computes averages over all states that are encountered
in 200 runs; 3) and from computations by hand. In general,
each domain consists of 20 instances, where the instances
increase in size (in terms of states and actions), although
not monotonically. While this has also been the case at IPC
2014, the largest instances of IPC 2018 (except for PUSH
YOUR LUCK) are several orders of magnitude larger than
the smallest ones.

ACADEMIC ADVISING is the only domain of IPC 2018
that has appeared in a previous competition, and it is equiv-
alent to its predecessor apart from some minor changes that
became necessary due to altered competition rules. How-
ever, neither of the 20 instances has been used before. In
ACADEMIC ADVISING, a student takes courses at a given
cost, aiming to complete a predefined subset of courses. The
probability to pass a course increases with the number of
previously passed prerequisites.

Prior to IPC 2018, ACADEMIC ADVISING has already
been the domain with the largest number of applicable ac-
tions. However, if we compare the largest instances, that
number grew from 466 in 2014 to more than 1011 in 2018,
and the median over the instances increased from 43 to 1862,
which poses a real challenge to the competitors.

CHROMATIC DICE is an MDP variant of the popular dice
game Yahtzee, where up to five dice are rolled up to three
times and show both values and colors (determined by in-
dependent stochastic processes). After rolling, the planner
has to select a category and receives a reward depending on
the faces of the dice and the selected category. At the end of
the interaction, the planner may receive various bonuses if it
performed well in certain category sections.

CHROMATIC DICE is special because it has by far the
largest reward formula among all competition domains,
consisting of formulas over almost 10000 state variables
(most occur multiple times, but almost all state variables
are among them at least once) and 24 (different) action vari-
ables. For a near-optimal policy, the boni become very im-
portant, and the planner has to plan ahead exceptionally far.

1Zenodo link for complete dataset used in this paper: http:
//doi.org/10.5281/zenodo.3235174

COOPERATIVE RECON is a significantly altered variant
of the IPC 2011 domain RECON. In the 2018 version, the
planner controls one or more planetary rovers that examine
objects of interest in order to take a picture of detected life.

In most instances, there are several rovers, and collabora-
tion between them is a key challenge. Rovers carry different
equipment and have to share tasks among them to succeed,
and they are also able to support other rovers in their tasks
for a higher probability of success. This makes COOPERA-
TIVE RECON special because the mutual application of two
action fluents can be more valuable than the sum of its parts.

EARTH OBSERVATION is based on the domain by Hertle
et al. (2014) where the planner controls a satellite orbiting
Earth that has to take pictures of the landscape below, taking
into account the current weather forecast (the presence of
clouds when a picture is taken leads to poorer image quality
and hence results in a lower reward).

While the branching factor induced by actions is very low
in this domain – there are only 4 actions to move the camera
and take a picture – the branching factor due to uncertainty
is immense. The weather can change the current cloud cover
drastically, and the number of successor states of a given
state-action pair is tremendous, comparable only with the
SYSADMIN domain of IPC 2011.

MANUFACTURER is a domain where the agent manages
a manufacturing company that buys goods to use them in
the production of other goods. The domain is modular in
the sense that more and more options become available the
more challenging the instance is. In the smallest instances,
the agent only buys, produces and sells goods. More com-
plex instances allow the construction of additional factories,
hiring staff to influence the price or contracting a manager
who enables the execution of more efficient actions.

All modules have in common that the agent has to accept
an immediate cost for an increased long-term reward. This
is already true for the basic buy-produce-sell cycle, and the
horizon until the investment pays off gets larger and larger
with more challenging instances. Additionally, this is one of
the domains with the largest number of applicable actions
and relevant preconditions (more than 106 in both cases).

PUSH YOUR LUCK is a single-player game where the
main challenge lies in determining the optimal moment to
stop a repeated stochastic process. The player rolls one or
more dice repeatedly until they select to cash-out, yielding
a reward that corresponds to the product of all rolled values.
However, if the player plays too risky and a number comes
up a second time, all rolled values are reset.

The instances of PUSH YOUR LUCK are among the small-
est of IPC 2018. However, better play is rewarded dispropor-
tionately due to the exponential growth of the reward in the
case of success and the total reset in the fail case.

RED-FINNED BLUE-EYE are a species of fish that are en-
demic to seven artesian springs in the Edgbaston Reserve in



Central Queensland, Australia. The species is critically en-
dangered due to competition by the invasive Gambusia. This
domain is inspired from the work of Nicol et al. (2017). A
planner has to make sure that red-finned blue-eye do not be-
come extinct, either by removing or poisoning Gambusia or
by translocating red-finned blue-eyes. The domain is proba-
bilistically interesting as the springs get connected only in
the rain season depending on the (probabilistically deter-
mined) amount of rain.

RED-FINNED BLUE-EYE is challenging because it has the
largest median number of actions (2680) and action precon-
ditions (almost 10000), and more than 106 actions in the
hardest instances. The planning horizon of up to 120 and
a median of 90 is also the largest, which is particularly rel-
evant because extinction of red-finned blue-eye leads to a
disproportionately high penalty.

WILDLIFE PRESERVE is inspired from work of Nguyen
et al. (2013) and Fang, Stone, and Tambe (2015) on rangers
that protect a wildlife reserve from poachers by sending
rangers to specific areas. Poachers attack parts of the reserve
depending on their preferences and an expectation where
rangers will likely show up. This expectation is computed by
exploiting the assumption typically taken in Stackelberg Se-
curity Games that the defenders’ (i.e., rangers) mixed strat-
egy is fully observed by the attacker and memorized by
poachers for a predefined number of steps.

In each step, the planner obtains a reward for each area
that has not been attacked undefended, and a penalty for
each area that has. The challenge is to predict where poach-
ers will attack with high probability and to lure poachers into
attacking an area where they are caught. Determinisation-
based policies are informative in instances where the mem-
ory of poachers is short, but the quality decreases quickly
when poachers remember more of the rangers’ decisions.

Participants
We briefly introduce the competition participants and the un-
derlying techniques they use. More details can be found in
the planner abstracts that can be found on the competition
website2.

PROST (Keller and Eyerich 2012) is the winner of the
two previous IPCs in 2011 and 2014 and participated non-
competitively to serve as a baseline. PROST 2011 and PROST
2014 differ mostly in the used search algorithm: the for-
mer is based on the popular UCT algorithm (Kocsis and
Szepesvári 2006), while the latter applies the UCT? algo-
rithm of Keller and Helmert (2013). Both baselines use an
iterative deepening search (IDS) on the (most-likely) deter-
minised task to initialize action-values of search nodes that
are added to the search tree.

The versions that were used for IPC 2018 are not exactly
the same planners that competed in the previous competi-
tions: bugfixes provided over the last few years were incor-
porated and a simple linear time distribution of the remain-

2ipc2018-probabilistic.bitbucket.io

ing time was used for each step. Additionally, the parser was
updated to exploit the guarantee on action preconditions de-
scribed before: the implementation starts to check potential
applicability of an action with actions where only one action
variable is true, and it iteratively adds more variables until a
precondition is violated independently from the state.

PROST-DD is based on PROST 2014 and applies the
UCT? algorithm. The planner differs from the baseline in
the underlying action-value initializer function, the recom-
mendation function used to select the action applied in
each step, and does not use the baseline parser implementa-
tion. Instead, the PROST-DD parser performs resolution- and
backtracking-based search in a similar fashion to the DPLL
algorithm (Davis, Logemann, and Loveland 1962). Addi-
tionally, the performance of the evaluation of action pre-
conditions was improved. As recommendation function the
planner uses the most played arm recommendation (Bubeck,
Munos, and Stoltz 2009), which favors the action which was
selected the most in the root node of the search (the baseline
planners favor the action with the best expected outcome).

For the heuristic function, the planner symbolically rep-
resents a deterministic version of the planning task as Al-
gebraic Decision Diagrams (Bahar et al. 1993). It computes
step-wise estimates in a similar fashion to symbolic value
iteration (Hoey et al. 1999) and symbolic backward search
(Speck, Geißer, and Mattmüller 2018). If the symbolic com-
putation is not able to compute the estimates for a number of
steps that is equal to the problem horizon, the planner per-
forms iterative deepening search instead. Two versions of
PROST-DD participated in the competition, which differ in
the determinisation that is used in the heuristic: outcomes
with probability smaller than 0.5 are pruned in one version,
and smaller than 0.1 in the other.

Random Bandit is built upon the PROST framework and
is based on the ε-greedy algorithm for multi-armed bandit
problems, which estimates state values by simulating the
greedy action with probability 1 − ε and a random action
otherwise. The parameter ε is set to 0.5. This decision in the
root node is followed by a random walk whose simulation
depth is initially determined as the minimum of 7 and an
estimate that is based on the time required for IDS on the
most-likely determinised task.

Conformant SOGBOFA is based on the work by Cui and
Khardon (2016) and Cui, Marinescu, and Khardon (2018). It
symbolically represents the state value function of the cur-
rent state as an abstract syntax tree and searches for the best
action by calculating gradients on this symbolic representa-
tion by means of automatic differentiation. One property of
this representation is that computations are performed on the
lifted action representation, which allows the planner to deal
with large action spaces. Therefore, the planner does not ex-
plicitly ground actions. Two different versions of the SOG-
BOFA system participated in the competition: SOGBOFA-F
and SOGBOFA-B. They differ in the way fractional values
in the rollout policy are treated.



A2C-Plan While all previous planning systems perform
planning online, A2C-Plan is an offline planner working in
two phases: in the training phase, a deep neural network is
trained, using an actor-critic algorithm (Konda and Tsitsik-
lis 1999) which combines learning of a policy network and
updating its parameters via gradient updates. The planner
is built upon the PROST framework and therefore uses the
baseline parser implementation.

Imitation-Net is another offline planner based on neural
networks. It follows a supervised learning approach which
generates training data by following a greedy one-step pol-
icy based on random sampling. Based on this training data,
a policy network (Issakkimuthu, Fern, and Tadepalli 2018)
is trained using stochastic gradient descent, which is used to
select the best action in each step. Similar to A2C-Plan, the
planner is built upon the PROST framework.

On Evaluation Metrics
The evaluation of the planner performance was in princi-
ple the same as in the previous competitions: planners per-
formed a sequence of interactions (runs) with rddlsim (San-
ner 2010) that simulate the execution of the planner’s policy,
and the average cumulative reward over those runs is used to
estimate planner performance. However, some details were
changed in comparison to previous competitions: the num-
ber of runs was increased from 30 to 75 for higher statis-
tical significance of the averages; the number of instances
per domain was doubled from 10 to 20 for better scaling be-
tween small and large instances; the horizon was instance
dependent to add an additional challenge with short or large
horizons; memory was doubled from 2GB to 4GB to reflect
modern hardware; and the average deliberation time per step
was raised from approximately 1 second to 2.5 seconds, re-
sulting in a total deliberation time between approx. 1 hour
for the instances with the smallest horizon of 20 and more
than 6 hours for the instances with the largest horizon of
120, an amount of time that allows offline planners to come
up with a policy that is competitive with online planning.
Furthermore, planners had to announce prior to each run if
the round contributes to the evaluation to ensure that an op-
timal policy also maximizes the average cumulative reward
over the executions of the policy (Keller and Geißer 2015).

IPC Score. The quality of each planner is measured in
terms of the IPC score with an artificial minimum policy
that is set to the maximum of a random policy and (if possi-
ble) a policy that only executes no-op actions. The IPC score
is a normalized value between 0 and 1, where 0 is assigned
to a planner that did not simulate 75 runs successfully or
did not outperform the minimum policy, 1 is assigned to the
best planner in the competition (if there is a planner with 75
valid runs that performed better than the min policy) and a
value that is linearly interpolated between these extremes is
assigned to each of the other planners. In the following, we
argue that without having access to an optimal upper bound,
i.e., the average cumulative reward of an optimal policy, a
planner evaluation based on the IPC score is flawed. We

Planner A B Min. Opt.

Instance 1 5.00 1.00 0 100
Instance 2 1.00 2.00 0 2

IPC Score w/o Opt. 1.50 1.20 0 -
IPC Score w. Opt. 0.55 1.01 0 3

Table 1: A hypothetical competition result, where the IPC
score is evaluated with and without consideration of optimal
upper bounds.

want to emphasize that the aim of this discourse is not to
question which planner is the winner of the competition, but
to spark a discussion among the community on the under-
lying evaluation metric, and to motivate further research on
upper bounds for the benchmark sets used in planning.

In principle, the problem is that without an optimal upper
bound the IPC score is not a stable metric, as the introduc-
tion of a new participant may change the results of the scores
of all other participants if the new participant performs best
in any instance. A consequence is that introducing a new par-
ticipant may change the ranking between the current partic-
ipants. Even worse: after introducing optimal upper bounds
on the rewards the winner might change.

Table 1 shows an example where the normalization with
optimal rewards changes the outcome of a hypothetical com-
petition. Here, without considering optimal expected re-
ward, the performance of planner A appears to be better than
the performance of planner B. More precisely, A is five times
better than B in instance 1, while B is only twice as good as
A in instance 2. According to the IPC score, planner A is the
winner of the competition. After introducing upper bounds
on the average cumulative reward, it turns out that planner
B performs optimally in the second instance and in the first
instance both planners perform poorly in comparison to the
optimal policy. Now, according to the IPC score, planner B
is the winner of the competition. Note that the order can also
change with the introduction of a new planner who performs
better in instance 1 than planner A: submitting similar plan-
ner configurations to the competition might be detrimental
for the planner performance. With optimal upper bounds, the
order of two planners can never change when a new planner
is introduced, since the IPC values of these two planners do
not change.

In the absence of optimal expected reward values, one op-
tion is to rank the planners in order of performance on each
instance, instead of accumulating the relative average re-
wards. Such a ranking system is closely related to the field of
social choice theory. Each instance induces a ranking which
can be interpreted as an independent preference relation. In
other words, each instance represents a voter and each plan-
ner a possible candidate. There are several election methods
for determining a winner in such a ranking system. Each
fulfill different criteria, such as independence from irrele-
vant alternatives, independence of clone alternatives, or the
majority criterion. Yet, it is a well-known game theoretical
result that no voting system can fulfill even a small number



of particularly important criteria (Osborne and Rubinstein
1994). Therefore, before any voting system can be applied,
it is important to define the criteria one wants to meet.

While such a ranking system ignores the relative perfor-
mance of the planners, the discussion shows that even for
arguably simpler measures the final evaluation depends on
the underlying evaluation criteria one wants to meet and
guaranteeing multiple criteria might even be impossible. We
also did not address the probabilistic aspect of the problem,
where we have to consider variance on the possible rewards.
Designing a satisfactory system is not only out of the scope
of this paper, but also requires the input of the IPC commu-
nity and a theoretical analysis and discussion of this topic.

Analysis of Planner Performance
One should keep in mind that the aim of the planning com-
petition is not necessarily to elect the best planning system,
but to promote research and highlight current challenges in
planning. Thus, we now take a closer look at the competi-
tion results and discuss the strengths and weaknesses of the
different systems. While the IPC score might not be the best
metric to determine the best planning system, it still gives
some insight into the planner performance on individual do-
mains. In the following we will put our focus on the online
planning systems, as both offline planners performed worse
than the online planners in almost3 all domains (total IPC
score of 28.6 for Imitation Net and 26.6 for A2C-Plan), and
leave a study of these systems for future work.

We begin our analysis by having a look at the official
competition results, depicted in Table 2. Since the baseline
planners PROST 2011 and 2014 were only provided to com-
pare the current participants with the winners of the previ-
ous competitions, the official winner was PROST-DD. The
differences between PROST-DD, SOGBOFA and Random
Bandit are minor, though. Furthermore, all submitted plan-
ners contained more or less severe bugs at the time of the
competition, which affected their performance on some of
the domains. Since the goal of our analysis is to shed light
on the current state of the art in probabilistic planning and
exhibit potential future work, we performed an additional
evaluation within the same competition setup, but used an
updated version of the planners if available. IPC scores with
an updated version of PROST-DD and SOGBOFA (Cui,
Keller, and Khardon 2019) are depicted in Table 3. Note that
the scores are computed without considering A2C-Plan and
Imitation-Net results.

It is apparent that the bugfixes for both planners were
quite significant on some of the domains and both PROST-
DD and SOGBOFA significantly outperform the baseline
planners in the bugfixed versions. Furthermore, PROST,
PROST-DD and SOGBOFA each dominate all other plan-
ners in at least one domain with respect to the IPC score. As
a consequence, we further focus on a brief analysis of only
these three planners, look into possible reasons for their per-
formance, and highlight possible future research to provide
additional insight.

3The only domain where Imitation-Net showed competitive
performance was WILDLIFE PRESERVE.

SOGBOFA is not only the planner which differs architec-
turally and algorithmitically the most from the otherwise
PROST-based planners, the most recent version also sig-
nificantly outperforms its competitors. The most prominent
feature of SOGBOFA is the support of large action spaces
(no grounding process is involved), thus one reason for the
strong performance might be that the planner is simply able
to at least do something on the larger domains. To see this,
we compare the number of instances where each planner
completed all 75 runs, depicted in Table 4. Indeed, there are
17 instances where SOGBOFA was the only planner able
to complete all 75 runs. Note that none of the other plan-
ners uniquely completed 75 runs on any instance (consid-
ering only a single configuration per planner). However, re-
call that the IPC score is only affected if the planner out-
performs the min-policy. This was only the case in 5 out of
the 17 instances (1 COOPERATIVE RECON, 3 RED-FINNED
BLUE-EYE, 1 MANUFACTURER), which indicates that the
planner did not only perform well because it was able to
handle many instances where the other planners failed.

The advantage of SOGBOFA in instances with large ac-
tion spaces is further highlighted by its performance in RED-
FINNED BLUE-EYE and the second half of the COOPERA-
TIVE RECON instances. Both domains have a large action
space, and although the other planners are able to outper-
form the min-policy in these domains, SOGBOFA has a sig-
nificantly higher average reward. The third domain where
SOGBOFA shines is the MANUFACTURER domain, yet the
applicable action space of this domain is quite low (only
a couple of actions are applicable in each step). As this is
a domain where the SOGBOFA algorithm outperforms the
THTS-based algorithms independently from the size of the
problem, we see this domain as a candidate for future re-
search on both algorithms. We also conjecture that for these
three domains the relative performance indicated by the IPC
score would still hold, even if an upper bound on these prob-
lems would be provided.

The only domain where SOGBOFA performed signifi-
cantly worse than every other competitor is PUSH YOUR
LUCK. Interestingly, this is the domain with the overall
smallest problem size, both in terms of applicable actions
and state-space size. This allows us to compute the optimal
reward for some of the instances and compare it to the plan-
ner results, depicted in Figure 1. While THTS-based plan-
ners often reach the optimal expected reward, this does not
hold for SOGBOFA, which might be attributed to the opti-
mality guarantees of UCT?, whereas the automatic differen-
tiation algorithm does not provide such guarantees.

PROST-DD showed the best performance in ACADEMIC
ADVISING and WILDLIFE PRESERVE. In the following we
will focus on a comparison between the PROST-DD planner
and the baseline, as both planners share the underlying algo-
rithm but differ in initialization, recommendation function,
and the grounding process. We will focus on the initializa-
tion and the grounding process, and refer to Keller (2015)
for a comparison of the behaviour of the different recom-
mendation functions.



PROST PROST-DD Random SOGBOFA
2011 2014 0.1 0.5 Bandit

ACADEMIC ADVISING (20) 3.2 3.3 5.8 6.6 0.7 4.1
CHROMATIC DICE (20) 12.8 10.1 7.6 7.5 17.1 19.4
COOPERATIVE RECON (20) 9.0 10.7 10.3 12.0 1.5 6.9
EARTH OBSERVATION (20) 18.7 19.9 6.5 5.3 12.8 7.4
MANUFACTURER (20) 7.1 2.7 3.3 2.8 4.1 0
PUSH YOUR LUCK (20) 6.3 14.2 15.0 12.7 13.1 1.4
RED-FINNED BLUE-EYE (20) 6.9 6.0 5.9 5.4 5.6 18.3
WILDLIFE PRESERVE (20) 3.9 7.9 14.3 14.3 10.8 4.8

Sum (160) 67.9 74.7 68.8 66.5 65.6 62.3

Table 2: Official IPC scores of the top performers of the International Planning Competition 2018.

PROST PROST-DD Random SOGBOFA
2011 2014 0.1 0.5 Bandit

ACADEMIC ADVISING (20) 4.06 3.33 6.84 5.61 0.81 4.86
CHROMATIC DICE (20) 12.91 10.04 9.82 10.49 16.97 19.2
COOPERATIVE RECON (20) 6.19 6.85 7.82 8.06 1.33 15.11
EARTH OBSERVATION (20) 18.76 19.73 17.24 16.77 12.74 11.52
MANUFACTURER (20) 4.05 2.08 3.08 4.72 1.14 10.34
PUSH YOUR LUCK (20) 6.57 14.61 14.99 15.22 13.22 2.32
RED-FINNED BLUE-EYE (20) 6.41 7.32 5.9 4.92 5.49 18.97
WILDLIFE PRESERVE (20) 3.99 7.98 15.87 14.99 10.78 8.68

Sum (160) 62.94 71.94 81.56 80.87 62.48 91.0

Table 3: IPC scores of the IPC 2018 top performers, based on updated planner versions.

PROST PROST-DD Random SOGBOFA
2011 2014 0.1 Bandit

ACADEMIC ADVISING (20) 11 12 14 11 20
CHROMATIC DICE (20) 20 20 20 20 20
COOPERATIVE RECON (20) 13 15 17 17 20
EARTH OBSERVATION (20) 20 20 20 20 20
MANUFACTURER (20) 10 11 11 11 16
PUSH YOUR LUCK (20) 9 17 20 20 20
RED-FINNED BLUE-EYE (20) 11 15 15 17 20
WILDLIFE PRESERVE (20) 4 9 16 16 10

Sum (160) 98 119 133 132 146

Table 4: Number of instances for each planner where all 75 runs were completed in time.



Figure 1: Average Reward in PUSH YOUR LUCK.

Figure 2: Average reward on instances where the DD heuris-
tic was fully constructed.

Figure 3: Parsing times in seconds.

As a first step, we evaluate the impact of the decision di-
agram based initialization. Note that in instances where the
decision diagrams are not constructed, both planners rely on
the same initialization (IDS). Figure 2 plots the average re-
ward of PROST-DD and of PROST 2014 for each instance
where both planners finished all 75 runs and where the de-
cision diagram data structure was completely built up4. In
general, the heuristic improves the average reward if con-
structed, which is also the reason for the stronger perfor-
mance in ACADEMIC ADVISING. The varying performance
in PUSH YOUR LUCK is a result of both heuristics being
very uninformative: in instances where a dice has more than
6 faces the probability for each face to appear becomes 0
in the determinisation. It is worth to note that for instances
where the heuristic was not constructed, PROST-DD wastes
up to 12.5% of the search time.

Next, we analyse the impact of the parser difference. Both
parsers generate the same grounded instance, but differ in
execution time. Figure 3 depicts the parsing time in sec-
onds per instance. Clearly, the advantage of PROST-DD in
WILDLIFE PRESERVE is due to the timeout of the baseline
parser in half of the instances. On the other hand, in some
instances of RED-FINNED BLUE-EYE and ACADEMIC AD-
VISING the PROST-DD parser times out while the baseline
parser is able to parse the instance. Due to the poor perfor-
mance of the baseline on these instances this does not influ-
ence the final score, though.

PROST. We conclude our brief planner analysis with a few
words on the performance of the UCT? search algorithm,
which is the core of both PROST 2014 and PROST-DD.
The two domains where this approach significantly outper-
formed SOGBOFA are EARTH OBSERVATION and PUSH
YOUR LUCK. For PUSH YOUR LUCK, we have already seen
that part of the reason is the optimality guarantee given by
the Bellman backups of UCT?, which allows to compute the
optimal expected reward for many of the instances (this also
holds for WILDLIFE PRESERVE). It would certainly be in-
teresting to see how close the EARTH OBSERVATION results
are to the optimal values. Additionally, EARTH OBSERVA-
TION is the domain with the least number of actions: only 4
actions are applicable in every state, which apparently favors
sampling-based techniques.

Conclusion
To keep the conclusion brief, we emphasize the importance
of having access to (near-) optimal rewards for the computa-
tion of IPC scores. Our analysis indicates that the benchmark
set of IPC 2018 provides a challenge for the current state of
the art in probabilistic planning and gives insight on possible
future research. Future work on the PROST planner should
be concerned with how to efficiently deal with large state
and action spaces. For the SOGBOFA system, an interesting
question is if it is possible to provide optimality guarantees.
Why offline planners were unable to meet the performance
of online systems remains an open question.

4We removed data points for WILDLIFE PRESERVE, as both
planners share the average reward in 8 out of 9 instances.
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