
Under review as a conference paper at ICLR 2020

FALCON: FAST AND LIGHTWEIGHT CONVOLUTION
FOR COMPRESSING AND ACCELERATING CNN

Anonymous authors
Paper under double-blind review

ABSTRACT

How can we efficiently compress Convolutional Neural Networks (CNN) while
retaining their accuracy on classification tasks? A promising direction is based
on depthwise separable convolution which replaces a standard convolution with
a depthwise convolution and a pointwise convolution. However, previous works
based on depthwise separable convolution are limited since 1) they are mostly
heuristic approaches without a precise understanding of their relations to standard
convolution, and 2) their accuracies do not match that of the standard convolution.
In this paper, we propose FALCON, an accurate and lightweight method for com-
pressing CNN. FALCON is derived by interpreting existing convolution methods
based on depthwise separable convolution using EHP, our proposed mathematical
formulation to approximate the standard convolution kernel. Such interpretation
leads to developing a generalized version rank-k FALCON which further improves
the accuracy while sacrificing a bit of compression and computation reduction
rates. In addition, we propose FALCON-branch by fitting FALCON into the previ-
ous state-of-the-art convolution unit ShuffleUnitV2 which gives even better accu-
racy. Experiments show that FALCON and FALCON-branch outperform 1) existing
methods based on depthwise separable convolution and 2) standard CNN models
by up to 8× compression and 8× computation reduction while ensuring similar
accuracy. We also demonstrate that rank-k FALCON provides even better accu-
racy than standard convolution in many cases, while using a smaller number of
parameters and floating-point operations.

1 INTRODUCTION

How can we efficiently reduce size and energy consumption of Convolutional Neural Networks
(CNN) while maintaining their accuracy on classification tasks? Nowadays, CNN is widely used in
various areas including computer vision (Krizhevsky et al. (2012); Simonyan & Zisserman (2014);
Szegedy et al. (2017)), natural language processing (Yin et al. (2016)), recommendation system
(Kim et al. (2016a)), etc. In addition, model compression has become an important technique due to
an increase in the model capacity and the number of parameters in CNN. One recent and promising
direction for compressing CNN is depthwise separable convolution (Sifre (2014)) which replaces
standard convolution with depthwise and pointwise convolutions. The depthwise convolution ap-
plies a separate 2D convolution kernel for each input channel, and the pointwise convolution changes
the channel size using 1×1 convolution (details in Section 2.1). Several recent methods (Howard
et al. (2017); Sandler et al. (2018); Zhang et al. (2017)) based on depthwise separable convolution
show reasonable performances in terms of compression and computation reduction.

However, existing approaches based on depthwise separable convolution have several crucial limi-
tations. First, they are heuristic methods, and their relation to the standard convolution is not clearly
identified. Second, due to their heuristic nature, generalizing the methods is difficult. Third, al-
though they give reasonable compression and computation reduction, their accuracy is not sufficient
compared to that of standard-convolution-based models.

In this paper, we propose FALCON, an accurate and lightweight method for compressing CNN.
FALCON overcomes the limitations of the previous methods based on the depthwise separable con-
volution using the following two main ideas. First, we precisely define the relationship between
the standard convolution and the depthwise separable convolution using EHP (Extended Hadamard

1

Under review as a conference paper at ICLR 2020

Product), which is our proposed mathematical formulation to correlate the standard convolution ker-
nel with the depthwise convolution kernel and the pointwise convolution kernel. We then design
FALCON by fine-tuning and reordering the results of EHP to improve the accuracy of convolution
operations. Second, based on the precise definition, we generalize the FALCON to design rank-k
FALCON, which further improves accuracy while sacrificing a bit of compression and computa-
tion reduction rates. We also propose FALCON-branch by fitting FALCON into the state-of-the-art
convolution unit ShuffleUnitV2 which gives even higher accuracy. As a result, FALCON and FAL-
CON-branch provide a superior accuracy compared to other methods based on depthwise separable
convolution, with similar compression and computation reduction rates, and rank-k FALCON further
improves accuracy, outperforming even the original convolution in many cases. Our contributions
are summarized as follows:

• Generalization. We analyze and generalize depthwise separable convolution to our pro-
posed EHP (Extended Hadamard Product) operation. This generalization enables a precise
understanding of the relationship between depthwise separable convolution and standard
convolution. Furthermore, with fine-tuning operations, it leads to our proposed method
FALCON.

• Algorithm. We propose FALCON, a CNN compression method based on depthwise sep-
arable convolution. FALCON is carefully designed to compress CNN with little accuracy
loss. We also propose rank-k FALCON to further improve the accuracy with a little sac-
rifice in compression and computation reduction rates. FALCON can be easily integrated
into other architectures, and we propose FALCON-branch which combines FALCON with
a branch architecture for a better performance. We theoretically analyze the compression
and computation reduction rates of FALCON and other competitors.

• Experiments. We perform extensive experiments and show that FALCON 1) outperforms
other state-of-the-art methods based on depthwise separable convolution for compressing
CNN, and 2) provides up to 8× compression and computation reduction compared to the
standard convolution while giving similar accuracies. Furthermore, we show that rank-k
FALCON provides even better accuracy than the standard convolution in many cases while
using a smaller number of parameters and floating-point operations.

The rest of this paper is organized as follows. Section 2 explains preliminaries. Section 3 describes
our proposed method FALCON. Section 4 presents experimental results. After discussing related
works in Section 5, we conclude in Section 6.

2 PRELIMINARY

We describe preliminaries on depthwise separable convolution and methods based on depthwise
separable convolution. Symbols used in this paper are described in Table 4 of Appendix.

2.1 DEPTHWISE SEPARABLE CONVOLUTION

Depthwise Separable Convolution (DSConv) consists of two sub-layers: depthwise convolution and
pointwise convolution. The architecture of each convolution layer in DSConv is illustrated in Fig-
ure 5(a). Depthwise convolution (DWConv) kernel consists of several D×D 2-dimensional filters.
The number of 2-dimension filters is the same as that of input feature maps. Each filter is applied
on the corresponding input feature map, and produces an output feature map. Pointwise convolution
(PWConv), known as 1× 1 convolution, is a standard convolution with kernel size 1.

DSConv is defined as follows:

O′h′,w′,m =

D∑
i=1

D∑
j=1

Di,j,m · Ihi,wj ,m (1)

Oh′,w′,n =

M∑
m=1

Pm,n ·O′h′,w′,m (2)

where Di,j,m and Pm,n are depthwise convolution kernel and pointwise convolution kernel, respec-
tively. O′h′,w′,m ∈ RH′×W ′×M denotes intermediate feature maps. DSConv performs DWConv on

2

Under review as a conference paper at ICLR 2020

Input

Standard
Convolution

Output

M Channels

N ChannelsRelu

(a) Standard
Convolution

Pointwise
Convolution

Input

Depthwise
Convolution

Output

M Channels

N Channels

N ChannelsBN+ Relu

(b) FALCON (proposed)

Input

Standard
Convolution

Output

Concat

M/2 Channels

Channel Shuffle

Channel Split

M/2
Channels

M/2 Channels
BN+Relu

M Channels

M Channels

M Channels

(c) StConv-branch

Pointwise Convolution

Input

Depthwise Convolution

Output

Concat

M/2 Channels

Channel Shuffle

Channel Split

M/2 Channels
BN+Relu

M Channels

M Channels

M Channels

M/2 Channels

M/2
Channels

(d) FALCON-branch (proposed)

Figure 1: Comparison of architectures. BN denotes batch-normalization. Relu and Relu6 are activa-
tion functions. (a) Standard convolution. (b) Our proposed FALCON. (c) Standard convolution with
branch (StConv-branch). (d) FALCON-branch which combines FALCON with StConv-branch.
input feature maps Ihi,wj ,m using equation 1, and generates intermediate feature maps O′h′,w′,m.
Then, DSConv performs PWConv on O′h′,w′,m using equation 2, and generates output feature maps
Oh′,w′,n.

2.2 METHODS BASED ON DEPTHWISE SEPARABLE CONVOLUTION

Several CNN methods have been proposed based on Depthwise Separable Convolution (DSConv)
recently. DSConv was first introduced by Sifre (2014). Chollet & Franois (2016) built Xception
module using DSConv in a few layers. Howard et al. (2017) built Mobilenet with all convolution
layers replaced by DSConv. Sandler et al. (2018) built MobileNetV2 with inverted bottleneck block,
denoted as MobileConvV2 in this paper. Zhang et al. (2017) built a CNN model with Shufflenet
Unit, denoted as ShuffleUnit in this paper. Ma et al. (2018) improved Shufflenet by designing Shuf-
flenetV2 Unit, denoted as ShuffleUnitV2 in this paper. The architecture and detailed descriptions
are in Figure 5 and Appendix D.

3 PROPOSED METHOD

We describe FALCON, our proposed method for compressing CNN. We first define Extended
Hadamard Product (EHP), a key mathematical formulation to generalize depthwise separable con-
volution, in Section 3.1. We interpret depthwise separable convolution used in Mobilenet using EHP
in Section 3.2. We propose FALCON in Section 3.3 and explain why FALCON can replace standard
convolution. Then, we propose rank-k FALCON, which extends the basic FALCON, in Section 3.4.
We show that FALCON can be easily integrated into a branch architecture to compress it with little
sacrifice of accuracy in Section 3.5. Finally, we theoretically analyze the performance of FALCON
in Appendix C.

3.1 EXTENDED HADAMARD PRODUCT (EHP)

We define Extended Hadamard Product (EHP), a generalized elementwise product for two operands
of different shapes, to generalize the formulation of the relation between standard convolution and
depthwise separable convolution. Before generalizing the formulation, we give an example of for-
mulating the relation between standard convolution and depthwise separable convolution. Suppose
we have a 4-order standard convolution kernel K ∈ RI×J×M×N , a 3-order depthwise convolu-
tion kernel D ∈ RI×J×M , and a pointwise convolution kernel P ∈ RM×N . Let Ki,j,m,n be
(i, j,m, n)-th element of K, Di,j,m be (i, j,m)-th element of D, and Pm,n be (m,n)-th element
of P. Then, it can be shown that applying depthwise convolution with D and pointwise convolution
with P is equivalent to applying standard convolution kernel K where Ki,j,m,n = Di,j,m · Pm,n

(see Section 3.2 for detailed proof).

3

Under review as a conference paper at ICLR 2020

⋯

𝑁

𝐷 𝐷

𝑀
=

𝐷 𝐷

𝑀
⊙'

𝑁

𝑀

Standard
Convolution

Depthwise Separable
Convolution used in Mobilenet

𝓚 ∈ ℝ𝑫×𝑫×𝑴×𝑵 𝓓 ∈ ℝ𝑫×𝑫×𝑴 𝐏 ∈ ℝ𝑴×𝑵

(a)

⋯

𝑁

𝐷 𝐷

𝑀
=

Standard Convolution Convolution of FALCON

𝐷 𝐷

𝑁
⊙'

𝑀

𝑁𝑇𝑇),+,,,-

𝓚 ∈ ℝ𝑫×𝑫×𝑴×𝑵 𝓓 ∈ ℝ𝑫×𝑫×𝑵 𝐏 ∈ ℝ𝑵×𝑴

(b)

Standard Convolution Convolution of rank- FALCON

(c)

Figure 2: (a) Relation between standard convolution and depthwise separable convolution ex-
pressed with EHP. The common axes correspond to the input channel-axis of standard convolution.
(b) Relation between standard convolution and FALCON expressed with EHP. The common axes
correspond to the output channel-axis of standard convolution. TT(1,2,4,3) indicates tensor trans-
pose operation to permute the third and the fourth dimensions of a tensor. (c) Relation between the
standard convolution and rank-k FALCON expressed with EHP.
To formally express this relation, we define Extended Hadamard Product (EHP) as follows.

Definition 1 (Extended Hadamard Product). Given p-order tensor D ∈ RI1×···×Ip−1×M and q-
order tensor P ∈ RM×J1×···×Jq−1 , the Extended Hadamard Product D�E P of D and P is defined
to be the tensor K ∈RI1×...×Ip−1×M×J1×...×Jq−1 where the last axis of D and the first axis of P
are the common axes such that

Ki1,...,ip−1,m,j1,...,jq−1
= Di1,...,ip−1,m ·Pm,j1,...,jq−1

for all elements of K. �

Contrary to Hadamard Product which is defined only if the shapes of the two operands are the same,
Extended Hadamard Product (EHP) deals with tensors of different shapes. Now, we define a special
case of Extended Hadamard Product (EHP) for a third-order tensor and a matrix.

Definition 2 (Extended Hadamard Product for a third order tensor and a matrix). Given a third-
order tensor D ∈ RI×J×M and a matrix P ∈ RM×N , the Extended Hadamard Product D�E P is
defined to be the tensor K ∈RI×J×M×N where the third axis of the tensor D and the first axis of
the matrix P are the common axes such that

Ki,j,m,n = Di,j,m ·Pm,n.
for all elements of K. �

We will see that the depthwise separable convolution in Mobilenet can be easily expressed with EHP
in Section 3.2; we also propose a new architecture FALCON based on EHP in Section 3.3. EHP is
also a core operation that helps us understand other convolution architectures including MobilenetV2
and Shufflenet (see Appendix E).

3.2 DEPTHWISE SEPARABLE CONVOLUTION AND EHP

In this section, we discuss how to represent the convolution layer of Mobilenet as Extended
Hadamard Product (EHP) described in Section 3.1. We interpret the depthwise separable convo-
lution, which is the convolution of Mobilenet, as an application of EHP. This interpretation leads to
designing a better convolution architecture FALCON in Section 3.3.

We represent the relationship between standard convolution kernel K ∈ RD×D×M×N and depth-
wise separable convolution consisting of depthwise convolution kernel D ∈ RD×D×M and point-
wise convolution kernel P ∈ RM×N using one EHP operation. Figure 2(a) illustrates the rela-
tionship between standard convolution and depthwise separable convolution used in Mobilenet. We
show that applying depthwise separable convolution with D and P is equivalent to applying stan-
dard convolution with a kernel K which is constructed from D and P.

4

Under review as a conference paper at ICLR 2020

Theorem 1. Applying depthwise separable convolution with depthwise convolution kernel D ∈
RD×D×M and pointwise convolution kernel P ∈ RM×N is equivalent to applying standard convo-
lution with kernel K = D�E P.

Proof. See Appendix B.1.

3.3 FAST AND LIGHTWEIGHT CONVOLUTION (FALCON)

We propose FALCON (FAst and Lightweight CONvolution), a novel lightweight convolution that
replaces standard convolution. FALCON is an efficient method with fewer parameters and computa-
tions than those that the standard convolution requires. In addition, FALCON has better accuracy than
competitors while having similar compression and computation reduction rates. The main idea of
FALCON is 1) to carefully align depthwise and pointwise convolutions, and 2) initialize kernels us-
ing the convolution kernels of the trained standard model. We observe that a typical convolution has
more output channels than input channels. In such a setting, performing depthwise convolution after
pointwise convolution would allow the depthwise convolution to extract more features from richer
feature space; on the other hand, performing pointwise convolution after depthwise convolution as in
Mobilenet only combines features extracted from a limited feature space. Based on the observation,
FALCON first applies pointwise convolution to generate an intermediate tensor O′ ∈ RH×W×N and
then applies depthwise convolution.

We represent the relationship between standard convolution kernel K ∈ RD×D×M×N and FALCON
by applying an EHP operation on pointwise convolution kernel P ∈ RN×M and depthwise convo-
lution kernel D ∈ RD×D×N in Figure 2(b). In FALCON, the kernel K is represented by EHP of D
and P as follows:

K = TT(1,2,4,3)(D�E P) s.t. Ki,j,m,n = Pn,m ·Di,j,n.
where TT(1,2,4,3) indicates tensor transpose operation to permute the third and the fourth dimensions
of a tensor. Note that the common axis is the output channel axis of the standard convolution, unlike
EHP for depthwise separable convolution where the common axis is the input channel axis of the
standard convolution.

As in Section 3.2, we show that applying FALCON is equivalent to applying standard convolution
with a specially constructed kernel.

Theorem 2. FALCON which applies pointwise convolution with kernel P ∈ RN×M and then depth-
wise convolution with kernel D ∈ RD×D×N is equivalent to applying standard convolution with
kernel K = TT(1,2,4,3)(D�E P).

Proof. See Appendix B.2.

Based on the equivalence, we initialize pointwise convolution and depthwise convolution kernels
D and P of FALCON by fitting them to the convolution kernels of the trained standard model; i.e.,
D,P = argminD′,P′ ||K−TT(1,2,4,3)(D′�E P′)||F . After pointwise convolution and depthwise
convolution, we add batch-normalization and ReLU activation function as shown in Figure 1(b). We
note that FALCON significantly reduces the numbers of parameters and FLOPs compared to standard
convolution, which we discuss at Appendix C.

3.4 RANK-k FALCON

We propose rank-k FALCON, an extended version of FALCON that improves accuracy while sacrific-
ing a bit of compression and computation reduction rates. The main idea is to perform k independent
FALCON operations and sum up the result. Then, we apply batch-normalization (BN) and ReLU ac-
tivation function to the summed result. Since each FALCON operation requires independent param-
eters for pointwise convolution and depthwise convolution, the number of parameters increases and
thus the compression and the computation reduction rates decrease; however, it improves accuracy
by enlarging the model capacity. We formally define the rank-k FALCON with EHP as follows.

Definition 3 (Rank-k FALCON with Extended Hadamard Product). Rank-k FALCON expresses
standard convolution kernel K ∈ RD×D×M×N as EHP of depthwise convolution kernel D(i) ∈

5

Under review as a conference paper at ICLR 2020

RD×D×N and pointwise convolution kernel P(i) ∈ RN×M for i = 1, 2, ..., k such that

K =

k∑
i=1

TT(1,2,4,3)(D
(i) �E P(i)) s.t. Ki,j,m,n =

k∑
i=1

P(i)
n,m ·D

(i)
i,j,n

�

Figure 2(c) illustrates the relation between standard convolution and rank-k FALCON. For each
i = 1, 2, ..., k, we construct the tensor K(i) using EHP of the depthwise convolution kernel D(i)

and the pointwise convolution kernel P(i). Then, we construct the standard kernel K by the element-
wise sum of the tensors K(i) for all i.

3.5 FALCON-BRANCH

FALCON can be easily integrated into a CNN architecture called standard convolution operation
with a branch (StConv-branch), which consists of two branches: standard convolution on the left
branch and a residual connection on the right branch (see Figure 1(c)). Ma et al. (2018) improved
the performance of CNN by applying depthwise and pointwise convolutions on the left branch of
StConv-branch. Since FALCON replaces standard convolution, we observe that StConv-branch can
be easily compressed by applying FALCON on the left branch.

StConv-branch first splits an input in half along the depth dimension. A standard convolution oper-
ation is applied to one half, and no operation to the other half. The two are concatenated along the
depth dimension, and an output is produced by shuffling the channels of the concatenated tensor.
FALCON-branch (see Figure 1(d)) is constructed by replacing the standard convolution branch (left
branch) of StConv-branch with FALCON. Advantages of FALCON-branch are that 1) the branch ar-
chitecture improves the efficiency since convolutions are applied to only half of input feature maps
and that 2) FALCON further compresses the left branch effectively. FALCON-branch is initialized by
fitting FALCON to the standard convolution kernel of the left branch of StConv-branch.

4 EXPERIMENTS

We validate the performance of FALCON through extensive experiments. We aim to answer the
following questions:

• Q1. Accuracy vs. Compression (Section 4.3). What are the accuracy and the compression
tradeoffs of FALCON, FALCON-branch, and competitors? Which method gives the best
accuracy for a given compression rate?

• Q2. Accuracy vs. Computation (Section 4.4). What are the accuracy and the computation
tradeoffs of FALCON, FALCON-branch, and competitors? Which method gives the best
accuracy for a given amount of computation?

• Q3. Rank-k FALCON (Section 4.5). How do the accuracy, the number of parameters, and
the number of FLOPs change as the rank k increases in FALCON?

4.1 EXPERIMENTAL SETUP

Datasets. We perform image classification task on four famous datasets - CIFAR10, CIFAR100,
SVHN, and ImageNet. Detailed information of these datasets is described in Table 1.

Table 1: Datasets.
dataset # of classes input size # of train # of test

CIFAR-101 10 32× 32× 3 10× 6000 10000
CIFAR-1002 100 32× 32× 3 100× 600 10000
SVHN3 10 32× 32 73257 26032
ImageNet4 1000 224× 224× 3 1.2× 106 150000

1https://www.cs.toronto.edu/˜kriz/cifar.html
2https://www.cs.toronto.edu/˜kriz/cifar.html
3http://ufldl.stanford.edu/housenumbers/
4http://www.image-net.org

6

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
http://www.image-net.org

Under review as a conference paper at ICLR 2020

Models. For CIFAR10, CIFAR100, and SVHN datasets, we choose VGG19 and ResNet34 to
evaluate the performance. We shrink the sizes of both models since the sizes of these three datasets
are smaller than that of Imagenet. In VGG19, we reduce the number of fully connected layers and the
number of features in fully connected layers: three large fully connected layers (4096-4096-1000)
in VGG19 are replaced with two small fully connected layers (512-10 or 512-100). In ResNet34,
we remove the first 7 × 7 convolution layer and max-pooling layer since the input size (32 × 32)
of these datasets is smaller than the input size (224 × 224) of ImageNet. On both models, we
replace all standard convolution layers (except for the first convolution layer) with those of FALCON
or other competitors in order to compress and accelerate the model. For ImageNet, we choose
VGG16 BN (VGG16 with batch normalization after every convolution layer) and ResNet18. We
use the pretrained model from Pytorch model zoo as the baseline model with standard convolution,
and replace the standard convolution with other types of convolutions.

Competitors. We compare FALCON and FALCON-branch with four convolution units consisting
of depthwise convolution and pointwise convolution: DSConv, MobileConvV2, ShuffleUnit, and
ShuffleUnitV2 (see Figure 5, Section 2.1, and Appendix D for more details). To evaluate the ef-
fectiveness of fitting depthwise and pointwise convolution kernels to standard convolution kernel,
we build EHP-in which is DSConv where kernels D and P are fitted from the pretrained standard
convolution kernel K; i.e., D,P = argminD′,P′ ||K−D′ �E P′||F .

Implementation. We construct all models using Pytorch framework. All the models are trained
and tested on GeForce GTX 1080 Ti GPU.

4.2 FITTING CONVOLUTION UNIT INTO MODEL

We evaluate the performance of FALCON against DSConv, MobileConvV2, ShuffleUnit, and Shuf-
fleUnitV2. We take each standard convolution layer (StConv) as a unit, and replace StConv with
those from FALCON or other competitors. We evaluate the classification accuracy, the number of
parameters in the model, and the number of FLOPs needed for forwarding one image. We only
explain how to apply FALCON in this section. The details of how to fit other convolution units into
the models are described in Appendix F.

FALCON. When replacing StConv with FALCON, we use the same setting as that of StConv. I.e.,
if there are BN and ReLU after StConv, we add BN and ReLU at the end of FALCON; if there is only
ReLU after StConv, we add only ReLU at the end of FALCON. This is because FALCON is initialized
by approximating the StConv kernel using EHP. Using the same setting for BN and ReLU as StConv
is more efficient for FALCON to approximate the StConv. We initialize the pointwise convolution
kernel and the depthwise convolution kernel of FALCON by approximating the pretrained standard
convolution kernel using EHP. The approximation process is as follows: 1) we first initialize the
pointwise convolution kernel and the depthwise convolution kernel randomly, and 2) the pointwise
convolution kernel and the depthwise convolution kernel are updated using gradient descent such
that the mean squared error of their EHP product and the standard convolution kernel is minimized.
Rank-k FALCON uses the same initialization method.

4.3 ACCURACY VS. COMPRESSION

We evaluate the accuracy and the compression rate of FALCON and competitors. Table 2 shows
the results on four image datasets. Note that FALCON or FALCON-branch provides the highest
accuracy in 7 out of 8 cases while using similar or smaller number of parameters than competitors.
Specifically, FALCON and FALCON-branch achieve up to 8× compression rates with less than 1%
accuracy drop compared to that of the standard convolution (StConv). Figure 3 shows the tradeoff
between accuracy and the number of parameters. Note that FALCON and FALCON-branch show the
best tradeoff (closest to the “best” point) between accuracy and compression rate, giving the highest
accuracy with similar compression rates.

Ablation study. We perform an ablation study on two components: 1) the order of depthwise and
pointwise convolutions, and 2) initialization. We observe that with a similar number of parameters,
1) FALCON and FALCON without initialization always result in better accuracy than EHP-in and

7

Under review as a conference paper at ICLR 2020

Table 2: FALCON and FALCON-branch gives the best accuracy for similar number of parameters
and FLOPs. Bold font indicates the best accuracy among competing compression methods.

(a) VGG19-CIFAR10

ConvType Accuracy # of param # of FLOPs

StConv 93.56% 20.30M 398.70M

FALCON 93.40% 2.56M 47.23M
FALCON without initialization 92.88% 2.56M 47.23M
FALCON-branch 1.75× 93.14% 2.64M 54.17M
EHP-in 92.06% 2.56M 46.41M
DSC 91.54% 2.56M 48.02M
MobileConvV2-0.5 92.65% 2.67M 51.80M
ShuffleUnit 2×(g=2) 92.75% 2.74M 46.66M
ShuffleUnitV2 1.375× 92.78% 2.86M 58.24M

(b) ResNet34-CIFAR10

ConvType Accuracy # of param # of FLOPs

StConv 94.01% 21.29M 292.52M

FALCON 92.78% 2.63M 46.33M
FALCON without initialization 92.60% 2.63M 46.33M
FALCON-branch 1.625× 92.64% 2.47M 58.86M
EHP-in 91.73% 2.62M 38.41M
DSC 91.54% 2.62M 38.41M
MobileConvV2-0.5 91.34% 2.55M 39.78M
ShuffleUnit 2×(g=2) 91.74% 3.08M 49.78M
ShuffleUnit V2 1.375× 92.16% 2.98M 51.30M

(c) VGG19-CIFAR100

ConvType Accuracy # of param # of FLOPs

StConv 72.10% 20.35M 398.75M

FALCON 71.63% 2.61M 47.28M
FALCON without initialization 71.80% 2.61M 47.28M
FALCON-branch 1.75× 73.05% 2.68M 54.21M
EHP-in 68.29% 2.61M 46.46M
DSC 68.18% 2.61M 48.07M
MobileConvV2-0.5 72.50% 2.71M 51.85M
ShuffleUnit 2×(g=2) 72.73% 2.79M 46.71M
ShuffleUnit V2 1.375× 72.32% 2.91M 58.29M

(d) ResNet34-CIFAR100

ConvType Accuracy # of param # of FLOPs

StConv 73.94% 21.34M 292.57M

FALCON 71.83% 2.67M 46.38M
FALCON without initialization 71.80% 2.67M 46.38M
FALCON-branch 1.625× 70.26% 2.54M 58.93M
EHP-in 66.88% 2.67M 38.45M
DSC 66.30% 2.67M 38.45M
MobileConvV2-0.5 65.00% 2.59M 39.83M
ShuffleUnit 2×(g=2) 68.97% 3.17M 49.88M
ShuffleUnit V2 1.375× 67.38% 3.04M 51.36M

(e) VGG19-SVHN

ConvType Accuracy # of param # of FLOPs

StConv 95.28% 20.30M 398.70M

FALCON 95.45% 2.56M 47.23M
FALCON without initialization 94.51% 2.56M 47.23M
FALCON-branch 1.75× 94.56% 2.64M 54.17M
EHP-in 94.99% 2.56M 46.41M
DSC 94.37% 2.56M 48.02M
MobileConvV2-0.5 93.28% 2.67M 51.80M
ShuffleUnit 2×(g=2) 93.15% 2.74M 46.66M
ShuffleUnit V2 1.375× 94.36% 2.86M 58.24M

(f) ResNet34-SVHN

ConvType Accuracy # of param # of FLOPs

StConv 94.83% 21.29M 292.52M

FALCON 94.83% 2.63M 46.33M
FALCON without initialization 94.75% 2.63M 46.33M
FALCON-branch 1.625× 94.98% 2.47M 58.86M
EHP-in 94.06% 2.62M 38.41M
DSC 94.03% 2.62M 38.41M
MobileConvV2-0.5 93.16% 2.55M 39.78M
ShuffleUnit 2×(g=2) 93.68% 3.08M 49.78M
ShuffleUnit V2 1.375× 94.35% 2.98M 51.30M

(g) VGG16 BN-ImageNet

ConvType Top-1 Top-5 # of param # of FLOPs
Accuracy Accuracy

StConv 73.37% 91.50% 138.37M 15484.82M

FALCON 71.63% 90.57% 125.33M 1950.75M
FALCON without initialization 71.65% 90.47% 125.33M 1950.75M
FALCON-branch 1.5× 68.24% 88.51% 125.30M 1898.39M
EHP-in 70.98% 90.19% 125.33M 1910.56M
DSC 70.34% 89.71% 125.33M 1989.49M
MobileConvV2-0.5 67.80% 87.90% 125.44M 2180.49M
ShuffleUnit 2×(g=2) 70.40% 89.84% 125.77M 2014.73M
ShuffleUnitV2 1.25× 71.34% 90.34% 125.57M 2180.65M

(h) ResNet18-ImageNet

ConvType Top-1 Top-5 # of param # of FLOPs
Accuracy Accuracy

StConv 69.76% 89.08% 11.69M 1814.07M

FALCON 66.64% 87.09% 1.97M 395.40M
FALCON without initialization 66.19% 86.86% 1.97M 395.40M
FALCON-branch 1.375× 64.01% 85.16% 1.91M 434.44M
EHP-in 66.21% 86.93% 1.96M 336.81M
DSC 65.30% 86.30% 1.96M 336.81M
MobileConvV2-0.5 58.99% 81.55% 1.90M 340.06M
ShuffleUnit 2×(g=2) 65.73% 86.75% 2.22M 438.89M
ShuffleUnitV2 1.1875× 66.29% 87.32% 2.01M 376.15M

DSC, respectively, and 2) EHP-in always results in better accuracy than DSC. Furthermore, FALCON
results in better accuracy than FALCON without initialization in 6 out of 8 cases. These observations
prove our claims in Section 3.3 that 1) EHP-out (FALCON) is more efficient than EHP-in, and 2) the
fitting and the initialization of kernels using EHP improves accuracy. Additionally, we observe that
overall performance is more sensitive towards ordering compared to initialization.

4.4 ACCURACY VS. COMPUTATION

We evaluate the accuracy and the amount of computation of FALCON and competitors. We use
the number of multiply-adds floating point operations (FLOPs) needed for forwarding one image
to a model as the metric of computation. Table 2 also shows the accuracies and the number of
FLOPs of methods on four image datasets. Note that FALCON or FALCON-branch provide the
highest accuracy in 7 out of 8 cases while using similar FLOPs as competitors do. Compared to
StConv, FALCON and FALCON-branch achieve up to 8× FLOPs reduction across different models
on different datasets. Figure 4 shows the tradeoff between accuracy and the number of FLOPs.
Note that FALCON and FALCON-branch show the best tradeoff (closest to the “best” point) between
accuracy and computation, giving the highest accuracy with a similar number of FLOPs.

4.5 RANK-K FALCON

We evaluate the performance of rank-k FALCON by increasing the rank k and monitoring the changes
in the numbers of parameters and FLOPs. In Table 3, we observe three trends as the rank k increases:
1) the accuracy becomes higher than that of rank-1 FALCON, 2) the number of parameters increases,

8

Under review as a conference paper at ICLR 2020

BEST

(a) VGG19-CIFAR10

BEST

(b) ResNet34-CIFAR10

BEST

(c) VGG19-CIFAR100

BEST

(d) ResNet34-CIFAR100

BEST

(e) VGG19-SVHN

BEST

(f) ResNet34-SVHN

BEST

(g) VGG16-ImageNet

BEST

(h) ResNet18-ImageNet

Figure 3: Accuracy w.r.t. number of parameters on different models and datasets. The three blue
circles correspond to rank-1, 2, 3 FALCON (from left to right order), respectively. FALCON provides
the best accuracy for a given number of parameters.

BEST

(a) VGG19-CIFAR10

BEST

(b) ResNet34-CIFAR10

BEST

(c) VGG19-CIFAR100

BEST

(d) ResNet34-CIFAR100

BEST

(e) VGG19-SVHN

BEST

(f) ResNet34-SVHN

BEST

(g) VGG16-ImageNet

BEST

(h) ResNet18-ImageNet

Figure 4: Accuracy w.r.t. FLOPs on different models and datasets. The three blue circles correspond
to rank-1, 2, 3 FALCON (from left to right order), respectively. FALCON provides the best accuracy
for a given number of FLOPs.
and 3) the number of floating point operations (FLOPs) increases. Although the rank k that gives
the best tradeoff of rank and compression/computation reduction varies, rank-k FALCON improves
the accuracy of FALCON in all cases. Especially, we note that rank FALCON often gives even higher
accuracy than the standard convolution, while using smaller number of parameters and FLOPs. For
example, rank-3 FALCON applied to VGG19 on CIFAR100 dataset shows 1.31 percentage point
higher accuracy compared to the standard convolution, with 2.8× smaller number of parameters and
2.8× smaller number of FLOPs. Thus, rank-k FALCON is a versatile method to further improve the
accuracy of FALCON while sacrificing a bit of compression and computation.

5 RELATED WORK

Over the past several years, a lot of studies focused on compressing and accelerating DNN to reduce
model size, running time, and energy consumption.

It is believed that DNNs are over-parameterized. Weight-sharing (Han et al. (2016); Ullrich et al.
(2017); Chen et al. (2015); Choi et al. (2017); Agustsson et al. (2017)) is a common compression

9

Under review as a conference paper at ICLR 2020

Table 3: Rank-k FALCON further improves accuracy while sacrificing a bit of compression and
computation.

(a) VGG19-CIFAR10

ConvType Accuracy # of param # of FLOPs

StConv 93.56% 20.30M 398.70M

FALCON-k1 93.40% 2.56M (7.93×) 47.23M (8.44×)
FALCON-k2 93.47% 4.84M (4.19×) 94.20M (4.23×)
FALCON-k3 93.71% 7.11M (2.86×) 141.16M (2.82×)

(b) ResNet34-CIFAR10

ConvType Accuracy # of param # of FLOPs

StConv 94.01% 21.29M 292.52M

FALCON-k1 92.78% 2.63M (8.10×) 46.33M (6.31×)
FALCON-k2 93.47% 5.04M (4.22×) 88.21M (3.32×)
FALCON-k3 93.59% 7.45M (2.86×) 130.08M (2.25×)

(c) VGG19-CIFAR100

ConvType Accuracy # of param # of FLOPs

StConv 72.10% 20.35M 398.75M

FALCON-k1 71.63% 2.61M (7.80×) 47.28M (8.43×)
FALCON-k2 73.71% 4.88M (4.17×) 94.24M (4.23×)
FALCON-k3 73.41% 7.16M (2.84×) 141.21M (2.82×)

(d) ResNet34-CIFAR100

ConvType Accuracy # of param # of FLOPs

StConv 73.94% 21.34M 292.57M

FALCON-k1 71.83% 2.67M (7.99×) 46.38M (6.31×)
FALCON-k2 72.94% 5.08M (4.20×) 88.25M (3.32×)
FALCON-k3 72.85% 7.49M (2.85×) 130.13M (2.25×)

(e) VGG19-SVHN

ConvType Accuracy # of param # of FLOPs

StConv 95.28% 20.30M 398.70M

FALCON-k1 95.45% 2.56M (7.93×) 47.23M (8.44×)
FALCON-k2 95.72% 4.84M (4.19×) 94.20M (4.23×)
FALCON-k3 95.54% 7.11M (2.86×) 141.16M (2.82×)

(f) ResNet34-SVHN

ConvType Accuracy # of param # of FLOPs

StConv 94.83% 21.29M 292.52M

FALCON-k1 94.83% 2.63M (8.10×) 46.33M (6.31×)
FALCON-k2 95.34% 5.04M (4.22×) 88.21M (3.32×)
FALCON-k3 94.83% 7.45M (2.86×) 130.08M (2.25×)

(g) VGG16 BN-ImageNet

ConvType Top-1 Top-5 # of param # of FLOPs
Accuracy Accuracy

StConv 73.37% 91.50% 138.37M 15484.82M

FALCON-k1 71.63% 90.57% 125.33M (1.10×) 1950.75M (7.94×)
FALCON-k2 72.88% 91.19% 127.00M (1.09×) 3777.86M (4.10×)
FALCON-k3 73.24% 91.54% 128.68M (1.08×) 5604.97M (2.76×)

(h) ResNet18-ImageNet

ConvType Top-1 Top-5 # of param # of FLOPs
Accuracy Accuracy

StConv 69.76% 89.08% 11.69M 1814.07M

FALCON-k1 66.64% 87.09% 1.97M (5.93×) 395.40M (4.59×)
FALCON-k2 68.03% 88.26% 3.22M (3.63×) 653.00M (2.78×)
FALCON-k3 69.07% 88.56% 4.48M (2.61×) 910.61M (1.99×)

method which stores only assignments and centroids of weights. While using the model, weights
are loaded according to assignments and centroids. Pruning (Han et al. (2014); Li et al. (2016))
aims at removing useless weights or setting them to zero. Although weight-sharing and pruning can
significantly reduce the model size, they are not efficient in reducing the amount of computation.
Quantizing (Courbariaux et al. (2015; 2016); Hou et al. (2017); Zhu et al. (2017)) the model into
binary or ternary weights reduces model size and computation simultaneously: replacing arithmetic
operations with bit-wise operations remarkably accelerates the model.

Layer-wise approaches are also employed to efficiently compress models. A typical example of
such approaches is low-rank approximation (Lebedev et al. (2015); Kim et al. (2016b); Novikov
et al. (2015)); it treats the weights as a tensor and uses general tensor approximation methods to
compress the tensor. To reduce computation, approximation methods should be carefully chosen,
since some of approximation methods may increase computation of the model.

Compressing existing models has limitations since they are originally designed to be deep and large
to give high accuracy. A recent trend is to design a brand new architecture that is small and effi-
cient. Mobilenet (Howard et al. (2017)), MobilenetV2 (Sandler et al. (2018)), Shufflenet (Zhang
et al. (2017)), and ShufflenetV2 (Ma et al. (2018)) are the most representative approaches, and they
use depthwise convolution and pointwise convolution as building blocks for designing convolution
layers. Our proposed FALCON gives a thorough interpretation of depthwise convolution and point-
wise convolution, and applies them into model compression, giving the best accuracies with regard
to compression and computation.

6 CONCLUSION

We propose FALCON, an accurate and lightweight convolution method to replace standard convolu-
tion. By interpreting existing convolution methods based on depthwise separable convolution using
EHP operation, FALCON and its general version rank-k FALCON provide accurate and efficient com-
pression on CNN. We also propose FALCON-branch, a variant of FALCON integrated into a branch
architecture of CNN for model compression. Extensive experiments show that FALCON and its vari-
ants give the best accuracy for a given number of parameter or computation, outperforming other
convolution models based on depthwise separable convolution. Compared to the standard convo-
lution, FALCON and FALCON-branch give up to 8× compression and 8× computation reduction
while giving similar accuracy. We also show that rank-k FALCON provides better accuracy than the
standard convolution, while using smaller numbers of parameters and computations.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Timofte, Luca
Benini, and Luc Van Gool. Soft-to-hard vector quantization for end-to-end learning compressible
representations. Neural Information Processing Systems (NIPS), 2017.

Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. International Conference on Machine Learning (ICML),
2015.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the limit of network quantization.
International Conference on Learning Representations (ICLR), 2017.

Chollet and Franois. Xception: Deep learning with depthwise separable convolutions, 2016. URL
http://arxiv.org/abs/1610.02357. cite arxiv:1610.02357.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neu-
ral networks with binary weights during propagations. Neural Information Processing Systems
(NIPS), 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training neural networks with weights and activations constrained to +1 or -1.
Neural Information Processing Systems (NIPS), 2016.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. Neural Information Processing Systems (NIPS), 2014.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. International Conference on Learning
Representations (ICLR), 2016.

Lu Hou, Quanming Yao, and James T. Kwok. Loss-aware binarization of deep networks. Interna-
tional Conference on Learning Representations (ICLR), 2017.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, abs/1704.04861, 2017. 2, 4, 5, 6, 2017.

Dong Hyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu. Convolutional
matrix factorization for document context-aware recommendation. In Recsys, 2016, pp. 233–240,
2016a.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. In-
ternational Conference on Learning Representations (ICLR), 2016b.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada, United States., pp. 1106–1114, 2012.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. International
Conference on Learning Representations (ICLR), 2015.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. International Conference on Learning Representations (ICLR), 2016.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet V2: practical guidelines
for efficient CNN architecture design. CoRR, abs/1807.11164, 2018. URL http://arxiv.
org/abs/1807.11164.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. Neural Information Processing Systems (NIPS),
2017.

11

http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1807.11164
http://arxiv.org/abs/1807.11164

Under review as a conference paper at ICLR 2020

Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensorizing neural
networks. Neural Information Processing Systems (NIPS), 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Laurent Sifre. Rigid-motion scattering for image classification. PhD thesis, cole Polytechnique,
2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In AAAI, 2017, pp. 4278–
4284, 2017.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compres-
sion. International Conference on Learning Representations (ICLR), 2017.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. ABCNN: attention-based convolu-
tional neural network for modeling sentence pairs. TACL, 4:259–272, 2016.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices, 2017. URL http://arxiv.org/abs/
1707.01083.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. Interna-
tional Conference on Learning Representations (ICLR), 2017.

Table 4: Symbols.

Symbol Description

K convolution kernel of size RD×D×M×N

I input feature maps of size RH×W×M

O output feature maps of size RH′×W ′×N

D height and width of kernel (kernel size)
M number of input feature map (input channels)
N number of output feature map (output channels)
H height of input feature map
W width of input feature map
H ′ height of output feature map
W ′ width of output feature map
s stride
p padding
�p,q Extended Hadamard Product (EHP)
t expansion ratio in MobilenetV2
g number of groups in Shufflenet

A CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network (CNN) is a type of deep neural network used mainly for structured
data. CNN uses convolution operation in convolution layers. In the following, we discuss CNN
when applied to typical image data with RGB channels.

Each convolution layer has three components: input feature maps, convolution kernel, and output
feature maps. The input feature maps I ∈ RH×W×M and the output feature maps O ∈ RH′×W ′×N

are 3-dimensional tensors, and the convolution kernel K ∈ RD×D×M×N is a 4-dimensional tensor.

The convolution operation is defined as:

Oh′,w′,n =

D∑
i=1

D∑
j=1

M∑
m=1

Ki,j,m,n · Ihi,wj ,m (3)

12

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083

Under review as a conference paper at ICLR 2020

where the relations between height hi and width wj of input, and height h′ and width w′ of output
are as follows:

hi = (h′ − 1)s+ i− p and wj = (w′ − 1)s+ j − p (4)
where s is the stride size, and p is the padding size. The third and the fourth dimensions of the
convolution kernel K must match the number M of input channels, and the number N of output
channels, respectively.

Convolution kernel K can be seen as N 3-dimensional filters Fn ∈ RD×D×M . Each filter Fn in
kernel K performs convolution operation while sliding over all spatial locations on input feature
maps. Each filter produces one output feature map.

B PROOFS OF THEOREMS

B.1 PROOF OF THEOREM 1

Proof. From the definition of EHP, Ki,j,m,n = Di,j,m ·Pm,n. Based on equation 3, we replace the
kernel Ki,j,m,n with the depthwise convolution kernel Di,j,m and the pointwise convolution kernel
Pm,n.

Oh′,w′,n =

D∑
i=1

D∑
j=1

M∑
m=1

Di,j,m ·Pm,n · Ihi,wj ,m

where Ihi,wj ,m is the (hi, wj ,m)-th entry of the input. We split the above equation into the follow-
ing two equations.

O′h′,w′,m =

D∑
i=1

D∑
j=1

Di,j,m · Ihi,wj ,m (5)

Oh′,w′,n =

M∑
m=1

Pm,n ·O′h′,w′,m (6)

where O′h′,w′,m ∈ RH′×W ′×M is an intermediate tensor. Note that equation 5 and equation 6
correspond to the depthwise convolution and the pointwise convolution, respectively. Therefore, the
output O′h′,w′,m is equal to the output applying depthwise separable convolution used in Mobilenet.

B.2 PROOF OF THEOREM 2

Proof. From equation 3, we replace the kernel Ki,j,m,n with the pointwise convolution kernel P
and the depthwise convolution kernel D.

Oh′,w′,n =

M∑
m=1

D∑
i=1

D∑
j=1

Pm,n ·Di,j,n · Ihi,wj ,m

where Ihi,wj ,m is the (hi, wj ,m)-th entry of the input I. We split the above equation into the
following two equations.

O′hi,wj ,n =

M∑
m=1

Pm,n · Ihi,wj ,m (7)

Oh′,w′,n =

D∑
i=1

D∑
j=1

Di,j,n ·O′hi,wj ,n (8)

where I, O′, and O are the input, the intermediate, and the output tensors of convolution layer,
respectively. Note that equation 7 and equation 8 correspond to pointwise convolution and depthwise
convolution, respectively. Therefore, the output Oh′,w′,n is equal to the output applying FALCON.

13

Under review as a conference paper at ICLR 2020

C QUANTITATIVE ANALYSIS

In this section, we evaluate the compression and the computation reduction of FALCON and rank-k
FALCON. All the analysis is based on one convolution layer. The comparison of the numbers of
parameters and FLOPs of FALCON and other competitors is in Appendix G.

C.1 FALCON

We analyze the compression and the computation reduction rates of FALCON in Theorems 3 and 4.

Theorem 3. Compression Rate (CR) of FALCON is given by

CR =
of parameters in standard convolution

of parameters in FALCON
=

D2MN

MN +D2N

where D2 is the size of standard kernel, M is the number of input channels, and N is the number
of output channels.

Proof. Standard convolution kernel has D2MN parameters. FALCON includes pointwise convolu-
tion and depthwise convolution which requires MN and D2N parameters, respectively. Thus, the

compression rate of FALCON is CR =
D2MN

MN +D2N
.

Theorem 4. Computation Reduction Rate (CRR) of FALCON is described as:

CRR =
of FLOPs in standard convolution

of FLOPs in FALCON

=
H ′W ′MD2N

HWMN +H ′W ′D2N
where H ′ and W ′ are the height and the width of output, respectively, and H and W are the height
and the width of input, respectively.

Proof. The standard convolution operation requires H ′W ′D2MN FLOPs (Molchanov et al.
(2017)). FALCON includes pointwise convolution and depthwise convolution. Pointwise convo-
lution has kernel size D = 1 with stride s = 1 and no padding, so the intermediate tensor O′ has
the same height and width as those of the input feature maps. Thus, pointwise convolution needs
HWMN FLOPs. Depthwise convolution has the number of input channel M = 1, so it needs
H ′W ′D2N FLOPs. The total FLOPs of FALCON is HWMN +H ′W ′D2N , thus the computation

reduction rate of FALCON is CRR =
H ′W ′D2MN

HWMN +H ′W ′D2N
.

C.2 RANK-K FALCON

We analyze the compression and computation reduction rates of rank-k FALCON in Theorem 5.

Theorem 5. Compression Rate (CRk) and Computation Reduction Rate (CRRk) of rank-k FAL-
CON are described as:

CRk =
CR

k
CRRk =

CRR

k

Proof. The numbers of parameters and FLOPs increase for k times since rank-k FALCON duplicates
FALCON for k times. Thus, the compression rate and the computation reduction rate are calculated

as CRk =
CR

k
and CRRk =

CRR

k
.

D DESCRIPTION OF RELATED CONVOLUTION UNITS

MobileNetV2. Sandler et al. (2018) proposed a new convolution architecture which we call as
MobileConvV2, in their MobilenetV2 model. MobileConvV2 consists of three sub-layers as shown
in Figure 5(b). The first and the third sub-layers are pointwise convolution for adjusting the num-
ber of channels. The first sub-layer expands the number of channels from M to tM , where t is an

14

Under review as a conference paper at ICLR 2020

Depthwise
Convolution

Input

Pointwise
Convolution

Output

M Channels

M Channels

N ChannelsBN+ Relu

BN+ Relu

(a) Mobilenet
(Howard et al.

(2017))

Pointwise
Convolution

Input

Depthwise
Convolution

Output

Pointwise
Convolution

Add

M Channels

tM Channels

tM Channels

N ChannelsBN

BN+ Relu6

BN+ Relu6

(b) MobilenetV2
(Sandler et al. (2018))

N/4 Channels

Group Convolution

Input

Depthwise
Convolution

Output

Group Convolution

Add

M Channels

N/4 Channels

N ChannelsBN

BN

BN+ Relu

Channel Shuffle

(c) Shufflenet (Zhang
et al. (2017))

M/2 Channels
Pointwise

Convolution

Input

Depthwise
Convolution

Output

Pointwise
Convolution

Concat

M/2 Channels

M/2 ChannelsBN

BN+Relu

Channel Shuffle

Channel Split

M/2
Channels

M/2 ChannelsBN+Relu

M Channels

M Channels

M Channels

(d) ShufflenetV2 (Ma et al.
(2018))

Figure 5: Comparison of architectures based on depthwise separable convolution. BN denotes batch-
normalization, and Relu is an activation function.
expansion ratio. The second sub-layer is a D×D depthwise convolution. Since depthwise convolu-
tion cannot change the number of channels, the third sub-layer adjusts the number of channels from
tM to N . There is a shortcut connection between the input, and the output of the third sub-layer
to facilitate flow of gradient across multiple layers. MobileConvV2 needs tM2 + D2tM + tMN
parameters and tHWM2 + tH ′W ′D2M + tH ′W ′MN FLOPs.

ShuffleNet. Zhang et al. (2017) proposed a computation-efficient CNN architecture named Shuf-
flenet. As shown in Figure 5(c), each unit of Shufflenet (we call it ShuffleUnit) consists of three sub-
layers, first group pointwise convolution, depthwise convolution, and second group pointwise convo-
lution, as well as a shortcut. The number of depthwise convolution channels is 1

4 of output channels
N . ShuffleUnit uses group convolution in two pointwise convolution layers to reduce the parameters
and FLOPs. However, it is hard to exchange information among groups when group convolutions are
stacked. To deal with this problem, ShuffleUnit adds a channel shuffle layer after the first pointwise
group convolution. The channel shuffle layer rearranges the order of channels. making it possible
to obtain information from different groups. The number of groups is represented as g. ShuffleUnit
needs 1

4gMN+ 1
4D

2N+ 1
4gN

2 parameters and 1
4gHWMN+ 1

4H
′W ′D2N+ 1

4gH
′W ′N2 FLOPs.

ShufflenetV2. Ma et al. (2018) proposed a practically efficient CNN architecture ShufflenetV2.
As shown in Figure 5(d), each unit of ShufflenetV2 (we call it ShuffleUnitV2) consists of two
branches. The left branch consists of two pointwise convolutions and one depthwise convolution
like MobileConvV2, and the right branch is an identity operation. Note that outputs of both branches
maintain the number of channels as M/2. The final output is produced by concatenating and shuf-
fling the output tensors from both of the branches. ShuffleUnitV2 needs 1

2 (M
2+D2M) parameters

and 1
2HW (M2 +D2M) FLOPs.

E GENERALITY OF EHP

We show that EHP is a key operation to understand other convolution architectures based on depth-
wise separable convolution.

MobilenetV2. As shown in Figure 5(b), MobilenetV2 has an additional pointwise convolution
before depthwise convolution in Mobilenet: one layer of MobilenetV2 consists of two pointwise
convolutions and one depthwise convolution. In another point of view, MobilenetV2 can be under-
stood as FALCON followed by additional pointwise convolution; i.e., MobilenetV2 performs EHP
operation as FALCON does, and performs additional pointwise convolution after that.

Shufflenet. As shown in Figure 5(c), Shufflenet consists of depthwise convolution and pointwise
group convolution which is a variant of pointwise convolution. We represent the convolution layer of
Shufflenet using EHP as follows. Let g be the number of groups. We divide the standard convolution

15

Under review as a conference paper at ICLR 2020

kernel K ∈ RD×D×M×N into g group standard convolution kernels. Then, the relation of g-th
group standard convolution kernel Kg ∈ RD×D×M

g ×
N
g with regard to g-th depthwise convolution

kernel Dg ∈ RD×D×M
g and g-th pointwise group convolution kernel Pg ∈ R

M
g ×

N
g is

Kg = Dg �E Pg s.t. K
g
i,j,mg,ng

= D
g
i,j,mg

·Pg
mg,ng

where mg = 1, 2, ..., Mg and ng = 1, 2, ..., Ng . Each group standard convolution is equivalent to
the combination of a depthwise convolution and a pointwise convolution, and thus easily expressed
with EHP as in Mobilenet.

Therefore, each layer of Shufflenet is equivalent to the layer consisting of one group convolution
followed by standard convolution.

ShufflenetV2. As shown in Figure 5(d), the left branch of ShufflenetV2 has the same convolutions
as in MobilenetV2: it consists of two pointwise convolutions and one depthwise convolution. Like
MobilenetV2, the left branch of ShufflenetV2 can be understood as FALCON followed by additional
pointwise convolution.

F FITTING OTHER CONVOLUTION UNITS INTO MODELS

DSConv. DSConv (shown in Figure 5(a)) has the most similar architecture as FALCON among
competitors, and thus DSConv has nearly the same number of parameters as that of FALCON. As
in the setting of FALCON, the existence of BN and ReLU at the end of DSConv depends on that of
StConv.

MobileConvV2. In MobileConvV2 architecture (shown in Figure 5(b)), we adjust the numbers of
parameters and FLOPs by changing the expansion ratio t as described in Appendix D, which is rep-
resented as ‘MobileConvV2-t’. We choose t = 0.5 as the baseline MobileConvV2 to compare with
FALCON, since two pointwise convolutions bring lots of parameters and FLOPs to MobileConvV2.

ShuffleUnit. In ShuffleUnit (shown in Figure 5(c)), we adjust the numbers of parameters and
FLOPs by changing the width multiplier α (Howard et al. (2017)) and the number of groups g,
which is represented as ‘ShuffleUnit α×(g=g)’. Note that the width multiplier is used to adjust the
number of input channels M and the number of output channels N of a convolution layer; if the
width multiplier is α, the numbers of input and output channels become αM and αN , respectively.
While experimenting with ResNet, we find that ShuffleUnit does not cooperate well with ResNet:
ResNet34 with ShuffleUnit does not converge. We suspect that residual block and ShuffleUnit may
conflict with each other because of redundant residual connections: the gradient may not find the
right path towards previous layers. For this reason, we delete the shortcut of all residual blocks in
ResNet34 when using ShuffleUnit.

ShuffleUnitV2. In ShuffleUnitV2 (shown in Figure 5(d)),we also adjust the number of parameters
and FLOPs by changing the width multiplier α, which is represented as ’ShuffleUnitV2 α×’. Other
operations of ShuffleUnitV2 stay the same as in Ma et al. (2018).

G PARAMETERS AND FLOPS

We summarize the numbers of parameters and FLOPs for FALCON and competitors in Table 5.

16

Under review as a conference paper at ICLR 2020

Table 5: the numbers of parameters and FLOPs of FALCON and competitors. Symbols are described
in Table 4.

Convolution # of parameters # of FLOPs

FALCON MN +D2N HWMN +H ′W ′D2N
FALCON-branch 1

4M
2 + 1

2D
2M 1

4HWM2 + 1
2HWD2M

DSConv MN +D2M HWD2M +H ′W ′MN
MobilenetV2 tM2 + tD2M + tMN tHWM2 + tH ′W ′D2M + tH ′W ′MN

Shufflenet 1
4 (

MN
g +D2N + N2

g) 1
4 (

HWMN
g +H ′W ′D2N + H′W ′N2

g)

ShufflenetV2 1
2 (M

2 +D2M) 1
2HW (M2 +D2M)

StConv-branch 1
4D

2M2 1
4HWD2M2

Standard convolution D2MN H ′W ′D2MN

17

	Introduction
	Preliminary
	Depthwise Separable Convolution
	Methods Based on Depthwise Separable Convolution

	Proposed Method
	Extended Hadamard Product (EHP)
	Depthwise Separable Convolution and EHP
	FAst and Lightweight CONvolution (Falcon)
	Rank-k Falcon
	Falcon-Branch

	Experiments
	Experimental Setup
	Fitting Convolution Unit into Model
	Accuracy vs. Compression
	Accuracy vs. Computation
	Rank-k Falcon

	Related Work
	Conclusion
	Convolutional Neural Network
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2

	Quantitative Analysis
	Falcon
	Rank-k Falcon

	Description of Related Convolution Units
	Generality of EHP
	Fitting Other Convolution Units into Models
	Parameters and FLOPs

