
Under review as a conference paper at ICLR 2019

LOW-RANK MATRIX FACTORIZATION OF LSTM AS
EFFECTIVE MODEL COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale Long Short-Term Memory (LSTM) cells are often the building blocks
of many state-of-the-art algorithms for tasks in Natural Language Processing
(NLP). However, LSTMs are known to be computationally inefficient because
the memory capacity of the models depends on the number of parameters, and the
inherent recurrence that models the temporal dependency is not parallelizable. In
this paper, we propose simple, but effective, low-rank matrix factorization (MF)
algorithms to compress network parameters and significantly speed up LSTMs
with almost no loss of performance (and sometimes even gain). To show the
effectiveness of our method across different tasks, we examine two settings: 1)
compressing core LSTM layers in Language Models, 2) compressing biLSTM
layers of ELMo (Peters et al., 2018a) and evaluate in three downstream NLP tasks
(Sentiment Analysis, Textual Entailment, and Question Answering). The latter is
particularly interesting as embeddings from large pre-trained biLSTM Language
Models are often used as contextual word representations. Finally, we discover
that matrix factorization performs better in general, additive recurrence is often
more important than multiplicative recurrence, and we identify an interesting cor-
relations between matrix norms and compression performance.

1 INTRODUCTION

Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997; Gers et al., 2000)
have become the core of many models for tasks that require temporal dependency. They have par-
ticularly shown great improvements in many different NLP tasks, such as Language Modeling (Sun-
dermeyer et al., 2012; Mikolov, 2012), Semantic Role Labeling (He et al., 2017), Named Entity
Recognition (Lee et al., 2017), Machine Translation (Bahdanau et al., 2014), and Question Answer-
ing (Seo et al., 2016). Recently, a bidirectional LSTM has been used to train deep contextualized
Embeddings from Language Models (ELMo) (Peters et al., 2018a), and has become a main compo-
nent of state-of-the-art models in many downstream NLP tasks.

However, there is an obvious drawback of scalability that accompanies these excellent performances,
not only in training time but also during inference time. This shortcoming can be attributed to two
factors: the temporal dependency in the computational graph, and the large number of parameters for
each weight matrix. The former problem is an intrinsic nature of RNNs that arises while modeling
temporal dependency, and the latter is often deemed necessary to achieve better generalizability of
the model (Hochreiter & Schmidhuber, 1997; Gers et al., 2000). On the other hand, despite such
belief that the LSTM memory capacity is proportional to model size, several recent results have
empirically proven the contrary, claiming that LSTMs are indeed over-parameterized (Denil et al.,
2013; James Bradbury & Socher, 2017; Merity et al., 2018; Melis et al., 2018; Levy et al., 2018).

Naturally, such results motivate us to search for the most effective compression method for LSTMs
in terms of performance, time, and practicality, to cope with the aforementioned issue of scalability.
There have been many solutions proposed to compress such large, over-parameterized neural net-
works including parameter pruning and sharing (Gong et al., 2014; Huang et al., 2018), low-rank
Matrix Factorization (MF) (Jaderberg et al., 2014), and knowledge distillation (Hinton et al., 2015).
However, most of these approaches have been applied to Feed-forward Neural Networks and Con-
volutional Neural Networks (CNNs), while only a small attention has been given to compressing
LSTM architectures (Lu et al., 2016; Belletti et al., 2018), and even less in NLP tasks. Notably, See

1

Under review as a conference paper at ICLR 2019

et al. (2016) applied parameter pruning to standard Seq2Seq (Sutskever et al., 2014) architecture
in Neural Machine Translation, which uses LSTMs for both encoder and decoder. Furthermore, in
language modeling, Grachev et al. (2017) uses Tensor-Train Decomposition (Oseledets, 2011), Liu
et al. (2018) uses binarization techniques, and Kuchaiev & Ginsburg (2017) uses an architectural
change to approximate low-rank factorization.

All of the above mentioned works require some form of training or retraining step. For instance,
Kuchaiev & Ginsburg (2017) requires to be trained completely from scratch, as well as distillation
based compression techniques (Hinton et al., 2015). In addition, pruning techniques (See et al.,
2016) often accompany selective retraining steps to achieve optimal performance. However, in
scenarios involving large pre-trained models, e.g. ELMo (Peters et al., 2018a), retraining can be very
expensive in terms of time and resources. Moreover, compression methods are normally applied
to large and over-parameterized networks, but this is not necessarily the case in our paper. We
consider strongly tuned and regularized state-of-the-art models in their respective tasks, which often
already have very compact representations. These circumstances make the compression much more
challenging, but more realistic and practically useful.

In this work, we advocate low-rank matrix factorization as an effective post-processing compression
method for LSTMs which achieve good performance with guaranteed minimum algorithmic speed
compared to other existing techniques. We summarize our contributions as the following:

• We thoroughly explore the limits of several different compression methods (matrix fac-
torization and pruning), including fine-tuning after compression, in Language Modeling,
Sentiment Analysis, Textual Entailment, and Question Answering.

• We consistently achieve an average of 1.5x (50% faster) speedup inference time while
losing ∼1 point in evaluation metric across all datasets by compressing additive and/or
multiplicative recurrences in the LSTM gates.

• In PTB, by further fine-tuning very compressed models (∼98%) obtained with both matrix
factorization and pruning, we can achieve∼2x (200% faster) speedup inference time while
even slightly improving the performance of the uncompressed baseline.

• We discover that matrix factorization performs better in general, additive recurrence is
often more important than multiplicative recurrence, and we identify clear and interesting
correlations between matrix norms and compression performance.

2 METHODOLOGY

Long-Short Term Memory (LSTMs) networks are parameterized with two large matrices, Wi and
Wh, which adds the four gates to standard RNNs. Once the parameters are learned, they became
static matrices during inference time. Hence, Wi and Wh can be compressed using Matrix Factor-
ization to speed up running time, save memory, and possibly improve performance of LSTMs. In
this section, we define the basic LSTM structure and introduce Matrix Factorization (MF), namely
Semi Non-Negative Factorization (NMF) and Singular Value Decomposition (SVD). Lastly, we
show how to apply Low-Rank Matrix Factorization to LSTMs parameters, Wi and Wh.

2.1 LONG-SHORT TERM MEMORY NETWORK

LSTM is an extended variation of RNN with the aim to capture long-term dependencies in the
input and to avoid the exploding/vanishing gradient problems (Hochreiter & Schmidhuber, 1997).
It includes input, output, and forget gates along with an explicit memory cell. The gating layers
control the information flow within the network, and decide which information to keep, discard, or
update in the memory. The memory cells learn the salient information through time. The input gate
decides what to keep from current input, and the forget gate removes less important information
from the previous memory. Finally, the output hidden state is extrapolated using the output gate and
memory cell. The following recurrent equations show the LSTM dynamics. it

ft
ot

ĉt

 =

 σ
σ
σ

tanh

 (Wi Wh)

(
xt

ht−1

)
, Wi =

Wi
i

Wf
i

Wo
i

Wc
i

 ,Wh =

Wi
h

Wf
h

Wo
h

Wc
h

 (1)

2

Under review as a conference paper at ICLR 2019

ct =ft � ĉt−1 + it � ĉt

ht =ot � tanh(ct)
(2)

where xt ∈ Rninp , and ht ∈ Rndim at time t. Here, σ() and � denote the sigmoid function and
element-wise multiplication operator, respectively. The model parameters can be summarized in a
compact form with: Θ = [Wi,Wh], where Wi ∈ R4∗ninp×4∗ndim which is the input matrix, and
Wh ∈ R4∗ndim×4∗ndim which is the recurrent matrix. Note that we often refer Wi as additive
recurrence and Wh as multiplicative recurrence, following terminology of Levy et al. (2018).

2.1.1 LOW-RANK MATRIX FACTORIZATION

In this section, we present an overview of Low-Rank Matrix Factorization and its application in
LSTM. The rank of a matrix Wm×n is defined as the number of linearly independent rows or
columns in W. Rank of a matrix could be computed either by finding the number of nonzero
singular values of W, i.e., ‖σ(W)‖0, or the smallest number r such that there exists a full-rank
matrix Um×r and Vr×n, in which W = UV (Fazel, 2002). The rank minimization problem
‖σ(W)‖0 is NP-hard, and a well known convex surrogate function for this problem is the nuclear
norm ‖W‖nuc = Σr

i=1σi. Since computing the singular values for large scale data is expensive, we
aim to find U and V to calculate the low-rank representation, in which a exists (Lu et al., 2016).

The matrix W requires mn parameters and mn flops, while U and V require rm+ rn = r(m+n)
parameters and r(m + n) flops. If we take the rank to be very low r << m,n, the number of
parameters in U and V are much smaller compared to W. The general objective function is given
as

W
m×n

= U
m×r

V
r×n

=⇒ minimize
U,V

||W −UV||2F (3)

There are various constrained versions for the low-rank matrix factorization in Equation 3. In the
following sections, we explain two most principal and prominent versions with orthogonality and
sign constraints.

2.1.2 TRUNCATED SINGULAR VALUE DECOMPOSITION (SVD)

One of the constrained matrix factorization method is based on Singular Value Decomposition
(SVD) which produces a factorization by applying orthogonal constraints on the U and V factors.
These approaches aim to find a linear combination of the basis vectors which restrict to the orthogo-
nal vectors in feature space that minimize reconstruction error. In the case of the SVD, there are no
restrictions on the signs of U and V factors. Moreover, the data matrix W is also unconstrained.

W = USV =⇒ minimize
U,S,V

||W −USV||2F s.t. U and V are orthogonal, S is diagonal

(4)

The optimal values Ur
m×r, Sr

r×r, Vr
r×n for Um×n, Sn×n, and Vn×n are obtained by taking the top

r singular values from the diagonal matrix S and the corresponding singular vectors from U and V.

2.1.3 SEMI NON-NEGATIVE MATRIX FACTORIZATION (SEMI-NMF)

Another important method, Semi-NMF generalizes Non-negative Matrix Factorization (NMF) by
relaxing some of the sign constraints on negative values for U and W (V has to be kept positive).
Semi-NMF is more preferable in application to Neural Networks because of this generic capability
of having negative values. For detailed explanations of NMF and Semi-NMF, interested readers can
refer to Appendix A.

To elaborate, when the input matrix W is unconstrained (i.e., contains mixed signs), we consider a
factorization, in which we restrict V to be non-negative, while having no restriction on the signs of
U. We minimize the objective function as in Equation 9.

W± ≈ U±V+ =⇒ minimize
U,V

||W −UV||2F s.t. V ≥ 0 (5)

3

Under review as a conference paper at ICLR 2019

+

Figure 1: Factorized LSTM Cell

The optimization algorithm iteratively alternates between the update of U and V using coordinate
descent (Luo & Tseng, 1992). For interested readers, more details on the optimization method
and the relation between the NMF-based algorithms and the clustering methods can be found in
Appendix A.

2.2 LSTM LOW-RANK FACTORIZATION

As elaborated in Equation 1, a basic LSTM cell includes four gates: input, forget, output, and cell
state, performing a linear combination on input at time t and hidden state at time t−1 as in Equation
6.

 it
ft
ot

ĉt

 =

 σ
σ
σ

tanh

 (Wr
i Wr

h)

(
xt

ht−1

)
, Wr

i =

Ui
iV

i
i

Uf
i V

f
i

Uo
iV

o
i

Uc
iV

c
i

 ,Wr
h =

Ui
hV

i
h

Uf
hV

f
h

Uo
hV

o
h

Uc
hV

c
h

 (6)

For large scale data, having four Wi matrices and four Wh matrices demand huge memory and
computational power. Hence, we propose to replace Wi, Wh pair for each gate with their low-rank
decomposition, leading to a significant reduction in memory and computational cost requirement,
as discussed earlier. The scheme of this operation is shown in the dashed box at the right side of
Figure 1 and the complete factorized LSTM cell is shown in the left side of Figure 1.

3 EXPERIMENTS AND RESULTS

We mainly have two means of evaluation using five different publicly available datasets: 1) Per-
plexity in two different Language Modeling (LM) datasets, 2) Accuracy/F1 in three downstream
NLP tasks that ELMo achieved state-of-the-art single-model performance. We benchmark the lan-
guage modeling capability using both Penn Treebank (Marcus et al., 1993, PTB), with standard pre-
processing methods as in Mikolov et al. (2010), and WikiText-2 (Merity et al., 2017, WT2). For the
downstream NLP tasks, we evaluate our method in the Stanford Question Answering Dataset (Ra-
jpurkar et al., 2016, SQuAD) the Stanford Natural Language Inference (Bowman et al., 2015, SNLI)
corpus, and the Stanford Sentiment Treebank (Socher et al., 2013, SST-5) dataset. Detailed statistics
of the tasks are summarized in Appendix Table 6.

For all datasets, we run experiments across different levels of low-rank approximation r with differ-
ent factorization methods, i.e. Semi-NMF and SVD. We also compare the factorization efficiency
when only one of Wi or Wh was factorized, and when both were compressed (denoted as Wall).
This is done in order to see which recurrence type (additive or multiplicative) is more suitable for
compression. As a compression baseline, we compare matrix factorization with the best pruning
methodologies used in LSTMs (Han et al., 2015; See et al., 2016). To elaborate, for each weight
matrix Wi,h, we mask the low-magnitude weights to zero, according to the compression ratio of the

4

Under review as a conference paper at ICLR 2019

Table 1: The table shows the total parameters and perplexity (average among all weights and
across all ranks) of the model with the best efficiency on test sets for PTB (left) and WT2 (right)
for Language Modeling tasks. We choose a 3-layer AWD LSTM (tied) as our baseline (Mer-
ity et al., 2018). Lower E(r) and PPL are better. We reproduced the baseline model results. †
Parameter numbers are estimated with reference to (Grachev et al., 2017).

Param. PPL (avg) E(r)
Baseline (ours): AWD-LSTM 24M 58.98 -
(Merity et al., 2018) AWD-LSTM 24M 58.3 -
(Melis et al., 2018) 4-layer LSTM 24M 58.3 -
(Grachev et al., 2017) Tensor Train LSTM 12M 168.6 2.92†
Semi-NMF Wh (r = 400) 18M 59.7 (108.9) 4.19
SVD Wh (r = 400) 18M 59.3 (104.9) 2.12
Prune Wh (r = 400) 18M 59.5 (202) 3.04
(Wen et al., 2018) ISS from scratch 11M 65.4 0
(Merity et al., 2018) Fine-tuning 24M 57.3 -
Semi-NMF Wh (r = 200) Fine-tuning 18M 57.84 (64.6) -0.08
SVD Wh (r = 400) Fine-tuning 18M 57.8 (65.8) -0.08
Prune Wh (r = 400) Fine-tuning 18M 57.1 (61.6) -0.12
SVD Wh (r = 10) Fine-tuning 9M 58.18 0.0002

Param. PPL (avg) E(r)
Baseline (ours): AWD-LSTM 33M 65.67 -
(Merity et al., 2018) AWD-LSTM 33M 66 -
(Melis et al., 2018) 2-layer LSTM 24M 65.9 -
Semi-NMF Wh (r = 400) 27M 66.5 (114.2) 4.33
SVD Wh (r = 400) 27M 66.1 (111.6) 2.28
Prune Wh (r = 400) 27M 66.23 (251.8) 3.94
SVD Wh (r = 10) 13M 99.92 62.5
Prune Wh (r = 10) 13M 109.16 72.6

low rank factorization1. In Appendix Table 12, we report the corresponding compression ratio for
each rank used in the experiment.

In addition to standard metrics (e.g. Perplexity, Accuracy, F1), we report the following: number of
parameters, efficiency E(r) (ratio of loss in performance vs loss in parameters - the lower the better;
refer to Appendix B), L1 norm, and inference time2 in test set for matrix factorization methods and
uncompressed models.

3.1 LANGUAGE MODELING (LM)

Given a sequence of N words, x = (x1, x2, . . . , xT), the task of language modeling is to compute
the probability of xT given context (x1, x2, . . . , xT−1), for each token.

P (x) = P (x1, x2, . . . , xT) =

T∏
t=1

P (xt|x1, x2, . . . , xt−1) (7)

We can naturally model this task with any many-to-many Recurrent Neural Network (RNN) variants,
and, in particular, we train a 3-layer LSTM Language Model proposed by Merity et al. (2018),
following the same model architecture, hyper-parameters, and training details for both datasets,
using their released code3. After training the LSTM, we compressed the trained weights of each
layer with Semi-NMF, SVD, and pruning, with different levels of low-rank approximations, and
compare the perplexity. Since, PTB is a small size dataset, we finetuned the compressed version
of the model for several epochs4, interested reader can refer to Appendix for more details. Table 1
summarizes the results which are reported in extensive form in Appendix Tables 7 and 8.

From the tables, compressing Wh is always more efficient and performing better than compressing
Wi for all the compression methods. When we compare different compression methods, SVD has
the lowest, and average, perplexity and the best efficiency among others, in both PTB and WT2.
This difference is not very noticeable for high rank (e.g. r=400), but it becomes more evident for
higher compression, as shown in Appendix Figures 4 and 7. Moreover, all the methods perform
better than the result reported by Grachev et al. (2017) which used Tensor Train (Oseledets, 2011)
for compressing the LSTM layers.

In Table 1, we report the results after fine-tuning. The results shows that MF methods and pruning
works better that existing reported compression (Wen et al., 2018) and is very close to the un-
compressed fine-tuned version of our baseline reported in Merity et al. (2018). In this setting, by
factorizing Wi with rank 10 we achieve a small improvement compared to the baseline with a 2.13x
speedup. Notice that with rank 10 pruning also comparably works (57.94 PPL).

1We align the pruning rate with the rank with r(m+n)
mn

.
2Using an Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz, and averaged over 5 runs.
3https://github.com/salesforce/awd-lstm-lm
4For pruning during training we blind the weights using a static mask.
6Timing information was impossible to obtain from test set of SQuAD, as it is not externally provided.

5

https://github.com/salesforce/awd-lstm-lm

Under review as a conference paper at ICLR 2019

Table 2: The table shows the total parameters and accuracy (average among all weights and across
ranks) of the model with the best efficiency on test sets for SST-5 (left), SNLI (right), and dev
set6 for SQuAD (bottom). We reproduced the results of all the baseline models.

Param. Acc. E(r)
Baseline (ours): BCN + ELMo 121M 54.5 -
(Peters et al., 2018b) BCN + ELMo - 54.7 ± 0.5 -
(McCann et al., 2017) BCN - 53.7 -
Semi-NMF Wh (r = 350) 111M 54.16 (51.11) 5.06
SVD Wi (r = 350) 111M 54.39 (51.48) 2.25
Prune Wh (r = 350) 111M 54.89 (51.36) -3.93
SVD Wh (r = 10) 88M 50.41 15.57
Prune Wh (r = 10) 88M 50.81 14.05

Param. Acc. E(r)
Baseline (ours): ESIM + ELMo 99M 88.5 -
(Peters et al., 2018b) ESIM + ELMo - 88.7 ± 0.17 -
(Chen et al., 2017) ESIM - 88.6 -
Semi-NMF Wh (r = 300) 86M 88.48 (86.99) 0.23
SVD Wh (r = 250) 82M 88.45 (87.06) 0.32
Prune Wh (r = 400) 111M 88.54 (87.18) -0.24
SVD Wh (r = 10) 66M 87.28 2.86
Prune Wh (r = 10) 66M 87.51 2.32
Param. F1 (avg) E(r)

Baseline (ours): BiDAF + ELMo 112M 81.75 -
Wen et al. (2018) ISS from scratch 1.03M 75.78 0.04
Wen et al. (2018) ISS fine-tuning 1.48M 76.4 0.04
(Seo et al., 2016) BiDAF - 77.3 -
Semi-NMF Wi (r = 400) 105M 81.78 (78.47) -0.03
SVD Wi (r = 400) 105M 81.78 (78.6) -0.38
Prune Wi (r = 400) 105M 81.73 (77.8) 0.3
SVD Wh (r = 10) 79M 76.71 12.57
Prune Wh (r = 10) 79M 76.54 13.01

3.2 NLP TASKS WITH ELMO

To highlight the practicality of our proposed method, we also measure the factorization perfor-
mances with models using pre-trained ELMo (Peters et al., 2018a), as ELMo is essentially a 2-layer
bidirectional LSTM Language Model that captures rich contextualized representations. Using the
same publicly released pre-trained ELMo weights7 as the input embedding layer of all three tasks,
we train publicly available state-of-the-art models as in Peters et al. (2018a): BiDAF (Seo et al.,
2016) for SQuAD, ESIM (Chen et al., 2017) for SNLI, and BCN (McCann et al., 2017) for SST-5.
Similar to the Language Modeling tasks, we low-rank factorize the pre-trained ELMo layer only,
and compare the accuracy and F1 scores across different levels of low-rank approximation. Note
that although many of these models are based on RNNs, we factorize only the ELMo layer in order
to show that our approach can effectively compress pre-trained transferable knowledge. As we only
compress the ELMo weights, and other layers of each model also have large number of parameters,
the inference time is affected less than in Language Modeling tasks. The percentage of parameters
in the ELMo layer for BiDAF (SQuAD) is 59.7%, for ESIM (SNLI) 67.4%, and for BCN (SST-5)
55.3%.

From Table 2, for SST-5 and SNLI, we can see that compressing Wh is in general more efficient
and better performing than compressing Wi, except for SVD in SST-5. However, from Appendix
Table 9, we can see that the difference in accuracy drop is not that big. On the other hand, for
the results on SQuAD, Table 2 shows the opposite trend, in which compressing Wi constantly
outperforms compressing Wh for all methods we experimented with. Notice that, for SQuAD,
even with using a very low rank r = 10, we see better results in compression than ISS of Wen
et al. (2018). In fact, we can see that, in average, using highly compressed ELMo with BiDAF still
performs better than without. Overall, we can see that for all datasets, we achieve performances that
are not significantly different from the baseline results even after compressing over more than 10M
parameters.

4 NORM ANALYSIS

In the previous section, we observe two interesting points: 1) Matrix Factorization (MF) works con-
sistently better in PTB and Wiki-Text 2, but Pruning works better in ELMo for Wh, 2) Factorizing
Wh is generally better than factorizing Wi. To answer these questions, we collected the L1 norm
and Nuclear norm statistics, defined in Appendix B, and comparing among Wh and Wi for both
PTB and ELMo. Following the definitions, L1 and its standard deviation (std) together describe the
sparsity of a matrix; a matrix with higher L1 and higher std is considered to be inherently sparser.
On the other hand, Nuclear norm approximates the rank of a matrix. Using these measures, we

7https://allennlp.org/elmo

6

https://allennlp.org/elmo

Under review as a conference paper at ICLR 2019

0 200 400

r

0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

0.000030

(a) �(kWr
i k1)

0 200 400

r

0.000005

0.000010

0.000015

0.000020

0.000025
(b) �(kWr

hk1)

LM MF

LM Prune

LM uncompressed

ELMo MF

ELMo Prune ELMo uncompressed

0 200 400

r

0.00005

0.00010

0.00015

0.00020

(c) kWr
i k1

0 200 400

r

0.0001

0.0002

0.0003

0.0004

(d) kWr
hk1

0 200 400

r

0.0000

0.0005

0.0010

0.0015

0.0020

(e) kWr
i kNuc

0 200 400

r

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

(f) kWr
hkNuc

Figure 2: Norm analysis comparisons between MF and Pruning in Language Modeling (PTB)
and ELMo. Rank versus (a) σ(‖Wi‖1) (b) σ(‖Wh‖1) (c) ‖Wi‖1 (d) ‖Wh‖1 (e) ‖Wi‖Nuc (f)
‖Wh‖Nuc.

compare pruning and MF with different compression rates, or factorization ranks, reveal interesting
property of the compression algorithms.

MF versus Pruning in Wi From the results in Section 3, we observed that MF performs better
than Pruning in compressing Wi for high compression ratios. Figure 2 shows rank r versus L1
norm and its standard deviation, in both PTB and ELMo 8. The first notable pattern from Panel (a)
is that MF and Pruning have diverging values from r ≤ 200. We can see that Pruning makes the std
of L1 lower than the uncompressed, while MF monotonically increases the std from uncompressed
baseline. This means that as we approximate to lower ranks (r ≤ 200), MF retains more salient
information, while Pruning loses some of those salient information. This can be clearly shown from
Panel (c), in which Pruning always drops significantly more in L1 than MF does. These statistics
explain why MF consistently outperforms Pruning for higher compression ratios in Wi.

MF versus Pruning in Wh The explanation and results for Wh are also consistent in both PTB
and WT2; MF works better than Pruning for higher compression ratios. On the other hand, results
from Table 1 show that Pruning works better than MF in Wh of ELMo even in higher compression
ratios. We can explain this seemingly anomalous behavior with Panels (b) and (d). We can see from
Panel (d) that L1 norms of MF and Pruning do not significantly deviate nor decrease much from
the uncompressed baseline. Meanwhile, Panel (b) reveals an interesting pattern, in which the std
actually increases for Pruning and is always kept above the uncompressed baseline. This means that
Pruning retains salient information for Wh, while keeping the matrix sparse.

This behavior of Wh can be explained by the nature of the compression and with inherent matrix
sparsity. In this setting, pruning is zeroing values already close to zero, so it is able to keep the
L1 stable while increasing the std. On the other hand, MF instead reduces noise by pushing lower
values to be even lower (or zero) and keeps salient information by pushing larger values to be even
larger. This pattern is more evident in Figure 3, in which you can see a clear salient red line in Wh

that gets even stronger after factorization (Uh ×Vh). Naturally, when the compression rate is low
(e.g. r=300) pruning is more efficient strategy then MF.

Wi versus Wh Another notable pattern we observed is that compressing Wh, in general, shows
better performance than compressing Wh. We show the change in Nuclear norm and their corre-
sponding starting points (i.e. uncompressed) in Figure 2 Panels (e) and (f) to answer this question.
Notably, Wh have consistently lower nuclear norm in both LM and ELMo compared to Wi. This
difference is larger for LM (PTB), in which ‖Wi‖Nuc is twice of that of ‖Wh‖Nuc. As mentioned
above, having a lower nuclear norm is often an indicator of low-rank in a matrix; hence, we hypoth-
esize that Wh is inherently low-rank than Wi in general. We confirm this from Panel (d), in which
even with very high compression ratio (e.g. r = 10), the L1 norm does not decrease that much. This
explains the large gap in performance between the compression of Wi and Wh. On the other hand,
in ELMo, this gap in norm is lower, which also shows smaller differences in performance between
Wi and Wh, and also sometimes even the opposite (i.g. SQuAD). Hence, we believe that smaller

8Note that we refer to ELMo as a single dataset, since the ELMo weights do not change across different
datasets.

7

Under review as a conference paper at ICLR 2019

Figure 3: Heatmap of ELMO forward weights.

nuclear norms lead to better performance for all compression methods. These results are, in fact,
consistent with the results of Levy et al. (2018) which claims that multiplicative recurrences are of
less importance than additive recurrence.

5 RELATED WORK

The current approaches of model compression are mainly focused on matrix factorization, pruning,
and quantization. The effectiveness of these approaches were shown and applied in different modal-
ities. In speech processing, Wilson et al. (2008); Mohammadiha et al. (2013); Geiger et al. (2014);
Fan et al. (2014) studied the effectiveness of Non-Matrix Factorization (NMF) on speech enhance-
ment by reducing the noisy speech interference. Matrix factorization-based techniques were also
applied in image captioning (Hong et al., 2016; Li et al., 2017) by exploiting the clustering intepre-
tations of NMF. Semi-NMF, proposed by Ding et al. (2010), relaxed the constraints of NMF to allow
mixed signs and extend the possibility to be applied in non-negative cases. Trigeorgis et al. (2014)
proposed a variant of the Semi-NMF to learn low-dimensional representation through a multi-layer
structure. Miceli Barone (2018) proposed to replace GRUs with low-rank and diagonal weights to
enable low-rank parameterization of LSTMs. Kuchaiev & Ginsburg (2017) modifed LSTM struc-
ture by replacing input and hidden weights with two smaller partitions to boost the training and
inference time.

On the other hand, compression techniques can also be applied as post-processing steps. Grachev
et al. (2017) investigated low-rank factorization on standard LSTM model. The Tensor-Train method
has been used to train end-to-end high-dimensional sequential video data with LSTM and GRU
(Yang et al., 2017; Tjandra et al., 2017). In another line of work, See et al. (2016) explored pruning
in order to reduce the number of parameters in Neural Machine Translation. Wen et al. (2018)
proposed to zero out the weights in the network learning blocks to remove insignificant weights
of the RNN. Meanwhile, Liu et al. (2018) proposed to binarize LSTM Language Models. Finally,
Han et al. (2016) proposed to use all pruning, quantization, and Huffman coding to the weights on
AlexNet.

6 CONCLUSION

In conclusion, we exhaustively explored the limits of compressing LSTM gates using low-rank ma-
trix factorization and pruning in four different NLP tasks. Our experiment results and norm analysis
show that show that Low-Rank Matrix Factorization works better in general than pruning, but if the
matrix is particularly sparse, Pruning works better. We also discover that inherent low-rankness and
low nuclear norm correlate well, explaining why compressing multiplicative recurrence works better
than compressing additive recurrence. In future works, we plan to factorize all LSTMs in the model,
e.g. BiDAF model, and try to combine both Pruning and Matrix Factorization.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Francois Belletti, Alex Beutel, Sagar Jain, and Ed Chi. Factorized recurrent neural architectures for
longer range dependence. In International Conference on Artificial Intelligence and Statistics, pp.
1522–1530, 2018.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large anno-
tated corpus for learning natural language inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, 2015.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced lstm
for natural language inference. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pp. 1657–1668, 2017.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al. Predicting parameters in deep
learning. In Advances in neural information processing systems, pp. 2148–2156, 2013.

Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering and nor-
malized cuts. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 551–556. ACM, 2004.

Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of nonnegative matrix factoriza-
tion and spectral clustering. In Proceedings of the 2005 SIAM International Conference on Data
Mining, pp. 606–610. SIAM, 2005.

Chris HQ Ding, Tao Li, and Michael I Jordan. Convex and semi-nonnegative matrix factorizations.
IEEE transactions on pattern analysis and machine intelligence, 32(1):45–55, 2010.

Hao-Teng Fan, Jeih-weih Hung, Xugang Lu, Syu-Siang Wang, and Yu Tsao. Speech enhancement
using segmental nonnegative matrix factorization. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pp. 4483–4487. IEEE, 2014.

Maryam Fazel. Matrix rank minimization with applications. PhD thesis, PhD thesis, Stanford
University, 2002.

Jürgen T Geiger, Jort F Gemmeke, Björn Schuller, and Gerhard Rigoll. Investigating nmf speech
enhancement for neural network based acoustic models. In Proc. INTERSPEECH 2014, ISCA,
Singapore, Singapore, 2014.

Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins. Learning to forget: Con-
tinual prediction with lstm. Neural Comput., 12(10):2451–2471, October 2000. ISSN
0899-7667. doi: 10.1162/089976600300015015. URL http://dx.doi.org/10.1162/
089976600300015015.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Artem M Grachev, Dmitry I Ignatov, and Andrey V Savchenko. Neural networks compression for
language modeling. In International Conference on Pattern Recognition and Machine Intelli-
gence, pp. 351–357. Springer, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 28, pp. 1135–
1143. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
5784-learning-both-weights-and-connections-for-efficient-neural-network.
pdf.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. ICLR, 2016.

9

http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/089976600300015015
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf

Under review as a conference paper at ICLR 2019

John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. Deep semantic role labeling: What
works and whats next. In Proceedings of the 55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), volume 1, pp. 473–483, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat,
1050:9, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Seunghoon Hong, Jonghyun Choi, Jan Feyereisl, Bohyung Han, and Larry S Davis. Joint image
clustering and labeling by matrix factorization. IEEE transactions on pattern analysis and ma-
chine intelligence, 38(7):1411–1424, 2016.

Qiangui Huang, Kevin Zhou, Suya You, and Ulrich Neumann. Learning to prune filters in convolu-
tional neural networks. arXiv preprint arXiv:1801.07365, 2018.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. In Proceedings of the British Machine Vision Conference. BMVA Press,
2014.

Caiming Xiong James Bradbury, Stephen Merity and Richard Socher. Quasi-recurrent neural
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=H1zJ-v5xl.

Oleksii Kuchaiev and Boris Ginsburg. Factorization tricks for lstm networks. ICLR Workshop, 2017.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. End-to-end neural coreference res-
olution. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pp. 188–197, 2017.

Omer Levy, Kenton Lee, Nicholas FitzGerald, and Luke Zettlemoyer. Long short-term memory as a
dynamically computed element-wise weighted sum. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 732–739. As-
sociation for Computational Linguistics, 2018. URL http://aclweb.org/anthology/
P18-2116.

Xuelong Li, Guosheng Cui, and Yongsheng Dong. Graph regularized non-negative low-rank matrix
factorization for image clustering. IEEE transactions on cybernetics, 47(11):3840–3853, 2017.

Xuan Liu, Di Cao, and Kai Yu. Binarized lstm language model. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pp. 2113–2121. Association for Computational
Linguistics, 2018. URL http://aclweb.org/anthology/N18-1192.

Zhiyun Lu, Vikas Sindhwani, and Tara N Sainath. Learning compact recurrent neural networks. In
Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on, pp.
5960–5964. IEEE, 2016.

Zhi-Quan Luo and Paul Tseng. On the convergence of the coordinate descent method for convex
differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7–35, 1992.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Comput. Linguist., 19(2):313–330, June 1993. ISSN
0891-2017. URL http://dl.acm.org/citation.cfm?id=972470.972475.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in translation:
Contextualized word vectors. In Advances in Neural Information Processing Systems, pp. 6294–
6305, 2017.

10

https://openreview.net/forum?id=H1zJ-v5xl
https://openreview.net/forum?id=H1zJ-v5xl
http://aclweb.org/anthology/P18-2116
http://aclweb.org/anthology/P18-2116
http://aclweb.org/anthology/N18-1192
http://dl.acm.org/citation.cfm?id=972470.972475

Under review as a conference paper at ICLR 2019

Gbor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural lan-
guage models. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=ByJHuTgA-.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. ICLR, 2017.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SyyGPP0TZ.

Antonio Valerio Miceli Barone. Low-rank passthrough neural networks. In Proceedings of the Work-
shop on Deep Learning Approaches for Low-Resource NLP, pp. 77–86. Association for Compu-
tational Linguistics, 2018. URL http://aclweb.org/anthology/W18-3410.

Tomáš Mikolov. Statistical language models based on neural networks. Presentation at Google,
Mountain View, 2nd April, 2012.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Eleventh Annual Conference of the International Speech
Communication Association, 2010.

Nasser Mohammadiha, Paris Smaragdis, and Arne Leijon. Supervised and unsupervised speech
enhancement using nonnegative matrix factorization. IEEE Transactions on Audio, Speech, and
Language Processing, 21(10):2140–2151, 2013.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–
2317, 2011.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pp. 2227–2237. Association for Computational
Linguistics, 2018a. URL http://aclweb.org/anthology/N18-1202.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), volume 1, pp. 2227–2237, 2018b.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392. Association for Computational Linguistics, 2016.
doi: 10.18653/v1/D16-1264. URL http://www.aclweb.org/anthology/D16-1264.

Abigail See, Minh-Thang Luong, and Christopher D Manning. Compression of neural machine
translation models via pruning. CoNLL 2016, pp. 291, 2016.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. ICLR 2017, 2016.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642. Association for Computational Linguistics, 2013. URL http://
www.aclweb.org/anthology/D13-1170.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks for language model-
ing. In Thirteenth Annual Conference of the International Speech Communication Association,
2012.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

11

https://openreview.net/forum?id=ByJHuTgA-
https://openreview.net/forum?id=ByJHuTgA-
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
http://aclweb.org/anthology/W18-3410
http://aclweb.org/anthology/N18-1202
http://www.aclweb.org/anthology/D16-1264
http://www.aclweb.org/anthology/D13-1170
http://www.aclweb.org/anthology/D13-1170

Under review as a conference paper at ICLR 2019

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Compressing recurrent neural network with
tensor train. In Neural Networks (IJCNN), 2017 International Joint Conference on, pp. 4451–
4458. IEEE, 2017.

George Trigeorgis, Konstantinos Bousmalis, Stefanos Zafeiriou, and Bjoern Schuller. A deep semi-
nmf model for learning hidden representations. In International Conference on Machine Learn-
ing, pp. 1692–1700, 2014.

Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia Zhang, Wenhan Wang, Fang Liu, Bin Hu,
Yiran Chen, and Hai Li. Learning intrinsic sparse structures within long short-term memory. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=rk6cfpRjZ.

Kevin W Wilson, Bhiksha Raj, Paris Smaragdis, and Ajay Divakaran. Speech denoising using
nonnegative matrix factorization with priors. In Acoustics, Speech and Signal Processing, 2008.
ICASSP 2008. IEEE International Conference on, pp. 4029–4032. IEEE, 2008.

Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative matrix factoriza-
tion. In Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, pp. 267–273. ACM, 2003.

Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recurrent neural networks for
video classification. In International Conference on Machine Learning, pp. 3891–3900, 2017.

12

https://openreview.net/forum?id=rk6cfpRjZ
https://openreview.net/forum?id=rk6cfpRjZ

Under review as a conference paper at ICLR 2019

A MATRIX FACTORIZATION

A.1 SEMI-NMF OPTIMIZATION

In this section, we provide the semi-NMF algorithm and we elaborate the optimization and the aim of
each step. This algorithm is an extension of NMF, where the data matrix is remained unconstrained
Ding et al. (2010). The original NMF optimization function shows in 8. Semi-NMF ignores the
constraint in U as showed in 9.

W+ ≈ U+V+ =⇒ minimize
U,V

||W −UV||2F s.t. U ≥ 0, V ≥ 0 (8)

W± ≈ U±V+ =⇒ minimize
U,V

||W −UV||2F s.t. V ≥ 0 (9)

Exploring the relationships between matrix factorization and K-means clustering has implications
for the interpretability of matrix factors Ding et al. (2005); Xu et al. (2003); Dhillon et al. (2004).

1. Initialize U and run k-means clustering Hartigan & Wong (1979). Vki = 1 if xi belongs
to cluster k. Otherwise, Vki = 0.
The objective function of k-means clustering

Jk−means =

m∑
i=1

K∑
k=1

vki||wi − uk||2 = ||W −UV||2 (10)

We can relax the range of vki over the values in (0, 1) or (0,∞). This restricts V to accept
only nonnegative values and allow U to have mixed signs values.

2. Update U by fixing V using this constraint. By fixing V, the solution of U can be obtained
by calculating the derivative of dJ/dU = −2WVT + 2UVVT = 0. Then we can get the
U = WVT (VVT)−1.

3. Update V by fixing U

Vki = Vki

√
(WTU)+ik + [VT (UTU)−]ik

(WTU)−ik + [VT (UTU)+]ik
(11)

The positive and negative parts are computed A+
ik = (|Aik|+Aik)

2 , A−ik = (|Aik|−Aik)
2

According to Ding et al. (2010), this method will reach convergence. By fixing U, the residual
||W−UVT ||2 will decrease monotonically, and after fixing V, we get the optimal solution for the
objective function.

The algorithm is computed by using an iterative updating algorithm that alternates between the
update of U and V (Ding et al., 2010). The steps are very similar to coordinate descent Luo &
Tseng (1992) with some modifications. The optimization is convex in U or V, not both.

In the latent space derived by the NMF factorization family, each axis captures the centroid of a
particular cluster, and each sample is represented as an additive combination of the centroids. The
cluster membership of each document can be easily determined by finding the corresponding cluster
centroid (the axis) with which the document has the largest projection value. Note in particular that
the result of a K-means clustering run can be written as a matrix factorization W = UV , where
W ∈ Rnm is the data matrix, U ∈ Rnr contains the cluster centroids, and V ∈ Rrm contains the
cluster membership indicators.

• Perform the NMF or semi-NMF on W to obtain the two non-negative matrices U and V.

• Matrix U contains r n−dimensional cluster centers and matrix V contains membership
weight for each of the m samples in each of the r clusters. One can assign data i to the
cluster c if c = argmaxjVij .

13

Under review as a conference paper at ICLR 2019

Table 3: Summary of Op, Cost and Memory consumption of compression method used in the paper.
A ∈ Rz×m, W ∈ Rm×n

U ∈ Rm×r, V ∈ Rr×n Op Cost Memory

Uncompressed A ·W O(z ×m× n) O(z ×m+m× n)

Pruning9 A · (r(m+n)
mn W) Ω(z×r(m+ n)) O(z ×m+ r(m+ n))

Matrix Factorization (A ·U) ·V Θ(z×r(m+ n)) O(z ×m+ r(m+ n))

A.2 COMPLEXITY

The algorithm complexity in terms of time and memory is shown in Table 3.

B MEASURES

B.1 L1 NORM

The L1 Norm of any matrix W ∈ Rm×n, induced from the vector L1 Norm and called the maximum
absolute column sum norm, and the standard deviation of the L1 norm are defined as such,

Lj =

m∑
i=1

|wij |, ‖W‖1 = max
j
Lj , L̄ =

n∑
j=1

Lj , σ(‖W‖1) =

n∑
j=1

(L̄ − Lj)
2 (13)

L1 norm is basically the maximum of the L1 vector norms of all column vectors in W. The standard
deviation of L1 norm calculates the standard deviation across the column-wise L1 norms.. These
values indicate how high the values are in terms of magnitude, and how much variance the column
vector norms have. In other words, if the σ(‖W‖1) is high and ‖W‖1 is high, the matrix can be
considered to be sparser.

B.2 NUCLEAR NORM

The nuclear norm of any matrix W ∈ Rm×n, is defined as the sum of singular values as following,

‖W‖nuc =
√
W ∗W =

minm,n∑
i=1

σi(W) (14)

The nuclear norm is often an approximation of the rank of the given matrix; a low nuclear norm
indicates low rank.

B.3 EFFICIENCY E(r)

For evaluating the performance of the compression we define efficiency measure as:

E(r) =
R(M,Mr)

R(P, P r)
(15)

where M represent any evaluation metric (i.e. Accuracy, F1-score, Perplexity10), P represents the
number of parameters11, and R(a, b) = a−b

a where a = max(a, b), i.e. the ration. This indicator
shows the ratio of loss in performance versus the loss in number of parameter. Hence, an efficient
compression holds a very small E since the denominator, P − P r, became large just when the
number of parameter decreases, and the numerator, M −Mr, became small only if there is no loss
in the considered measure. In some cases E became negative if there is an improvement.

9Pruning speed and memory depends on the desired sparsity defined as r(m+n)
mn

10Note that for Perplexity, we use R(Mr,M) instead, because lower is better.
11P r and Mr are the parameter and the measure after semi-NMF of rank r

14

Under review as a conference paper at ICLR 2019

C FINE-TUNING

In this section, we explain the fine-tuning steps and how we tune our hyper-parameters. This step is
intended to improve the performance of our models. After several attempts of fine-tuning, we fig-
ured out that we need to apply different initial learning rates for every rank to quickly reach the con-
vergence point, especially after matrix factorization. During every step, Asynchronous Stochastic
Gradient Descent Merity et al. (2018) is used as the optimizer. Table 4 shows the hyper-parameters
setting.

Table 4: Hyper-parameters setting
r initial lr

Semi-NMF
10 10
200 1
400 0.1

SVD
10 10
200 1
400 1

Prune
10 30
200 30
400 30

We achieved lower perplexity after fine-tuning steps and the results are shown in Figure 5.

Table 5: Results of fine-tuning on PTB.
Rank Semi-NMF SVD Prune

Baseline r 58.98 58.98 58.98

Wi

10 81.4 88.12 82.23
200 58.57 58.49 57.97
400 58.47 58.04 57.65

Wh

10 58.11 58.18 57.94
200 57.76 58.03 57.2
400 57.84 57.81 57.19

Wall

10 92.47 97.26 -
200 58.59 58.82 -
400 58.58 57.99 -

15

Under review as a conference paper at ICLR 2019

D TABLES

Table 6: Datasets used for the evaluation. In PTB and WikiText-2 we show the number of tokens, in
the other three the number of samples.

Dataset Train Validation Test Vocabulary
PTB 929,590 73,761 82,431 10,000
WT2 2,088,628 217,646 245,569 33,278

SST-5 8,544 1,101 2,210 19,500
SNLI 550,152 10,000 10,000 84,487

SQuAD 90,000 10,000 10,000 115,613

Table 7: Penn Tree Bank (PTB) language modeling results.
PTB

Rank Speedup PPL Increase E(r) Param. PPL Increase E(r)

r TUnc

Tr
Semi-NMF SVD Semi-NMF SVD M(%) Pruning

uncompressed 495.43 (ms) 58.98 - 20.21M 58.98 -

Wi

10 1.6 426.42 403.21 200.97 199.57 11.38M (43.7) 617.34 208.82
50 1.58 76.57 72.24 137.64 134.14 11.92M (41.0) 205.84 189.39
100 1.47 28.24 24.24 85.88 77.25 12.59M (37.7) 50.22 121.98
200 1.33 10.61 6.86 49.15 33.58 13.94M (31.0) 9.36 44.15
250 1.27 7.64 4.5 41.43 25.61 14.62M (27.7) 4.87 27.55
300 1.24 5.96 3.09 37.7 20.46 15.29M (24.3) 2.74 18.24
350 1.17 4.7 2.2 35.14 17.14 15.97M (21.0) 1.58 12.42
400 1.16 3.72 1.61 33.59 15.08 16.64M (17.7) 0.92 8.7

Wh

10 2.13 19.52 19.1 45.34 44.6 9.13M (54.8) 24.18 53.02
50 2.06 6.96 6.69 20.23 19.52 9.67M (52.2) 12.93 34.46
100 1.94 3.64 3.19 11.9 10.51 10.34M (48.8) 7.83 24.0
200 1.58 1.65 1.16 6.46 4.58 11.69M (42.2) 3.63 13.75
250 1.47 1.28 0.81 5.47 3.48 12.37M (38.8) 2.54 10.64
300 1.42 1.05 0.6 4.93 2.84 13.04M (35.5) 1.26 5.9
350 1.29 0.89 0.46 4.63 2.43 13.72M (32.1) 0.79 4.11
400 1.26 0.72 0.36 4.19 2.12 14.39M (28.8) 0.52 3.04

Wall

10 8.19 433.15 415.08 89.3 88.84 291.60K (98.6) 654.96 93.08
50 7.63 86.17 81.99 63.69 62.4 1.37M (93.2) 274.56 88.31
100 5.82 34.82 30.22 42.9 39.15 2.72M (86.5) 89.22 69.57
200 3.43 14.55 9.85 27.04 19.56 5.42M (73.2) 21.62 36.66
250 2.42 10.85 6.28 23.37 14.48 6.77M (66.5) 13.08 27.3
300 2.14 8.28 4.13 20.58 10.93 8.12M (59.8) 7.83 19.59
350 1.71 6.6 2.82 18.94 8.6 9.47M (53.1) 5.56 16.21
400 1.59 5.22 2.07 17.5 7.28 10.82M (46.5) 4.33 14.72

20 30 40

% Compression

100

200

300

400

500

600

700

P
er

p
le

xi
ty

(a) Wi

30 40 50

% Compression

60

65

70

75

80

P
er

p
le

xi
ty

(b)

PTB
Wh

Semi-NMF SVD Pruning uncompressed

60 80 100

% Compression

100

200

300

400

500

600

700

P
er

p
le

xi
ty

(c) Wall

20 25

60

65

30 35

59

60

61

50 60

60

65

70

Figure 4: PTB: comparison between Semi-NMF, SVD and pruning. Perplexity versus LSTM com-
pression rate, in (a) Wi (b) Wh (c) Wall.

16

Under review as a conference paper at ICLR 2019

0 100 200 300 400

r

100

200

300

400

500
T

im
e

(m
s)
×

sa
m

p
le

(a)

0 100 200 300 400

r

100

200

300

400

500

P
er

p
le

xi
ty

(b) (Semi-NMF) PTB

Wi

Wh

Wall

uncompressed

0 100 200 300 400

r

0

500

1000

1500

E
(r

)

(c)

300 400

r

20

40

E
(r

)

Figure 5: Semi-NMF compression results in PTB for Wi, Wh, and Wall. Rank r versus (a) Time
per sample (b) Perplexity (c) Efficiency E(r).

0 100 200 300 400

r

100

200

300

400

500

T
im

e
(m

s)
×

sa
m

p
le

(a)

0 100 200 300 400

r

100

200

300

400

P
er

p
le

xi
ty

(b) (SVD) PTB

Wi

Wh

Wall

uncompressed

0 100 200 300 400

r

0

250

500

750

1000

1250

1500

E
(r

)

(c)

300 400

r

10

20

E
(r

)

Figure 6: SVD compression results in PTB for Wi, Wh, and Wall. Rank r versus (a) Time per
sample (b) Perplexity (c) Efficiency E(r).

Table 8: WikiText-2 (WT2) language modeling results.
Wiki-Text 2

Rank Speedup PPL Increase E(r) Param. PPL Increase E(r)

r TUnc

Tr
Semi-NMF SVD Semi-NMF SVD M(%) Pruning

uncompressed 516.97 (ms) 65.67 - 20.21M 65.67 -

Wi

10 1.6 415.94 377.82 197.57 194.89 11.38M (43.7) 791.2 211.23
50 1.53 63.01 59.37 119.31 115.69 11.92M (41.0) 137.67 164.97
100 1.43 19.29 16.63 60.22 53.6 12.59M (37.7) 35.47 93.02
200 1.33 6.99 5.07 31.01 23.11 13.94M (31.0) 6.71 29.88
250 1.29 5.24 3.45 26.69 18.03 14.62M (27.7) 3.54 18.48
300 1.23 4.14 2.49 24.36 15.02 15.29M (24.3) 2.01 12.2
350 1.18 3.29 1.88 22.72 13.22 15.97M (21.0) 1.14 8.12
400 1.19 2.74 1.44 22.68 12.18 16.64M (17.7) 0.7 5.97

Wh

10 2.09 36.5 34.25 65.14 62.49 9.13M (54.8) 43.49 72.64
50 1.97 7.87 7.58 20.51 19.84 9.67M (52.2) 19.43 43.76
100 1.9 3.68 3.39 10.87 10.05 10.34M (48.8) 10.07 27.23
200 1.56 1.76 1.36 6.19 4.81 11.69M (42.2) 3.59 12.3
250 1.48 1.41 0.97 5.42 3.75 12.37M (38.8) 2.22 8.42
300 1.41 1.14 0.73 4.81 3.09 13.04M (35.5) 1.41 5.93
350 1.32 0.96 0.55 4.48 2.6 13.72M (32.1) 0.9 4.21
400 1.29 0.83 0.43 4.33 2.28 14.39M (28.8) 0.56 2.94

Wall

10 6.23 448.05 422.28 88.49 87.81 291.60K (98.6) 822.8 93.96
50 5.44 83.22 78.65 59.96 58.47 1.37M (93.2) 220.76 82.68
100 4.75 28.39 24.08 34.88 31.01 2.72M (86.5) 73.61 61.07
200 3.19 10.08 7.16 18.18 13.44 5.42M (73.2) 16.61 27.59
250 2.45 7.32 4.82 15.08 10.29 6.77M (66.5) 8.62 17.45
300 1.93 5.84 3.45 13.65 8.34 8.12M (59.8) 4.75 11.28
350 1.68 4.7 2.57 12.57 7.07 9.47M (53.1) 2.64 7.27
400 1.58 3.86 1.96 11.95 6.23 10.82M (46.5) 1.55 4.96

17

Under review as a conference paper at ICLR 2019

20 30 40

% Compression

200

400

600

800

P
er

p
le

xi
ty

(a) Wi

30 40 50

% Compression

70

80

90

100

110

P
er

p
le

xi
ty

(b)

Wiki-Text 2
Wh

Semi-NMF SVD Pruning uncompressed

60 80 100

% Compression

200

400

600

800

P
er

p
le

xi
ty

(c) Wall

20 25

66

68

70

30 35

66

67

68

50 60

67.5

70.0

72.5

Figure 7: WikiText-2: comparison between Semi-NMF, SVD and pruning. Perplexity versus LSTM
compression rate, in (a) Wi (b) Wh (c) Wall.

0 100 200 300 400

r

100

200

300

400

500

T
im

e
(m

s)
×

sa
m

p
le

(a)

0 100 200 300 400

r

100

200

300

400

500

P
er

p
le

xi
ty

(b) (Semi-NMF) Wiki-Text 2

Wi

Wh

Wall

uncompressed

0 100 200 300 400

r

0

250

500

750

1000

1250

1500

E
(r

)

(c)

300 400

r

10

20

30

E
(r

)

Figure 8: Semi-NMF compression results in WikiText-2 for Wi, Wh, and Wall. Rank r versus (a)
Time per sample (b) Perplexity (c) Efficiency E(r).

0 100 200 300 400

r

100

200

300

400

500

T
im

e
(m

s)
×

sa
m

p
le

(a)

0 100 200 300 400

r

100

200

300

400

500

P
er

p
le

xi
ty

(b) (SVD) Wiki-Text 2

Wi

Wh

Wall

uncompressed

0 100 200 300 400

r

0

250

500

750

1000

1250

E
(r

)

(c)

300 400

r

5

10

15

E
(r

)

Figure 9: SVD compression results in WikiText-2 for Wi, Wh, and Wall. Rank r versus (a) Time
per sample (b) Perplexity (c) Efficiency E(r).

18

Under review as a conference paper at ICLR 2019

Table 9: SST-5 sentiment analysis results.
SST-5

Rank Speedup Acc Drop E(r) Param. Acc Drop E(r)

r TUnc

Tr
Semi-NMF SVD Semi-NMF SVD M(%) Pruning

uncompressed 90.17 (ms) 54.57 - 67.11M 54.57 -

Wi

10 1.28 16.33 13.98 61.1 52.3 34.23M (49.0) 20.0 74.81
50 1.25 6.83 6.56 27.85 26.74 36.93M (45.0) 11.4 46.47
100 1.23 3.53 2.94 16.2 13.5 40.31M (39.9) 3.62 16.61
200 1.16 1.99 1.54 12.22 9.44 47.07M (29.9) 0.86 5.28
250 1.13 1.36 0.9 10.02 6.68 50.45M (24.8) 0.41 3.01
300 1.1 0.72 0.68 6.7 6.29 53.83M (19.8) 0.27 2.51
350 1.08 0.86 0.18 10.68 2.25 57.21M (14.8) -0.09 -1.12
400 1.05 0.45 0.23 8.53 4.27 60.59M (9.7) -0.05 -0.85

Wh

10 1.26 4.39 4.16 16.42 15.57 34.23M (49.0) 3.76 14.05
50 1.25 2.35 2.35 9.59 9.59 36.93M (45.0) 2.26 9.22
100 1.21 2.13 2.4 9.76 11.01 40.31M (39.9) 1.9 8.72
200 1.16 1.4 1.18 8.61 7.22 47.07M (29.9) 0.27 1.67
250 1.13 1.13 1.31 8.35 9.69 50.45M (24.8) 0.09 0.67
300 1.09 0.68 0.86 6.29 7.96 53.83M (19.8) -0.05 -0.42
350 1.08 0.41 1.09 5.06 13.49 57.21M (14.8) -0.32 -3.93
400 1.03 0.63 0.45 11.95 8.53 60.59M (9.7) -0.09 -1.71

Wall

10 1.72 14.48 13.67 27.08 25.56 1.35M (98.0) 14.03 26.23
50 1.68 7.6 7.42 15.49 15.12 6.76M (89.9) 10.0 20.38
100 1.56 5.25 4.48 12.04 10.28 13.52M (79.9) 5.88 13.5
200 1.39 3.35 2.67 10.28 8.19 27.03M (59.7) 1.99 6.11
250 1.32 2.58 1.76 9.52 6.51 33.79M (49.6) 0.86 3.17
300 1.21 1.45 1.49 6.7 6.91 40.55M (39.6) 0.32 1.47
350 1.15 1.95 0.81 12.08 5.06 47.31M (29.5) -0.18 -1.12
400 1.08 1.18 1.0 11.09 9.39 54.07M (19.4) -0.14 -1.28

10 20 30 40 50

% Compression

35

40

45

50

55

A
cc

u
ra

cy

(a) Wi

10 20 30 40 50

% Compression

50

51

52

53

54

55

A
cc

u
ra

cy

(b)

SST-5
Wh

Semi-NMF SVD Pruning uncompressed

20 40 60 80 100

% Compression

40.0

42.5

45.0

47.5

50.0

52.5

55.0

A
cc

u
ra

cy

(c) Wall

10 20

53.5

54.0

54.5

20 40

52

54

Figure 10: SST-5: comparison between Semi-NMF, SVD and pruning. Perplexity versus LSTM
compression rate, in (a) Wi (b) Wh (c) Wall.

0 100 200 300 400

r

50

60

70

80

90

T
im

e
(m

s)
×

sa
m

p
le

(a)

0 100 200 300 400

r

0.40

0.45

0.50

0.55

A
cc

u
ra

cy

(b) (Semi-NMF) SST-5

Wi

Wh

Wall

uncompressed

0 100 200 300 400

r

10

20

30

40

50

60

E
(r

)

(c)

300 400

r

5

10

E
(r

)

Figure 11: Semi-NMF compression results in SST-5 for Wi, Wh, and Wall. Rank r versus (a)
Time per sample (b) Perplexity (c) Efficiency E(r).

19

Under review as a conference paper at ICLR 2019

0 100 200 300 400

r

50

60

70

80

90

T
im

e
(m

s)
×

sa
m

p
le

(a)

0 100 200 300 400

r

0.400

0.425

0.450

0.475

0.500

0.525

0.550

A
cc

u
ra

cy

(b) (SVD) SST-5

Wi

Wh

Wall

uncompressed

0 100 200 300 400

r

0

10

20

30

40

50

E
(r

)

(c)

300 400

r

5

10

E
(r

)

Figure 12: SVD compression results in SST-5 for Wi, Wh, and Wall. Rank r versus (a) Time per
sample (b) Perplexity (c) Efficiency E(r).

Table 10: SNLI textual entailment results.
SNLI

Rank Speedup Acc Drop E(r) Param. Acc Drop E(r)

r TUnc

Tr
Semi-NMF SVD Semi-NMF SVD M(%) Pruning

uncompressed 153.12 (ms) 88.52 - 67.11M 88.52 -

Wi

10 1.4 11.43 10.36 26.36 23.89 34.23M (49.0) 14.84 34.22
50 1.37 1.98 1.7 4.99 4.27 36.93M (45.0) 4.7 11.82
100 1.37 0.79 0.97 2.25 2.74 40.31M (39.9) 1.13 3.2
200 1.25 0.41 0.42 1.54 1.58 47.07M (29.9) 0.26 1.0
250 1.26 0.23 0.23 1.07 1.07 50.45M (24.8) 0.2 0.93
300 1.16 0.36 0.11 2.03 0.64 53.83M (19.8) 0.12 0.7
350 1.11 0.15 0.14 1.17 1.09 57.21M (14.8) 0.01 0.08
400 1.07 0.07 0.03 0.83 0.35 60.59M (9.7) 0.03 0.35

Wh

10 1.33 1.27 1.24 2.93 2.86 34.23M (49.0) 1.01 2.32
50 1.31 0.62 0.54 1.56 1.36 36.93M (45.0) 0.57 1.43
100 1.3 0.32 0.42 0.89 1.18 40.31M (39.9) 0.36 1.01
200 1.2 0.21 0.19 0.81 0.73 47.07M (29.9) 0.19 0.73
250 1.17 0.11 0.07 0.51 0.32 50.45M (24.8) 0.06 0.28
300 1.11 0.04 0.1 0.23 0.58 53.83M (19.8) 0.01 0.06
350 1.08 0.05 0.08 0.39 0.62 57.21M (14.8) 0.05 0.39
400 1.06 0.06 0.05 0.71 0.59 60.59M (9.7) -0.02 -0.24

Wall

10 2.16 12.44 10.38 14.34 11.97 1.35M (98.0) 10.84 12.5
50 1.95 2.54 2.28 3.2 2.86 6.76M (89.9) 3.8 4.77
100 1.85 1.41 1.32 2.0 1.87 13.52M (79.9) 1.64 2.32
200 1.59 0.53 0.52 1.0 0.98 27.03M (59.7) 0.4 0.75
250 1.5 0.44 0.27 1.0 0.63 33.79M (49.6) 0.14 0.32
300 1.32 0.39 0.25 1.1 0.73 40.55M (39.6) 0.05 0.15
350 1.2 0.32 0.13 1.21 0.51 47.31M (29.5) 0.04 0.16
400 1.15 0.33 0.19 1.89 1.12 54.07M (19.4) 0.02 0.12

10 20 30 40 50

% Compression

75.0

77.5

80.0

82.5

85.0

87.5

A
cc

u
ra

cy

(a) Wi

10 20 30 40 50

% Compression

87.2

87.4

87.6

87.8

88.0

88.2

88.4

88.6

A
cc

u
ra

cy

(b)

SNLI
Wh

Semi-NMF SVD Pruning uncompressed

20 40 60 80 100

% Compression

76

78

80

82

84

86

88

A
cc

u
ra

cy

(c) Wall

10 20

88.2

88.4

10 20
88.40

88.45

88.50

20 40

88.2

88.4

Figure 13: SNLI: comparison between Semi-NMF, SVD and pruning. Perplexity versus LSTM
compression rate, in (a) Wi (b) Wh (c) Wall.

20

Under review as a conference paper at ICLR 2019

0 100 200 300 400

r

80

100

120

140
T

im
e

(m
s)
×

sa
m

p
le

(a)

0 100 200 300 400

r

0.76

0.78

0.80

0.82

0.84

0.86

0.88

A
cc

u
ra

cy

(b) (Semi-NMF) SNLI

Wi

Wh

Wall

uncompressed

0 100 200 300 400

r

0

5

10

15

20

25

E
(r

)

(c)

300 400

r

1

2

E
(r

)

Figure 14: Semi-NMF compression results in SNLI for Wi, Wh, and Wall. Rank r versus (a)
Time per sample (b) Perplexity (c) Efficiency E(r).

0 100 200 300 400

r

80

100

120

140

T
im

e
(m

s)
×

sa
m

p
le

(a)

0 100 200 300 400

r

0.78

0.80

0.82

0.84

0.86

0.88

A
cc

u
ra

cy

(b) (SVD) SNLI

Wi

Wh

Wall

uncompressed

0 100 200 300 400

r

0

5

10

15

20

25

E
(r

)

(c)

300 400

r

0.5

1.0

E
(r

)

Figure 15: SVD compression results in SNLI for Wi, Wh, and Wall. Rank r versus (a) Time per
sample (b) Perplexity (c) Efficiency E(r).

Table 11: SQuAD question answering results.
SQuAD

Rank Speedup F1 Drop E(r) Param. F1 Drop E(r)

r TUnc

Tr
Semi-NMF SVD Semi-NMF SVD M(%) Pruning

uncompressed 747.85 (ms) 81.76 - 67.11M 81.76 -

Wi

10 1.31 21.06 24.62 52.59 61.45 34.23M (49.0) 29.73 74.23
50 1.28 5.46 5.28 14.86 14.36 36.93M (45.0) 10.88 29.59
100 1.24 2.82 1.83 8.65 5.6 40.31M (39.9) 3.65 11.18
200 1.18 0.65 0.49 2.68 1.99 47.07M (29.9) 0.66 2.72
250 1.16 0.41 0.32 2.0 1.57 50.45M (24.8) 0.28 1.36
300 1.1 0.18 0.06 1.09 0.36 53.83M (19.8) 0.22 1.33
350 1.07 0.04 -0.0 0.35 -0.02 57.21M (14.8) 0.1 0.85
400 1.05 -0.03 -0.03 -0.33 -0.38 60.59M (9.7) 0.02 0.3

Wh

10 1.29 5.16 5.04 12.89 12.57 34.23M (49.0) 5.21 13.01
50 1.26 2.43 2.38 6.61 6.47 36.93M (45.0) 2.16 5.87
100 1.23 1.55 1.37 4.74 4.21 40.31M (39.9) 1.03 3.14
200 1.16 0.76 0.56 3.12 2.29 47.07M (29.9) 0.22 0.91
250 1.15 0.53 0.35 2.6 1.72 50.45M (24.8) 0.19 0.92
300 1.09 0.58 0.29 3.56 1.81 53.83M (19.8) 0.17 1.07
350 1.07 0.24 0.21 2.02 1.76 57.21M (14.8) 0.14 1.14
400 1.06 0.2 0.13 2.55 1.62 60.59M (9.7) 0.1 1.3

Wall

10 1.97 21.36 20.18 26.66 25.19 1.35M (98.0) 23.64 29.51
50 1.83 6.65 6.67 9.04 9.08 6.76M (89.9) 10.11 13.75
100 1.71 4.13 3.36 6.33 5.15 13.52M (79.9) 4.61 7.06
200 1.51 1.75 1.03 3.59 2.1 27.03M (59.7) 1.06 2.17
250 1.41 1.24 0.79 3.06 1.93 33.79M (49.6) 0.39 0.96
300 1.26 0.63 0.39 1.95 1.21 40.55M (39.6) 0.18 0.55
350 1.19 0.43 0.31 1.79 1.29 47.31M (29.5) 0.15 0.61
400 1.14 0.44 0.14 2.75 0.86 54.07M (19.4) 0.06 0.36

21

Under review as a conference paper at ICLR 2019

10 20 30 40 50

% Compression

55

60

65

70

75

80

F
1-

sc
or

e
(a) Wi

10 20 30 40 50

% Compression

77

78

79

80

81

F
1-

sc
or

e

(b)

SQuAD
Wh

Semi-NMF SVD Pruning uncompressed

20 40 60 80 100

% Compression

60

65

70

75

80

F
1-

sc
or

e

(c) Wall

10 20

81.4

81.6

81.8

10 20

81.25

81.50

81.75

20 40

80.5

81.0

81.5

Figure 16: SQuAD: comparison between Semi-NMF, SVD and pruning. Perplexity versus LSTM
compression rate, in (a) Wi (b) Wh (c) Wall.

0 100 200 300 400

r

400

500

600

700

T
im

e
(m

s)
×

sa
m

p
le

(a)

0 100 200 300 400

r

0.60

0.65

0.70

0.75

0.80

F
1-

sc
or

e

(b) (Semi-NMF) SQuAD

Wi

Wh

Wall

uncompressed

0 100 200 300 400

r

0

10

20

30

40

50

E
(r

)

(c)

300 400

r

0.0

2.5

E
(r

)

Figure 17: Semi-NMF compression results in SQuAD for Wi, Wh, and Wall. Rank r versus (a)
Time per sample (b) Perplexity (c) Efficiency E(r).

0 100 200 300 400

r

400

500

600

700

T
im

e
(m

s)
×

sa
m

p
le

(a)

0 100 200 300 400

r

0.60

0.65

0.70

0.75

0.80

F
1-

sc
or

e

(b) (SVD) SQuAD

Wi

Wh

Wall

uncompressed

0 100 200 300 400

r

0

10

20

30

40

50

60

E
(r

)

(c)

300 400

r

0

2

E
(r

)

Figure 18: SVD compression results in SQuAD for Wi, Wh, and Wall. Rank r versus (a) Time per
sample (b) Perplexity (c) Efficiency E(r).

22

Under review as a conference paper at ICLR 2019

Table 12: Conversion from rank to pruning.

Rank PTB/WT2 ELMo
Wi Wh Wi/Wh

10 98.4% 98.7% 97.9%
50 92.4% 93.9% 89.9%

100 84.9% 87.9% 79.8%
200 69.8% 75.9% 59.7%
250 62.3% 69.9% 49.6%
300 54.8% 63.9% 39.5%
350 47.3% 57.8% 29.5%
400 39.7% 51.8% 19.4%

0 200 400

r

0.000010

0.000015

0.000020

0.000025

0.000030

(a) σ(‖W r
i ‖1)

0 200 400

r

0.000004

0.000006

0.000008

0.000010

0.000012

(b) σ(‖W r
h‖1)

LM MF LM Prune LM uncompressed

0 200 400

r

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

0.000225

(c) ‖W r
i ‖1

0 200 400

r

0.00004

0.00006

0.00008

0.00010

(d) ‖W r
h‖1

Figure 19: Norm analysis comparisons between MF and Pruning in Language Modeling (PTB).
Rank versus (a)σ(‖Wi‖1) (b) σ(‖Wh‖1) (c) ‖Wi‖1 (d) ‖Wh‖1.

0 200 400

r

0.000002

0.000004

0.000006

0.000008

0.000010

(a) σ(‖W r
i ‖1)

0 200 400

r

0.000019

0.000020

0.000021

0.000022

0.000023

0.000024

(b) σ(‖W r
h‖1)

ELMo MF ELMo Prune ELMo uncompressed

0 200 400

r

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

(c) ‖W r
i ‖1

0 200 400

r

0.00039

0.00040

0.00041

0.00042

(d) ‖W r
h‖1

Figure 20: Norm analysis comparisons between MF and Pruning in ELMo. Rank versus
(a)σ(‖Wi‖1) (b) σ(‖Wh‖1) (c) ‖Wi‖1 (d) ‖Wh‖1.

23

Under review as a conference paper at ICLR 2019

Figure 21: Heatmap LSTM weights on PTB

Figure 22: Heatmap of LSTM weights on WikiText-2

24

Under review as a conference paper at ICLR 2019

Figure 23: Heatmap of ELMo forward weights

Figure 24: Heatmap of ELMo backward weights

25

	Introduction
	Methodology
	Long-Short Term Memory Network
	Low-Rank Matrix Factorization
	Truncated Singular Value Decomposition (SVD)
	Semi Non-negative Matrix Factorization (Semi-NMF)

	LSTM Low-Rank Factorization

	Experiments and Results
	Language Modeling (LM)
	NLP Tasks with ELMo

	Norm Analysis
	Related Work
	Conclusion
	Matrix Factorization
	Semi-NMF Optimization
	Complexity

	Measures
	L1 Norm
	Nuclear Norm
	Efficiency E(r)

	Fine-tuning
	Tables

