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Abstract

We present a randomized primal-dual algorithm that solves the problem
minx maxy y>Ax to additive error ✏ in time nnz(A) +

p
nnz(A)n/✏, for ma-

trix A with larger dimension n and nnz(A) nonzero entries. This improves the best
known exact gradient methods by a factor of

p
nnz(A)/n and is faster than fully

stochastic gradient methods in the accurate and/or sparse regime ✏ 
p

n/nnz(A).
Our results hold for x, y in the simplex (matrix games, linear programming) and
for x in an `2 ball and y in the simplex (perceptron / SVM, minimum enclosing
ball). Our algorithm combines the Nemirovski’s “conceptual prox-method” and a
novel reduced-variance gradient estimator based on “sampling from the difference”
between the current iterate and a reference point.

1 Introduction

Minimax problems—or games—of the form minx maxy f(x, y) are ubiquitous in economics, statis-
tics, optimization and machine learning. In recent years, minimax formulations for neural network
training rose to prominence [15, 23], leading to intense interest in algorithms for solving large scale
minimax games [10, 14, 20, 9, 18, 24]. However, the algorithmic toolbox for minimax optimization
is not as complete as the one for minimization. Variance reduction, a technique for improving
stochastic gradient estimators by introducing control variates, stands as a case in point. A multitude
of variance reduction schemes exist for finite-sum minimization [cf. 19, 34, 1, 4, 12], and their impact
on complexity is well-understood [43]. In contrast, only a few works apply variance reduction to
finite-sum minimax problems [3, 39, 5, 26], and the potential gains from variance reduction are not
well-understood.

We take a step towards closing this gap by designing variance-reduced minimax game solvers that
offer strict runtime improvements over non-stochastic gradient methods, similar to that of optimal
variance reduction methods for finite-sum minimization. To achieve this, we focus on the fundamental
class of bilinear minimax games,

min
x2X

max
y2Y

y
>
Ax, where A 2 Rm⇥n

.

In particular, we study the complexity of finding an ✏-approximate saddle point (Nash equilibrium),
namely x, y with

max
y02Y

(y0)>Ax� min
x02X

y
>
Ax

0
 ✏.

In the setting where X and Y are both probability simplices, the problem corresponds to finding an
approximate (mixed) equilbrium in a matrix game, a central object in game theory and economics.
Matrix games are also fundamental to algorithm design due in part to their equivalence to linear
programming [8]. Alternatively, when X is an `2 ball and Y is a simplex, solving the corresponding
problem finds a maximum-margin linear classifier (hard-margin SVM), a fundamental task in machine
learning and statistics [25]. We refer to the former as an `1-`1 game and the latter as an `2-`1 game;
our primary focus is to give improved algorithms for these domains.
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1.1 Our Approach

Our starting point is Nemirovski’s “conceptual prox-method” [28] for solving
minx2X maxy2Y f(x, y), where f : X ⇥ Y ! R is convex in x and concave in y. The
method solves a sequence of subproblems parameterized by ↵ > 0, each of the form

find x, y s.t. 8x0
, y

0
hrxf(x, y), x� x

0
i � hryf(x, y), y � y

0
i  ↵Vx0(x

0) + ↵Vy0(y
0) (1)

for some (x0, y0) 2 X ⇥Y , where Va(b) is a norm-suitable Bregman divergence from a to b: squared
Euclidean distance for `2 and KL divergence for `1. Combining each subproblem solution with an
extragradient step, the prox-method solves the original problem to ✏ accuracy by solving eO(↵/✏)
subproblems.1 (Solving (1) with ↵ = 0 is equivalent to to solving minx2X maxy2Y f(x, y).)

Our first contribution is showing that if a stochastic unbiased gradient estimator g̃ satisfies the
“variance” bound

E kg̃(x, y)�rf(x0, y0)k
2
⇤  L

2
kx� x0k

2 + L
2
ky � y0k

2 (2)

for some L > 0, then O(L2
/↵

2) regularized stochastic mirror descent steps using g̃ solve (1) in a
suitable probabilistic sense. We call unbiased gradient estimators that satisfy (2) “centered.”

Our second contribution is the construction of “centered” gradient estimators for `1-`1 and `2-`1
bilinear games, where f(x, y) = y

>
Ax. Our `1 estimator has the following form. Suppose we wish

to estimate g
x = A

>
y (the gradient of f w.r.t. x), and we already have g

x
0 = A

>
y0. Let p 2 �m be

some distribution over {1, . . . ,m}, draw i ⇠ p and set

g̃
x = g

x
0 +Ai:

[y]i � [y0]i
pi

,

where Ai: is the ith column of A>. This form is familiar from variance reduction techniques [19,
44, 1], that typically use a fixed distribution p. In our setting, however, a fixed p will not produce
sufficiently low variance. Departing from prior variance-reduction work and building on [16, 6], we
choose p based on y according to

pi(y) =

��[y]i � [y0]i
��

ky � y0k1

,

yielding exactly the variance bound we require. We call this technique “sampling from the difference.”

For our `2 gradient estimator, we sample from the squared difference, drawing X -block coordinate
j ⇠ q, where qj(x) = ([x]j � [x0]j)2/kx� x0k

2
2. To strengthen our results for `2-`1 games, we

consider a refined version of the “centered” criterion (2) which allows regret analysis using local
norms [37, 6]. To further facilitate this analysis we follow [6] and introduce gradient clipping.
We extend our proofs to show that stochastic regularized mirror descent can solve (1) despite the
(distance-bounded) bias caused by gradient clipping.

Our gradient estimators attain the bound (2) with L equal to the Lipschitz constant ofrf . Specifically,

L =

⇢
maxij |Aij | in the `1-`1 setup
maxi kAi:k2 in the `2-`1 setup.

(3)

1.2 Method complexity compared with prior art

As per the discussion above, to achieve accuracy ✏ our algorithm solves eO(↵/✏) subproblems. Each
subproblem takes O(nnz(A)) time for computing two exact gradients (one for variance reduction and
one for an extragradient step), plus an additional (m+ n)L2

/↵
2 time for the inner mirror descent

iterations, with L as in (3). The total runtime is therefore

eO
✓✓

nnz(A) +
(m+ n)L2

↵2

◆
↵

✏

◆
.

1 More precisely, the required number of subproblem solutions is at most ⇥ · ↵
✏ , where ⇥ is a “domain

size” parameter that depends on X , Y , and the Bregman divergence V (see Section 2). In the `1 and `2 settings
considered in this paper, we have the bound ⇥  log(nm) and we use the eO notation to suppress terms
logarithmic in n and m. However, in other settings—e.g., `1-`1 games [cf. 38, 40]—making the parameter ⇥
scale logarithmically with the problem dimension is far more difficult.
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By setting ↵ optimally to be max{✏, L
p
(m+ n)/nnz(A)}, we obtain the runtime

eO(nnz(A) +
p

nnz(A) · (m+ n) · L · ✏
�1). (4)

Comparison with mirror-prox and dual extrapolation. Nemirovski [28] instantiates his concep-
tual prox-method by solving the relaxed proximal problem (1) with ↵ = L in time O(nnz(A)), where
L is the Lipschitz constant of rf , as given in (3). The total complexity of the resulting method is
therefore

eO(nnz(A) · L · ✏
�1). (5)

The closely related dual extrapolation method of Nesterov [31] attains the same rate of convergence.
We refer to the running time (5) as linear since it scales linearly with the problem description size
nnz(A). Our running time guarantee (4) is never worse than (5) by more than a constant factor, and
improves on (5) when nnz(A) = !(n+m), i.e. whenever A is not extremely sparse. In that regime,
our method uses ↵⌧ L, hence solving a harder version of (1) than possible for mirror-prox.

Comparison with sublinear-time methods Using a randomized algorithm, Grigoriadis and
Khachiyan [16] solve `1-`1 bilinear games in time

eO((m+ n) · L2
· ✏

�2), (6)

and Clarkson et al. [6] extend this result to `2-`1 bilinear games, with the values of L as in (3). Since
these runtimes scale with n+m  nnz(A), we refer to them as sublinear. Our guarantee improves
on the guarantee (6) when (m+ n) · L2

· ✏
�2
� nnz(A), i.e. whenever (6) is not truly sublinear.

Our method carefully balances linear-time extragradient steps with cheap sublinear-time stochastic
gradient steps. Consequently, our runtime guarantee (4) inherits strengths from both the linear and
sublinear runtimes. First, our runtime scales linearly with L/✏ rather than quadratically, as does the
linear runtime (5). Second, while our runtime is not strictly sublinear, its component proportional to
L/✏ is

p
nnz(A)(n+m), which is sublinear in nnz(A).

Overall, our method offers the best runtime guarantee in the literature in the regime
p

nnz(A)(n+m)

min{n,m}!
⌧

✏

L
⌧

r
n+m

nnz(A)
,

where the lower bound on ✏ is due to the best known theoretical runtimes of interior point methods:
eO(max{n,m}

! log(L/✏)) [7] and eO(nnz(A) + min{n,m}
2)
p
min{n,m} log(L/✏)) [21], where

! is the (current) matrix multiplication exponent.

In the square dense case (i.e. nnz(A) ⇡ n
2 = m

2), we improve on the accelerated runtime (5) by a
factor of

p
n, the same improvement that optimal variance-reduced finite-sum minimization methods

achieve over the fast gradient method [44, 1].

1.3 Related work

Matrix games, the canonical form of discrete zero-sum games, have long been studied in economics
[32]. The classical mirror descent (i.e. no-regret) method yields an algorithm with running time
eO(nnz(A)L2

✏
�2) [30]. Subsequent work [16, 28, 31, 6] improve this runtime as described above.

Our work builds on the extragradient scheme of Nemirovski [28] as well as the gradient estimation
and clipping technique of Clarkson et al. [6].

Balamurugan and Bach [3] apply standard variance reduction [19] to bilinear `2-`2 games by sampling
elements proportional to squared matrix entries. Using proximal-point acceleration they obtain a
runtime of eO(nnz(A)+kAkF

p
nnz(A)max{m,n}✏

�1 log 1
✏ ), a rate we recover using our algorithm

(Appendix E). However, in this setting the mirror-prox method has runtime eO(kAkop nnz(A)✏�1),
which may be better than the result of [3] by a factor of

p
mn/nnz(A) due to the discrepancy in

the norm of A. Naive application of [3] to `1 domains results in even greater potential losses. Shi
et al. [39] extend the method of [3] to smooth functions using general Bregman divergences, but their
extension is unaccelerated and appears limited to a ✏�2 rate.

Chavdarova et al. [5] propose a variance-reduced extragradient method with applications to generative
adversarial training. In contrast to our algorithm, which performs extragadient steps in the outer loop,
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the method of [5] performs stochastic extragradient steps in the inner loop, using finite-sum variance
reduction as in [19]. Chavdarova et al. [5] analyze their method in the convex-concave setting,
showing improved stability over direct application of the extragradient method to noisy gradients.
However, their complexity guarantees are worse than those of linear-time methods. Following up
on [5], Mishchenko et al. [26] propose to reduce the variance of the stochastic extragradient method
by using the same stochastic sample for both the gradient and extragradient steps. In the Euclidean
strongly convex case, they show a convergence guarantee with a relaxed variance assumption, and in
the noiseless full-rank bilinear case they recover the guarantees of [27]. In the general convex case,
however, they only show an ✏�2 rate of convergence.

1.4 Paper outline and additional contributions

We define our notation in Section 2. In Section 3.1, we review Nemirovski’s conceptual prox-method
and introduce the notion of a relaxed proximal oracle; we implement such oracle using variance-
reduced gradient estimators in Section 3.2. In Section 4, we construct these gradient estimators for
the `1-`1 and `2-`1 domain settings, and complete the analyses of the corresponding algorithms; in
Appendix E we provide analogous treatment for the `2-`2 setting, recovering the results of [3].

In Appendix F we provide three additional contributions: variance-reduction-based computation of
proximal points for arbitrary convex-concave functions (Appendix F.1); extension of our results to
“composite” saddle point problems of the form minx2X maxy2Y {f(x, y) + �(x)�  (y)}, where f
admits a centered gradient estimator and �, are “simple” convex functions (Appendix F.2); and a
number of alternative centered gradient estimators for the `2-`1 and `2-`2 settings (Appendix F.3).

2 Notation

Problem setup. A setup is the triplet (Z, k·k , r) where: (i) Z is a compact and convex subset of
Rn
⇥ Rm, (ii) k·k is a norm on Z and (iii) r is 1-strongly-convex w.r.t. Z and k·k, i.e. such that

r(z0) � r(z) + hrr(z), z � z
0
i+ 1

2 kz
0
� zk

2 for all z, z0 2 Z .2 We call r the distance generating

function and denote the Bregman divergence associated with it by

Vz(z
0) := r(z0)� r(z)� hrr(z), z0 � zi �

1

2
kz

0
� zk

2
.

We also denote ⇥ := maxz0 r(z0)�minz r(z) and assume it is finite.

Norms and dual norms. We write S⇤ for the set of linear functions on S . For ⇣ 2 Z
⇤ we define the

dual norm of k·k as k⇣k⇤ := maxkzk1 h⇣, zi. For p � 1 we write the `p norm kzkp = (
P

i z
p
i )

1/p

with kzk1 = maxi |zi|. The dual norm of `p is `q with q
�1 = 1� p

�1.

Domain components. We assume Z is of the form X ⇥ Y for convex and compact sets X ⇢ Rn

and Y ⇢ Rm. Particular sets of interest are the simplex �d = {v 2 Rd
| kvk1 = 1, v � 0} and the

Euclidean ball Bd = {v 2 Rd
| kvk2  1}. For any vector in z 2 Rn

⇥ Rm,

we write z
x and z

y for the first n and last m coordinates of z, respectively.

When totally clear from context, we sometimes refer to the X and Y components of z directly as x
and y. We write the ith coordinate of vector v as [v]i.

Matrices. We consider a matrix A 2 Rm⇥n and write nnz(A) for the number of its nonzero
entries. For i 2 [n] and j 2 [m] we write Ai:, A:j and Aij for the corresponding row, column
and entry, respectively.3 We consider the matrix norms kAkmax := maxij |Aij |, kAkp!q :=

maxkxkp1 kAxkq and kAkF := (
P

i,j A
2
ij)

1/2.

2 For non-differentiable r, let hrr(z), wi := sup�2@r(z) h�, wi, where @r(z) is the subdifferential of r at z.
3 For k 2 N, we let [k] := {1, . . . , k}.
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3 Primal-dual variance reduction framework

In this section, we establish a framework for solving the saddle point problem

min
x2X

max
y2Y

f(x, y),

where f is convex in x and concave y, and admits a (variance-reduced) stochastic estimator for the
continuous and monotone4 gradient mapping

g(z) = g(x, y) := (rxf(x, y),�ryf(x, y)) .

Our goal is to find an ✏-approximate saddle point (Nash equilibrium), i.e. z 2 Z := X ⇥ Y such that

Gap(z) := max
y02Y

f(zx, y0)� min
x02X

f(x0
, z

y)  ✏. (7)

We achieve this by generating a sequence z1, z2, . . . , zk such that 1
K

PK
k=1 hg(zk), zk � ui  ✏ for

every u 2 Z and using the fact that

Gap

 
1

K

KX

k=1

zk

!
 max

u2Z

1

K

KX

k=1

hg(zk), zk � ui (8)

due to convexity-concavity of f (see proof in Appendix A.1).

In Section 3.1 we define the notion of a (randomized) relaxed proximal oracle, and describe how
Nemirovski’s mirror-prox method leverages it to solve the problem (3). In Section 3.2 we define a
class of centered gradient estimators, whose variance is proportional to the squared distance from a
reference point. Given such a centered gradient estimator, we show that a regularized stochastic mirror
descent scheme constitutes a relaxed proximal oracle. For a technical reason, we limit our oracle
guarantee in Section 3.2 to the bilinear case f(x, y) = y

>
Ax, which suffices for the applications in

Section 4. We lift this limitation in Appendix F.1, where we show a different oracle implementation
that is valid for general convex-concave f , with only a logarithmic increase in complexity.

3.1 The mirror-prox method with a randomized oracle

Recall that we assume the space Z = X ⇥ Y is equipped with a norm k·k and distance generating
function r : Z ! R that is 1-strongly-convex w.r.t. k·k and has range ⇥. We write the induced
Bregman divergence as Vz(z0) = r(z0)�r(z)�hrr(z), z0 � zi. We use the following fact throughout
the paper: by definition, the Bregman divergence satisfies, for any z, z

0
, u 2 Z ,

� hrVz(z
0), z0 � ui = Vz(u)� Vz0(u)� Vz(z

0). (9)

For any ↵ > 0 we define the ↵-proximal mapping Prox↵z (g) to be the solution of the variational
inequality corresponding to the strongly monotone operator g + ↵rVz , i.e. the unique z↵ 2 Z such
that hg(z↵) + ↵rVz(z↵), z↵ � ui  0 for all u 2 Z [cf. 11]. Equivalently (by (9)),

Prox↵z (g) := the unique z↵ 2 Z s.t. hg(z↵), z↵ � ui  ↵Vz(u)� ↵Vz↵(u)� ↵Vz(z↵) 8u 2 Z.

(10)
When Vz(z0) = V

x
x (x

0) + V
y
y (y

0), Prox↵z (g) is also the unique solution of the saddle point problem

min
x02X

max
y02Y

�
f(x0

, y
0) + ↵V

x
x (x

0)� ↵V y
y (y

0)
 
.

Consider iterations of the form zk = Prox↵zk�1
(g), with z0 = argminz r(z). Averaging the defini-

tion (10) over k, using the bound (8) and the nonnegativity of Bregman divergences gives

Gap

 
1

K

KX

k=1

zk

!
 max

u2Z

1

K

KX

k=1

hg(zk), zk � ui  max
u2Z

↵ (Vz0(u)� VzK (u))

K

↵⇥

K
.

Thus, we can find an ✏-suboptimal point in K = ↵⇥/✏ exact proximal steps. However, computing
Prox↵z (g) exactly may be as difficult as solving the original problem. Nemirovski [28] proposes
a relaxation of the exact proximal mapping, which we slightly extend to include the possibility of
randomization, and formalize in the following.

4 A mapping q : Z ! Z⇤ is monotone if and only if hq(z0)� q(z), z0 � zi � 0 for all z, z0 2 Z; g is
monotone due to convexity-concavity of f .
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Definition 1 ((↵, ")-relaxed proximal oracle). Let g be a monotone operator and ↵, " > 0. An

(↵, ")-relaxed proximal oracle for g is a (possibly randomized) mapping O : Z ! Z such that

z
0 = O(z) satisfies

E

max
u2Z

�
hg(z0), z0 � ui � ↵Vz(u)

 �
 ".

Note that O(z) = Prox↵z (g) is an (↵, 0)-relaxed proximal oracle. Algorithm 1 describes the
“conceptual prox-method” of Nemirovski [28], which recovers the error guarantee of exact proximal
iterations. The kth iteration consists of (i) a relaxed proximal oracle call producing zk�1/2 =
O(zk�1), and (ii) a linearized proximal (mirror) step where we replace z 7! g(z) with the constant
function z 7! g(zk�1/2), producing zk = Prox↵zk�1

(g(zk�1/2)). We now state the convergence
guarantee for the mirror-prox method, first shown in [28] (see Appendix B.1 for a simple proof).

Algorithm 1: OuterLoop(O) (Nemirovski [28])
Input: (↵, ")-relaxed proximal oracle O(z) for gradient mapping g, distance-generating r

Parameters :Number of iterations K
Output: Point z̄K with EGap(z̄)  ↵⇥

K + "

1 z0  argminz2Z r(z)
2 for k = 1, . . . ,K do
3 zk�1/2  O(zk�1) . We implement O(zk�1) by calling InnerLoop(zk�1, g̃zk�1 ,↵)
4 zk  Prox↵zk�1

(g(zk�1/2)) = argminz2Z
�⌦

g
�
zk�1/2

�
, z
↵
+ ↵Vzk�1(z)

 

5 return z̄K = 1
K

PK
k=1 zk�1/2

Proposition 1 (Mirror prox convergence via oracles). Let O be an (↵,")-relaxed proximal oracle

with respect to gradient mapping g and distance-generating function r with range at most ⇥. Let

z1/2, z3/2, . . . , zK�1/2 be the iterates of Algorithm 1 and let z̄K be its output. Then

EGap(z̄K)  Emax
u2Z

1

K

KX

k=1

⌦
g(zk�1/2), zk�1/2 � u

↵

↵⇥

K
+ ".

3.2 Implementation of an (↵, 0)-relaxed proximal oracle

We now explain how to use stochastic variance-reduced gradient estimators to design an efficient
(↵, 0)-relaxed proximal oracle. We begin by introducing the bias and variance properties of the
estimators we require.
Definition 2. Let z0 2 Z and L > 0. A stochastic gradient estimator g̃z0 : Z ! Z

⇤
is called

(z0, L)-centered for g if for all z 2 Z

1. E [g̃z0(z)] = g(z),

2. E kg̃z0(z)� g(z0)k
2
⇤  L

2
kz � z0k

2
.

Lemma 1. A (z0, L)-centered estimator for g satisfies E kg̃z0(z)� g(z)k2⇤  (2L)2 kz � z0k
2
.

Proof. Writing �̃ = g̃z0(z) � g(z0), we have E�̃ = g(z) � g(z0) by the first centered estimator
property. Therefore,

E kg̃z0(z)� g(z)k2⇤ = Ek�̃ � E�̃k2⇤
(i)
 2Ek�̃k2⇤ + 2kE�̃k2⇤

(ii)
 4Ek�̃k2⇤

(iii)
 (2L)2 kz � z0k

2
,

where the bounds follow from (i) the triangle inequality, (ii) Jensen’s inequality and (iii) the second
centered estimator property.

Remark 1. A gradient mapping that admits a (z, L)-centered gradient estimator for every z 2 Z is
2L-Lipschitz, since by Jensen’s inequality and Lemma 1 we have for all w 2 Z

kg(w)� g(z)k⇤ = kEg̃z(w)� g(z)k⇤  (E kg̃z(w)� g(z)k2⇤)
1/2
 2L kw � zk .
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Remark 2. Definition 2 bounds the gradient variance using the distance to the reference point. Similar
bounds are used in variance reduction for bilinear saddle-point problems with Euclidean norm [3],
as well as for finding stationary points in smooth nonconvex finite-sum problems [2, 33, 12, 45].
However, known variance reduction methods for smooth convex finite-sum minimization require
stronger bounds [cf. 1, Section 2.1].

With the variance bounds defined, we describe Algorithm 2 which (for the bilinear case) implements a
relaxed proximal oracle. The algorithm is stochastic mirror descent with an additional regularization
term around the initial point w0. Note that we do not perform extragradient steps in this stochastic
method. When combined with a centered gradient estimator, the iterates of Algorithm 2 provide the
following guarantee, which is one of our key technical contributions.

Algorithm 2: InnerLoop(w0, g̃w0 ,↵)

Input: Initial w0 2 Z , gradient estimator g̃w0 , oracle quality ↵ > 0
Parameters :Step size ⌘, number of iterations T
Output: Point w̄T satisfying Definition 1 (for appropriate g̃w0 , ⌘, T )

1 for t = 1, . . . , T do
2 wt  argminw2Z

n
hg̃w0(wt�1), wi+

↵
2 Vw0(w) +

1
⌘Vwt�1(w)

o

3 return w̄T = 1
T

PT
t=1 wt

Proposition 2. Let ↵, L > 0, let w0 2 Z and let g̃w0 be (w0, L)-centered for monotone g. Then, for

⌘ = ↵
10L2 and T �

4
⌘↵ = 40L2

↵2 , the iterates of Algorithm 2 satisfy

Emax
u2Z

2

4 1

T

X

t2[T ]

hg(wt), wt � ui � ↵Vw0(u)

3

5  0. (11)

Before discussing the proof of Proposition 2, we state how it implies the relaxed proximal oracle
property for the bilinear case.
Corollary 1. Let A 2 Rm⇥n

and let g(z) = (A>
z
y
,�Az

x). Then, in the setting of Proposition 2,

O(w0) = InnerLoop(w0, g̃w0 ,↵) is an (↵, 0)-relaxed proximal oracle.

Proof. Note that hg(z), wi = �hg(w), zi for any z, w 2 Z and consequently hg(z), zi = 0.
Therefore, the iterates w1, . . . , wT of Algorithm 2 and its output w̄T = 1

T

PT
t=1 wt satisfy for every

u 2 Z ,
1

T

X

t2[T ]

hg(wt), wt � ui =
1

T

X

t2[T ]

hg(u), wti = hg(u), w̄T i = hg(w̄T ), w̄T � ui .

Substituting into the bound (11) yields the (↵, 0)-relaxed proximal oracle property in Definition 1.

More generally, the proof of Corollary 1 shows that Algorithm 2 implements a relaxed proximal oracle
whenever z 7! hg(z), z � ui is convex for every u. In Appendix F.1 we implement an (↵, ")-relaxed
proximal oracle without such an assumption.

The proof of Proposition 2 is a somewhat lengthy application of existing techniques for stochastic
mirror descent analysis in conjunction with Definition 2. We give it in full in Appendix B.2 and sketch
it briefly here. We view Algorithm 2 as mirror descent with stochastic gradients �̃t = g̃w0(wt)�g(w0)
and composite term hg(w0), zi +

↵
2 Vw0(z). For any u 2 Z , the standard mirror descent analysis

(see Lemma 4 in Appendix A.2) bounds the regret
P

t2[T ]

⌦
g̃w0(wt) +

↵
2rVw0(wt), wt � u

↵
in

terms of the distance to initialization Vw0(u) and the stochastic gradient norms k�̃tk2⇤ for t 2 [T ].
Bounding these norms via Definition 2 and rearranging the hrVw0(wt), wt � ui terms, we show that
E
h
1
T

P
t2[T ] hg(wt), wt � ui � ↵Vw0(u)

i
 0 for all u 2 Z . To reach our desired result we must

swap the order of the expectation and “for all.” We do so using the “ghost iterate” technique due
to Nemirovski et al. [29].
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4 Application to bilinear saddle point problems

We now construct centered gradient estimators (as per Definition 2) for the linear gradient mapping

g(z) = (A>
z
y
,�Az

x) corresponding to the bilinear saddle point problem min
x2X

max
y2Y

y
>
Ax.

Sections 4.1 and 4.2 consider the `1-`1 and `2-`1 settings, respectively; in Appendix E we show
how our approach naturally extends to the `2-`2 setting as well. Throughout, we let w0 denote the
“center” (i.e. reference point) of our stochastic gradient estimator and consider a general query point
w 2 Z = X ⇥ Y . We also recall the notation [v]i for the ith entry of vector v.

4.1 `1-`1 games

Setup. Denoting the d-dimensional simplex by �d, we let X = �n, Y = �m and Z = X ⇥ Y .
We take k·k to be the `1 norm with conjugate norm k·k⇤ = k·k1. We take the distance generating
function r to be the negative entropy, i.e. r(z) =

P
i[z]i log[z]i. We note that both k·k1 and r are

separable and in particular separate over the X and Y blocks of Z . Finally we set

kAkmax := max
i,j

|Aij |

and note that this is the Lipschitz constant of the gradient mapping g under the chosen norm.

Gradient estimator. Given w0 = (wx
0, w

y
0) and g(w0) = (A>

w
y
0,�Aw

x
0), we describe the

reduced-variance gradient estimator g̃w0(w). First, we define the probabilities p(w) 2 �m and
q(w) 2 �n according to,

pi(w) :=
|[wy]i � [wy

0]i|

kwy � w
y
0k1

and qj(w) :=
|[wx]j � [wx

0]j |

kwx � wx
0k1

. (12)

To compute g̃w0 we sample i ⇠ p(w) and j ⇠ q(w) independently, and set

g̃w0(w) :=

✓
A

>
w

y
0 +Ai:

[wy]i � [wy
0]i

pi(w)
,�Aw

x
0 �A:j

[wx]j � [wx
0]j

qj(w)

◆
, (13)

where Ai: and A:j are the ith row and jth column of A, respectively. Since the sampling distributions
p(w), q(w) are proportional to the absolute value of the difference between blocks of w and w0, we
call strategy (12) “sampling from the difference.” Substituting (12) into (13) gives the explicit form

g̃w0(w) = g(w0) + (Ai:kw
y
� w

y
0k1sign([w

y
� w

y
0]i),�A:jkw

x
� w

x
0k1sign([w

x
� w

x
0]j)) . (14)

A straightforward calculation shows that this construction satisfies Definition 2.
Lemma 2. In the `1-`1 setup, the estimator (14) is (w0, L)-centered with L = kAkmax.

Proof. The first property (Eg̃w0(w) = g(w)) follows immediately by inspection of (13). The second
property follows from (14) by noting that

kg̃w0(w)� g(w0)k1 = max
�
kAi:k1 kw

y
� w

y
0k1 , kA:jk1 kw

x
� w

x
0k1

 
 kAkmax kw � w0k1

for all i, j, and therefore E kg̃w0(w)� g(w0)k
2
1  kAk

2
max kw � w0k

2
1.

The proof of Lemma 2 reveals that the proposed estimator satisfies a stronger version of Definition 2:
the last property and also Lemma 1 hold with probability 1 rather than in expectation.

Runtime bound. Combining the centered gradient estimator (13), the relaxed oracle implemen-
tation (Algorithm 2) and the extragradient outer loop (Algorithm 1), we obtain our main result for
`1-`1 games: an accelerated stochastic variance reduction algorithm. We write the resulting complete
method explicitly as Algorithm 3 in Appendix C.1. The algorithm enjoys the following runtime
guarantee (see proof in Appendix C.2).
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Theorem 1. Let A 2 Rm⇥n
, ✏ > 0, and ↵ � ✏/ log(nm). Algorithm 3 outputs a point z = (zx, zy)

such that E
⇥
maxy2�m y

>
Az

x
�minx2�n(zy)>Ax

⇤
= E

h
maxi [Az

x]i �minj [A>
z
y]j

i
 ✏,

and runs in time

O

  
nnz(A) +

(m+ n) kAk2max

↵2

!
↵ log(mn)

✏

!
. (15)

Setting ↵ optimally, the running time is

O

 
nnz(A) +

p
nnz(A)(m+ n) kAkmax log(mn)

✏

!
. (16)

4.2 `2-`1 games

Setup. We set X = Bn to be the n-dimensional Euclidean ball of radius 1, while Y = �m remains
the simplex. For z = (zx, zy) 2 Z = X ⇥ Y we define a norm by

kzk
2 = kzxk22 + kz

y
k
2
1 with dual norm kgk

2
⇤ = kgxk22 + kg

y
k
2
1 .

For distance generating function we take r(z) = r
x(zx) + r

y(zy) with r
x(x) = 1

2 kxk
2
2 and r

y(y) =P
i yi log yi; r is 1-strongly convex w.r.t. to k·k and has range 1

2 + logm  log(2m). Finally, we
denote

kAk2!1 = max
i2[m]

kAi:k2 ,

and note that this is the Lipschitz constant of g under k·k.

Gradient estimator. To account for the fact that X is now the `2 unit ball, we modify the sampling
distribution q in (12) to qj(w) = ([wx]j�[wx

0]j)
2

kwx�wx
0k

2

2

, and keep p the same. As we explain in detail

in Appendix D.1.1, substituting these probabilities into the expression (13) yields a centered gradient
estimator with a constant (

P
j2[n] kA:jk

2
1)1/2 that is larger than kAk2!1 by a factor of up to

p
n.

Using local norms analysis allows us to tighten these bounds whenever the stochastic steps have
bounded infinity norm. Following Clarkson et al. [6], we enforce such bound on the step norms via
gradient clipping. The final gradient estimator is

g̃w0(w) :=

 
A

>
w

y
0 +Ai:

kw
y
� w

y
0k1

sign([wy � w
y
0]i)

,�Aw
x
0 � T⌧

 
A:j
kw

x
� w

x
0k

2
2

[wx]j � [wx
0]j

!!
,

where [T⌧ (v)]i =

8
<

:

�⌧ [v]i < �⌧
[v]i �⌧  [v]i  ⌧
⌧ [v]i > ⌧,

The clipping operation T⌧ introduces bias to the gradient estimator, which we account for by carefully
choosing a value of ⌧ for which the bias is on the same order as the variance, and yet the resulting
steps are appropriately bounded; see Appendix D.1.2. In Appendix F.3.1 we describe an alternative
gradient estimator for which the distribution q does not depend on the current iterate w.

Runtime bound. Algorithm 4 in Appendix D.5 combines our clipped gradient estimator with our
general variance reduction framework. The analysis in Appendix D gives the following guarantee.
Theorem 2. Let A 2 Rm⇥n

, ✏ > 0, and any ↵ � ✏/ log(2m). Algorithm 4 outputs a point z =
(zx, zy) such that E

⇥
maxy2�m y

>
Az

x
�minx2Bn(zy)>Ax

⇤
= E

⇥
maxi [Az

x]i + kA
>
z
y
k2

⇤
 ✏,

and runs in time

O

  
nnz(A) +

(m+ n) kAk22!1
↵2

!
↵ log(2m)

✏

!
. (17)

Setting ↵ optimally, the running time is

O

 
nnz(A) +

p
nnz(A)(m+ n) kAk2!1 log(2m)

✏

!
. (18)

9



Acknowledgments

YC and YJ were supported by Stanford Graduate Fellowships. AS was supported by the NSF
CAREER Award CCF-1844855. KT was supported by the NSF Graduate Fellowship DGE1656518.

References

[1] Z. Allen-Zhu. Katyusha: the first direct acceleration of stochastic gradient methods. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
1200–1205, 2017.

[2] Z. Allen-Zhu and E. Hazan. Variance reduction for faster non-convex optimization. In Proceed-

ings of the 33rd International Conference on Machine Learning, pages 699–707, 2016.

[3] P. Balamurugan and F. R. Bach. Stochastic variance reduction methods for saddle-point
problems. In Advances in Neural Information Processing Systems, 2016.

[4] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018.

[5] T. Chavdarova, G. Gidel, F. Fleuret, and S. Lacoste-Julien. Reducing noise in GAN training
with variance reduced extragradient. In Advances in Neural Information Processing Systems,
2019.

[6] K. L. Clarkson, E. Hazan, and D. P. Woodruff. Sublinear optimization for machine learning. In
51th Annual IEEE Symposium on Foundations of Computer Science, pages 449–457, 2010.

[7] M. B. Cohen, Y. T. Lee, and Z. Song. Solving linear programs in the current matrix multiplication
time. arXiv preprint arXiv:1810.07896, 2018.

[8] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ,
1953.

[9] C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng. Training GANs with optimism. In
International Conference on Learning Representations, 2019.

[10] Y. Drori, S. Sabach, and M. Teboulle. A simple algorithm for a class of nonsmooth convex-
concave saddle-point problems. Operations Research Letters, 43(2):209–214, 2015.

[11] J. Eckstein. Nonlinear proximal point algorithms using Bregman functions, with applications to
convex programming. Mathematics of Operations Research, 18(1):202–226, 1993.

[12] C. Fang, C. J. Li, Z. Lin, and T. Zhang. SPIDER: near-optimal non-convex optimization via
stochastic path-integrated differential estimator. In Advances in Neural Information Processing

Systems, 2018.

[13] R. Frostig, R. Ge, S. Kakade, and A. Sidford. Un-regularizing: approximate proximal point
and faster stochastic algorithms for empirical risk minimization. In Proceedings of the 32nd

International Conference on Machine Learning, pages 2540–2548, 2015.

[14] G. Gidel, T. Jebara, and S. Lacoste-Julien. Frank-Wolfe algorithms for saddle point problems.
In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
2017.

[15] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville,
and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing

Systems, 2014.

[16] M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized approximation algorithm
for matrix games. Operation Research Letters, 18(2):53–58, 1995.

[17] J. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I. Springer,
New York, 1993.

10



[18] C. Jin, P. Netrapalli, and M. I. Jordan. Minmax optimization: Stable limit points of gradient
descent ascent are locally optimal. arXiv preprint arXiv:1902.00618, 2019.

[19] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, 2013.

[20] O. Kolossoski and R. D. Monteiro. An accelerated non-Euclidean hybrid proximal extragradient-
type algorithm for convex-concave saddle-point problems. Optimization Methods and Software,
32(6):1244–1272, 2017.

[21] Y. T. Lee and A. Sidford. Efficient inverse maintenance and faster algorithms for linear
programming. In IEEE 56th Annual Symposium on Foundations of Computer Science, pages
230–249, 2015.

[22] H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In
Advances in Neural Information Processing Systems, 2015.

[23] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. In International Conference on Learning Representations, 2018.

[24] P. Mertikopoulos, H. Zenati, B. Lecouat, C.-S. Foo, V. Chandrasekhar, and G. Piliouras. Mirror
descent in saddle-point problems: Going the extra (gradient) mile. In International Conference

on Learning Representations, 2019.

[25] M. Minsky and S. Papert. Perceptrons—an introduction to computational geometry. MIT Press,
1987.

[26] K. Mishchenko, D. Kovalev, E. Shulgin, P. Richtárik, and Y. Malitsky. Revisiting stochastic
extragradient. arXiv preprint arXiv:1905.11373, 2019.

[27] A. Mokhtari, A. Ozdaglar, and S. Pattathil. A unified analysis of extra-gradient and opti-
mistic gradient methods for saddle point problems: Proximal point approach. arXiv preprint

arXiv:1901.08511, 2019.

[28] A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229–251, 2004.

[29] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

[30] A. Nemirovsky and D. Yudin. Problem Complexity and Method Efficiency in Optimization. J.
Wiley & Sons, New York, NY, 1983.

[31] Y. Nesterov. Dual extrapolation and its applications to solving variational inequalities and
related problems. Mathematical Programing, 109(2-3):319–344, 2007.

[32] J. V. Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100:295–320,
1928.

[33] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. Stochastic variance reduction for
nonconvex optimization. In Proceedings of the 33rd International Conference on Machine

Learning, pages 314–323, 2016.

[34] M. W. Schmidt, N. L. Roux, and F. R. Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programing, 162(1-2):83–112, 2017.

[35] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss. Journal of Machine Learning Research, 14(1):567–599, 2013.

[36] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. Mathematical Programing, 155(1-2):105–145, 2016.

[37] S. Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and

Trends in Machine Learning, 4(2):107–194, 2012.

11



[38] J. Sherman. Area-convexity, `1 regularization, and undirected multicommodity flow. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
452–460. ACM, 2017.

[39] Z. Shi, X. Zhang, and Y. Yu. Bregman divergence for stochastic variance reduction: Saddle-point
and adversarial prediction. In Advances in Neural Information Processing Systems, 2017.

[40] A. Sidford and K. Tian. Coordinate methods for accelerating `1 regression and faster approx-
imate maximum flow. In 2018 IEEE 59th Annual Symposium on Foundations of Computer

Science, pages 922–933. IEEE, 2018.

[41] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with exponential convergence.
Journal of Fourier Analysis and Applications, 15(2):262, 2009.

[42] M. D. Vose. A linear algorithm for generating random numbers with a given distribution. IEEE

Transactions on software engineering, 17(9):972–975, 1991.

[43] B. E. Woodworth and N. Srebro. Tight complexity bounds for optimizing composite objectives.
In Advances in Neural Information Processing Systems, 2016.

[44] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

[45] D. Zhou, P. Xu, and Q. Gu. Stochastic nested variance reduced gradient descent for nonconvex
optimization. In Advances in Neural Information Processing Systems, 2018.

12


	Introduction
	Our Approach
	Method complexity compared with prior art
	Related work
	Paper outline and additional contributions

	Notation
	Primal-dual variance reduction framework
	The mirror-prox method with a randomized oracle
	Implementation of an (,0)-relaxed proximal oracle

	Application to bilinear saddle point problems
	1-1 games
	2-1 games

	Standard results
	Duality gap bound
	The mirror descent regret bound

	Proofs from sec:framework
	Derivation of the Nemirovski's conceptual prox-method
	Proof of Proposition 2

	The 1-1 setup
	Complete pseudo-code
	Proof of runtime bound

	The 2-1 setup
	Derivation of gradient clipping
	Basic gradient estimator
	Improved gradient estimator

	Local norms bounds
	Properties of CBB gradient estimators
	Proof of Proposition 3
	Complete pseudo-code

	The 2-2 setup
	Extensions
	High precision proximal mappings via variance reduction
	Composite saddle point problems
	Additional gradient estimators
	2-1 games
	2-2 games



