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ABSTRACT

Model interpretability and systematic, targeted model adaptation present central
challenges in deep learning. In the domain of intuitive physics, we study the task
of visually predicting stability of block towers with the goal of understanding
and influencing the model’s reasoning. Our contributions are two-fold. Firstly,
we introduce neural stethoscopes as a framework for quantifying the degree of
importance of specific factors of influence in deep networks as well as for actively
promoting and suppressing information as appropriate. In doing so, we unify
concepts from multitask learning as well as training with auxiliary and adversarial
losses. Secondly, we deploy the stethoscope framework to provide an in-depth anal-
ysis of a state-of-the-art deep neural network for stability prediction, specifically
examining its physical reasoning. We show that the baseline model is susceptible
to being misled by incorrect visual cues. This leads to a performance breakdown
to the level of random guessing when training on scenarios where visual cues
are inversely correlated with stability. Using stethoscopes to promote meaningful
feature extraction increases performance from 51% to 90% prediction accuracy.
Conversely, training on an easy dataset where visual cues are positively correlated
with stability, the baseline model learns a bias leading to poor performance on
a harder dataset. Using an adversarial stethoscope, the network is successfully
de-biased, leading to a performance increase from 66% to 88%.

1 INTRODUCTION

Intuitive physics in the deep learning community describes physical understanding acquired by neural
networks in a data-driven as opposed to a rule-based manner: With an increasing amount of training
examples, we expect an algorithm to develop a better understanding of its (physical) environment,
especially when the task it is trained on is inherently linked to the physical rules governing the
scene. However, what type of understanding the network develops highly depends on the types of
scenarios it is confronted with and the task it is trying to solve. Furthermore, it depends on the
network architecture, on regularisation techniques, on the training procedure, etc. As a result, in
contrast to a rule-based approach, it is often hard to assess what form of physical understanding a
neural network has developed. We are specifically interested in whether the network uses visual cues
as shortcuts which reflect correlations in the dataset but are incommensurate with the underlying laws
of physics the network was intended to learn.

In this paper, we specifically focus on stability prediction of block towers, a task which has gained
interest in both the deep learning (Lerer et al.| 20165 |Wu et al., 2017 |Groth et al.| [2018) and the
robotics community in recent years (Li et al., 2017ajb). Images of towers of blocks stacked on
top of each other are shown to a neural network. Its task is to predict whether the tower will fall
over or not resulting in a binary classification problem. End-to-end learning approaches as well as
simulation-based approaches achieve super-human performance on a real dataset (Lerer et al., 2016
Wu et al} 2017} |Groth et al.| 2018)). However, with investigation of trained deep learning models
limited to occlusion-based attention analyses (Lerer et al., 2016} |Groth et al.,|2018), it is not clear
to what extent neural networks trained on this task take into account physical principles such as
centre-of-mass or whether they follow visual cues instead. To this end, we introduce a variation of
the ShapeStacks dataset presented by |Groth et al.| (2018) which facilitates the analysis of the effects
of visual cues on the learning process.
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Figure 1: The stethoscope framework. The main network (blue), comprised of an encoder and a
decoder, is trained for global stability prediction of block towers. The stethoscope (orange), a two
layered perceptron, is trained to predict a nuisance parameter (local stability) where the inputis Z, a
learned feature from an arbitrary layer of the main network. The stethoscope loss is back-propagated
with weighting factor A to the main network. The value of A determines whether the stethoscope
operates in analytic (A = 0), auxiliary (A > 0) or adversarial manner (A < 0).

Motivated by the need for an effective tool to understand and guide the physical reasoning of the
neural network and inspired by prior research in interpretability, multi-task learning and adversarial
training, we present neural stethoscopes as a unified framework for the interrogation and perturbation
of task-specific information at any layer. A stethoscope can be deployed in a purely analytic fashion
whereby a question is posed via a stethoscope loss which is not propagated back into the main
network. It can also be used to promote or suppress specific information by deploying either an
auxiliary or an adversarial training mechanism. The concept is illustrated in Figure[T} We demonstrate
that deploying an auxiliary stethoscope can be used to promote information conducive to the main
task improving overall network performance. Conversely, we show that an adversarial stethoscope
can mitigate a specific bias by effectively suppressing information. Moreover, the main network does
not need to be changed in order to apply a neural stethoscope.

In this work, we present two contributions: (1) An in-depth analysis of the state-of-the-art approach for
intuitive stability prediction. To that end, we also introduce an extension to the existing ShapeStacks
dataset which will be made publicly available. (2) A framework for interpreting, suppressing or
promoting extraction of features specific to a secondary task unifying existing approaches from
interpretability, auxiliary and adversarial learning. While we frame this work in the context of
intuitive physics, questions regarding model interpretability and, consequently, systematic, targeted
model adaptation find applicability in all domains of deep learning. For a study of two MNIST toy
problems with neural stethoscopes, please see Appendix [C]

2 RELATED WORK

This work touches on two fields within deep learning: intuitive physics, specifically stability predic-
tion, and targeted model adaptation/interpretation.

Stability Prediction Vision-based stability prediction of block towers has become a popular task
for teaching and showcasing physical understanding of algorithms. Approaches include end-to-end
deep learning algorithms (Lerer et al, 2016} [Groth et all 2018)) as well as pipelines using computer
vision to create an abstract state representation which can then be used by a physics simulator
letall 2017; [Wu et al} 2017)). [Furrer et al.| (2017) achieve impressive results with a pipeline approach
to robotic stone stacking. Interestingly, on a publicly available real-world dataset of block tower
images [2016), the state-of-the-art is shared between an end-to-end learning approach

(Groth et al.| [2018) and a pipeline method using a physics simulator (Wu et all,[2017). While being
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much easier to implement, end-to-end approaches have the downside of being significantly harder
to interpret. Interpretability brings at least two advantages: (1) Trust by understanding the model’s
reasoning and therefore also its potential failure cases. (2) Identification of potentials to improve the
model. Both|Lerer et al.|(2016) and |Groth et al.|(2018)) conduct occlusion-based attention analyses.
Groth et al.| (2018)) find that the focus of the algorithm’s attention lies within a bounding box around
the stability violation in 80% of the cases. While encouraging, conclusions which can be drawn
regarding the network’s understanding of physical principles are limited. Moreover, Selvaraju et al.
(2017) shows that attention analyses can be misleading: The Grad-CAM visualisation does not
change even for artificially crafted adversarial examples which maximally confuse the classifier.

Neural Stethoscopes The notion of passively interrogating and actively influencing feature repre-
sentations in hidden layers of neural networks connects disparate fields including interpretability,
auxiliary losses and multitask learning as well as adversarial training. We note that much of the re-
quired machinery for neural stethoscopes already exists in a number of sub-domains of deep learning.
Work on auxiliary objectives (Jaderberg et al., 2016) as well as multi-task learning (e.g.|Caruana
(1995;1998)) commonly utilises dedicated modules with losses targeted towards a variety of tasks
in order to optimise a representation shared across tasks. Based on this notion both deep supervi-
sion (Wang et al., 2015) and linear classifier probes (Alain & Bengio, |2016) reinforce the original loss
signal at various levels throughout a network stack. Although their work is restricted to reinforcing the
learning signal via the same loss applied to the global network (Alain & Bengio, |2016) in particular
demonstrate that the accessibility of information at a given layer can be determined - and promoted -
by formulating a loss applied locally to that layer.

Conversely, in order to encourage representations invariant to components of the input signal,
regularisation techniques are commonly utilised (e.g. |Srivastava et al.[(2014))). To obtain invariance
with respect to known systematic changes between training and deployment data, |Ganin et al.| (2016));
Waultmeier et al.| (2017)) propose methods for domain adaptation. In order to prevent a model fitting to
a specific nuisance factor, Louizos et al.|(2015) minimise the Maximum Mean Discrepancy between
conditional distributions with different values of a binary nuisance variable in the conditioning set.
This method is limited to discrete nuisance variables and its computational cost scales exponentially
with the number of states. Xie et al.|(2017)) address both issues via adversarial training, optimising
an encoding to confuse an additional discriminator, which aims to determine the values of nuisance
parameters. This approach assumes that the nuisance variable is known and is an input to the main
model during training and deployment. [Louppe et al.|(2017) follow a similar approach, applying the
discriminator to the output of the main model instead of its intermediate representations.

3 NEURAL STETHOSCOPES

We use stethoscopes to analyse and influence the learning process on the task of stability prediction,
but present it in the following as a general framework which can be applied to any set of tasks.

In supervised deep learning, we typically look for a function fy : X — Y with parameters 6 that
maps an input £ € X to its target y € Y. Often the function internally computes one or more
intermediate representations z € Z of the data. In this case, we rewrite fy as the composition of the
encoder hy"¢ : X — Z, which maps the input to the corresponding features z € Z, and the decoder
hgec : Z — Y, which maps features to the output. In this work, we consider only classification tasks
so that Y is a finite set of labels (or a simplex in the case of a probabilistic output), but our approach
generalises directly also to regression tasks.

The information present in the input & might support multiple different tasks. By introducing a
supplementary task into our training framework we hope to improve the performance of our network
at the primary task. However, the impact of the supplementary task on the primary task is often
difficult to determine, and in some cases can even detriment performance on the primary task. To this
end, we propose neural stethoscopes, which allow us to interrogate the relationships between primary
and supplementary tasks. In addition, the framework provides a tool to improve the network’s
performance at the primary task in light of both beneficial and detrimental supplementary tasks
through the introduction of auxiliary and adversarial losses respectively promoting or suppressing
extraction of features related to the supplemental task by the encoder hg"°.

Let the stethoscope be defined as an arbitrary function hfp : Z — S with parameters 1. Crucially, hj,
is trained on a supplemental task with targets s € S and not for the main objective. We define two
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loss functions: £,(#), which measures the discrepancy between predictions fy and the true task y
and L(6,1), which measures the performance on the supplemental task.

The weights of the stethoscope are updated as —Awy o« V., L5(6,9) to minimise £,(6,1) and the
weights of the main network as —Af oc VgL, 4(6,1)) to minimise the energy

Lys(0,9) = Ly(0) + X Ls(0,9). e9)
By choosing different values for the constant A we obtain three very different use cases:

Analytic Stethoscope (A = 0) Here, the gradients of the stethoscope, which acts as a passive
observer, are not used to alter the main model. This setup can be used to interrogate learned feature
representations: if the stethoscope predictions are accurate, the features can be used to solve the task.

Auxiliary Stethoscope (A > 0) The encoder is trained with respect to the stethoscope objective,
hence enforcing correlation between main network and supplemental task. This setup is related to
learning with auxiliary tasks, and helpful if we expect the two tasks to be beneficially related.

Adversarial Stethoscope (A < 0) By setting A < 0, we train the encoder to maximise the
stethoscope loss (which the stethoscope still tries to minimise), thus encouraging independence
between main network and supplemental tasks. This is effectively an adversarial training framework
and is useful if features required to solve the stethoscope task are a detrimental nuisance factor.

For the analytic stethoscope, to fairly compare the accessibility of information with respect to a certain
task in different feature representations, we set two criteria: (1) The capacity of the stethoscope
architecture has to be constant regardless of the dimensions of its input. (2) The stethoscope has to be
able to access each neuron of the input separately. We guarantee this by fully connecting the input
with the first layer of the stethoscope using a sparse matrix. This matrix has a constant number of
non-zero entries (criterion 1) and connects every input unit as well as every output unit at least once
(criterion 2). For a more detailed description, see Appendix

In auxiliary and adversarial mode, we attach the stethoscope to the main network’s last layer before
the logits in a fully connected manner. This setup proved to have the highest impact on the learning
process of the main network. The stethoscope itself is implemented as a two-layer perceptron with
ReLU activation and trained with sigmoid or softmax cross-entropy loss on its task S.

For numerical stability, the loss of the encoder in the adversarial setting is rewritten as

Lys(0,9) = Ly(0) + A L(0, %) )

where L5(6,1)) is the stethoscope loss with flipped labels. The objective is similar to the confusion
loss formulation utilised in GANs to avoid vanishing gradients when the discriminator’s performance
is high (Goodfellow, 2016).

4  VISION-BASED STABILITY PREDICTION OF BLOCK TOWERS

Previous work has shown that neural networks are highly capable of learning physical tasks such as
stability prediction. However, unlike approaches using physics simulators (Furrer et al.| 2017} [Wu
et al.,[2017), with pure-learning based approaches, it is hard to assess what reasoning they follow
and whether they gain a sound understanding of the physical principles or whether they learn to
take short-cuts following visual cues based on correlations in the training data. Occlusion-based
attention analyses are a first step in this direction, but the insights gained from this are limited (Lerer
et al., [2016} |Groth et al., 2018). In this section, we follow the state-of-art approach on visual stability
prediction of block towers and examine as well as influence its learning behaviour. We introduce a
variation of the ShapeStacks dataset from |Groth et al.|(2018) which is particularly suited to study the
dependence of network predictions on visual cues. We then examine how suppressing or promoting
the extraction of certain features influences the performance of the network using neural stethoscopes.

Dataset As shown in |Groth et al.| (2018)), a single-stranded tower of blocks is stable if, and only
if, at every interface between two blocks the centre of mass of the entire tower above is supported
by the convex hull of the contact area. If a tower satisfies this criterion, i.e., it does not collapse, we
call it globally stable. To be able to quantitatively assess how much the algorithm follows visual
cues, we introduce a second label: We call a tower locally stable if, and only if, at every interface
between two blocks, the centre of mass of the block immediately above is supported by the convex
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Figure 2: We have four qualitative scenarios: (A) Globally stable towers which also do not exhibit any
local stability violation. (B) Towers without any local instability which are globally unstable because
of the skew. (C) Towers in which one local stability violation is counterbalanced by blocks above.
(D) Globally unstable towers where the site of local and global violation is perfectly correlated. The
dashed line shows the projection of the cumulative centre of mass of the upper tower (red, yellow
and blue block) whereas the dotted line depicts the projection of the local centre of mass of the red
block. A tower is globally stable, if and only if the global centre of mass is always supported whereas
the individual local centre of masses are not indicative of global structure stability. Global and local
centre of masses for the green, yellow and blue block have been omitted for clarity of presentation.

hull of the contact area. Intuitively, this measure describes, if taken on its own without any blocks
above, each block would be stable. We associate binary prediction tasks yg and yy, to respective
global and local stability where label y = 0 indicates stability and y = 1 instability. Global and local
instability are neither mutually necessary nor sufficient, but can easily be confused visually which is
demonstrated by our experimental results. Based on the two factors of local and global stability, we
create a simulated dataselﬂ with 4,000 block tower scenarios divided into four qualitative categories
(cf. Figure[2). The dataset is divided into an easy subset, where local and global stability are always
positively correlated, and a hard subset, where this correlation is always negative. The dataset will be
made available online.

Model We choose the Inception-v4 network (Szegedy et al., 2017)) as it yields state-of-the-art

performance on stability prediction (Groth et all 2018)). The model is trained in a supervised setting
using example tuples (&, Yy, Yy, ) consisting of an image x and its global and local stability labels y&

and yy,. Classification losses use sigmoid cross entropy. We use the RMSProp optimiser (Tieleman &
2012) throughout all our experimentsﬂ

Local Stability as a Visual Cue Based on the four categories of scenarios described in Figure
we conduct an initial set of experiments to gauge the influence of local stability on the network
predictions. If local stability had, as it would be physically correct, no influence on the network’s
prediction of global stability, the performance of the network should be equal for easy and hard
scenarios, regardless of the training split. However, Figure[3]shows a strong influence of local stability
on the prediction performance. When trained on the entire, balanced data set, the error rate is three
times higher for hard than for easy scenarios (6% vs. 2%). When trained on easy scenarios only, the
error rate even differs by a factor of 13. Trained on hard scenarios only, the average performance
across all four categories is on the level of random chance (51%), indicating that negatively correlated
local and global stability imposes a much harder challenge on the network.

"We use the MuJoCo physics engine (Todorov et al.H2012|) for rendering and stability checking.
>We use the Tensorflow (Abadi et al., [2016) implementation of RMSProp without momentum, gradient
history decay of 0.9, epsilon of 1.0, a learning rate of 0.045 and a learning rate decay of 0.975 after every epoch.
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Figure 3: The influence of local instability on global stability prediction. In setup (a) we train on all 4
tower categories (indicated by green frames). Global stability prediction accuracies on per-category
test splits are reported in the bottom right grey boxes. In (b) we train solely on easy scenarios (A &
D) where global and local stability are positively correlated. In (c) we only present hard scenarios
during training featuring a negative correlation between global and local stability. The performance
differences clearly show that local stability influences the network’s prediction for global stability.

5 USING NEURAL STETHOSCOPES TO GUIDE THE LEARNING PROCESS

After demonstrating the influence of local stability on the task of global stability prediction we turn
our attention to the use of neural stethoscopes to quantify and actively mitigate this influence.
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Figure 4: Analysis of the prediction performance throughout the Inception-v4 network trained on
predicting global stability. We report average performances on balanced test data after 50 epochs of
stethoscope training. All stethoscopes have been attached to the respective activation tensorsﬂvith
sparse connection matrices as described in SectionEl

Task Relationship Analysis We seek to quantify the correlation of features extracted for global
stability prediction with the task of local instability detection. We train the main network on global
stability prediction while attaching stethoscopes to multiple layers. The stethoscope is trained
on three tasks: global stability prediction (binary), local stability (binary) and origin of global
instability, particularly the interface at which this occurs (n-way one-hot). Figure @ reveals that the
network gradually builds up features which are conducive to both global and local stability prediction.
However, the performance of local stability prediction peaks at the activation tensor after layer 7a
whereas the performance for global stability prediction (both binary and n-way) keeps improving.
This is in line with the governing physical principles of the scenarios and yields the conjecture that
the information about local stability can be considered a nuisance factor whereas information about
the global site of stability violation can serve as a complementary factor for the main task.

Promotion of Complementary Information We now test the hypothesis that fine-grained labels
of instability locations help the main network to grasp the correct physical concepts. To that end,

3The stethoscopes are connected to outputs of inception and reduction modules of the Inception v4 network,
cf. [Szegedy et al| (2017). Note that this analysis is specific to this architecture and could yield very different
results, e.g., for networks with residual connections.
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Figure 5: Performance gains by promoting complementary feature extraction with auxiliary stetho-
scopes. The main network is trained on binary global stability labels while the stethoscope is trained
on more fine grained labels - origin of global stability (n-way). The network was trained on hard
scenarios only but evaluated on all. The dashed lines represent baselines for A = 0.

we consider the setup from Figure [3c|where the training data only consists of hard scenarios with a
baseline performance of 51%. The main network is trained on global stability while the stethoscope
is trained on predicting the origin of global instability, namely the interface at which the instability
occurs. Figure[5]shows that auxiliary training substantially improves the performance for weighting
parameters A € [0.5, 16]. However, for very small values of A, the contribution of the additional loss
term is too small while for large values, performance deteriorates to the level of random chance as a
result of the primary task being far out-weighted by the auxiliary task.

Suppression of Nuisance Information Results from Figure [3]indicate that the network might use
local stability as a visual cue to make biased assumptions about global stability. We now investigate
whether it is possible to debias the network by forcing it to pay less attention to local stability. To that
end, we focus on the scenario shown in Figure [3b] where we only train the network on global stability
labels for easy scenarios. As shown in Figure[3b] the performance of the network suffers significantly
when tested on hard scenarios where local and global stability labels are inversely correlated.

The hypothesis is that forcing the network not to focus on local stability weakens this bias. In Figure[6]
we use active stethoscopes (A # 0) to test this hypothesis. We train a stethoscope on local stability
on labels of all categories (in a hypothetical scenario where local labels are easier to obtain than
global labels) and use both the adversarial and the auxiliary setup in order to test the influence of
suppressing and promoting accessibility of information relevant for local stability in the encoded
representation, respectively. In Figure[6] the results of both adversarial and auxiliary training are
compared to the baseline of A = 0, which is equivalent to the analytic stethoscope setup.

Figure[6a|shows that adversarial training does indeed partly remove the bias and significantly increases
the performance of the main network on hard scenarios while maintaining its high accuracy on easy
scenarios. The bias is removed more and more with increasing magnitude of the weighting factor A
up to a point where further increasing A jeopardises the performance on the main task as the encoder
puts more focus on confusing the stethoscope than on the main task (in our experiments this happens
at A ~ 10'). Interestingly, the correlation of local stability and global stability prediction rises at
this point as for pushing the stethoscope below 50% (random guessing), the main network has to
extract information about local stability. Naturally, the performance of the stethoscope continuously
decreases with increasing A as the encoder puts more and more focus on confusing the stethoscope.

This scenario could also be seen from the perspective of feeding additional information into the
network, which could profit from more diverse training data. However, Figure [6b] shows that naively
using an auxiliary setup to train the network on local stability worsens the bias. With increasing A and
increasing performance of the stethoscope, the network slightly improves its performance on easy
scenarios while accuracy deteriorates on hard scenarios. These observations are readily explained:
local and global stability are perfectly correlated in the easy scenarios, i.e., the (global) training data.
The network is essentially free to chose whether to select local or global features when predicting
global stability. Auxiliary training on local stability further shifts the focus to local features. When
tested on hard scenarios, where local and global stability are inversely correlated, the network will
therefore perform worse when it has learned to rely on local features.
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Figure 6: Successful debiasing by suppressing a nuisance factor with adversarial training while
auxiliary training worsens the bias. The main network is trained on global stability while the
supplementary task is to predict presence of local instabilities. Training data for global stability only
comprises easy scenarios while training data for the supplementary task comprises both easy and
hard scenarios. (a) & (b) Green squares and red triangles show accuracies of the main network when
predicting global stability of block towers for easy scenarios and hard scenarios, respectively. Orange
circles depict the performance of the stethoscope on the task of local stability. Blue circles represent
the Pearson Correlation Coefficient of predicted global stability and ground truth local stability which
gives an indication of how much the network follows visual cues. (c¢) Images show hard scenarios
which the algorithm classified correctly only when adversarial training was used.

6 DISCUSSION

We study the state-of-the-art approach for stability prediction of block towers and test its physical un-
derstanding. To that end, we create a new dataset and introduce the framework of neural stethoscopes
unifying multiple threads of work in machine learning related to analytic, auxiliary and adversarial
probing of neural networks. The analytic application of stethoscopes allows measuring relationships
between different prediction tasks. We show that the network trained on stability prediction also
obtains a more fine-grained physical understanding of the scene (origin of instability) but at the
same time is susceptible to potentially misleading visual cues (i.e., local stability). In addition to
the analysis, the auxiliary and adversarial modes of the stethoscopes are used to support beneficial
complementary information (origin of instability) and suppress harmful nuisance information (vi-
sual cues) without changing the network architecture of the main predictor. This yields substantial
performance gains in unfavourable training conditions where data is biased or labels are partially
unavailable. We encourage the use of neural stethoscopes for other application scenarios in the future
as a general tool to analyse task relationships and suppress or promote extraction of specific features.
This can be done by collecting additional labels or using existing multi-modal data.
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A CONNECTION OF STETHOSCOPE TO MAIN NETWORK

This is a detailed explanation of how to connect the first layer of the stethoscope with any layer of the
main network as described in Section[3] The goal is to guarantee equal capacity of the stethoscope
regardless of the dimensions of the layer it is connected to in order to obtain comparable results.
Let’s call the flattened feature vector from the main network Z. In the following we describe how to
compute the sparse matrix M which reduces the full vector & to a smaller vector 2’ while adding
biases:

' =M-T+b 3)

M is a sparse matrix with a constant number of non-zero entries (n_non_zero) which are trainable.
The hyperparameter n_non_zero, which determines the capacity of this additional linear layer, is

chosen as an integer multiple of the length of 2’ and has to be greater or equal than the number of
features in any of the layers of the main network which the stethoscope is attached to. The matrix M
is generated in a way so that it fulfils the following two guarantees:

e Each input is connected at least once. /.e., no column only contains zeroes.

e Each output is connected an equal amount of times. /.e., all rows have the same number of
non-zero entries.

B APPENDIX: IS INFORMATION DISCARDED IN ADVERSARIAL TRAINING?

Figure[6a)shows that adversarial training increases
performance given a biased training dataset.

While hypothetically the network could learn to 0.90

completely discard information about local stabil- 0.84

ity when trying to confuse the adversarial stetho- 0.78

scope, it could also simply reduce its accessibility.  z0.72
[

In an additional experiment (Figure[7), where the 3 066

main network (blue line) is fixed after adversarial ~ ® 060
training for 120 epochs (grey dashed line), the per- 0541

formance of the stethoscope on local stability (or- 0.48 — Main Network
ange) is fully recovered to the level of the baseline 0.42 Stethoscope
fpr a purely analytic stethoscope (Qashed orange 0 0 100 150
line). We therefore argue that the information is # epoch

not removed, but instead made less accessible to

the stethoscope by constantly shifting the repre- Figure 7: Stethoscope recovery after freezing the
sentation as explained in (Mescheder et al.|[2017). adversarially trained main network.

However, the resulting performance increase for

the main task indicates that this behaviour also

makes information related to local stability less accessible to the decoder of the main network. Hence,
although the adversarial setup does not reach final, stable equilibria (cf. (Mescheder et al.,[2017)),
it decreases the dependence of the decoder on features particular to local stability. Hence, further
improvements for stabilising GAN training could additionally improve performance in adversarial
stethoscope use-cases (Mescheder et al., 2017} |Goodfellow, |2016; |Arjovsky et al., 2017).

C APPENDIX: SUPPRESSING NUISANCE INFORMATION IN MNIST

This section introduces two intuitive examples and serves to illustrate the challenge with biased
training datasets. We conduct two toy experiments built on the MNIST dataset to demonstrate the
issue of varying correlation between nuisance parameters and ground truth labels in training and test
datasets and to demonstrate the use of an adversarial stethoscope to suppress this information and
mitigate overfitting. Both experiments build on the provision of additional hints as network input. In
the first experiment, the hint is a separately handled input in the form of a one-hot vector whereas in
the second experiment, the hint is directly incorporated in the pixel space of the MNIST images.
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hint

WLITIIIT

Figure 8: Setup of the toy experiments using the MNIST dataset with artificial hints. In (a), the hints
are fed to the main network via a separate input and both input streams are encoded separately by
neural networks. The stethoscope only sees the output of the hint encoder hy"“* while the decoder
hgec, which is trained on digit classification, sees the output of both encoders. In (b), the hints are
incorporated as pixel modifications into the main images. The encoder hg"¢ transforms the input into

a latent representation Z which is then accessed by both the stethoscope hg and the decoder hg“’.

In both experiments, the network is trained on the loss as defined in Equation (I)) and the gradients
are used to update the weights of the different parts of the network (encoder(s), decoder, stethoscope)
as defined in Section 3} Hence, A < 0 denotes adversarial training and A > 0 auxiliary training.

Hint as Separate One-Hot Vector In the first example, the hint labels have the same format as the
true labels of the input image and we run experiments with varying correlation between hint and true
label in the training set. Given high correlation, the network can learn an identity transformation
between hint and output and ignore the image. Now, at test time, the hint is completely independent
of the true label and hence contains no useful information. The experiment mimics challenges with
biased datasets as the supplemental task s € S (see Section [3) has labels ys which are correlated to
the labels y of the main objective during training but not at test time (Pgrqin (Ys|Y) # Dest (Ys|Y)).
Hence, an approximation of the correlations in the training data will not generalise to data during
deployment.

To that end, we introduce a parameter g5 denoting the quality of the hints (i.e. their correlation with
the true labels) during training time where for ¢, = 1.0, the hints are always correct (during training),
for g, = 0.5, the hints are correct for 50% of the training examples and so on. Varying the hint
quality enables us to investigate biases of increasing strength.

In this setup (Figure (8 . both input streams are separated via independent encoders. Let hy"
and hy"“* respectively denote image and hint encoders. The stethoscope only accesses the hmt
encodlng in this example, which simplifies its task and enables us to demonstrate the effect of active
stethoscopes without affecting the image encoding. The hint encoder multiplies the one-hot hint
vector with a scalar weight. Hence, a weight close to zero would effectively hide the hint information
from the main network, explicitly making the task of the stethoscope hg more difficult. The image
encoder consists of two convolutional layers followed by two fully connected layers with 256 units
where each layer is followed by leaky ReLU activations. The decoder hgec, which acts as a digit
classifier, is comprised of a single fully connected layer and receives the image encoding concatenated
with the encoded hint vector as input.
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Figure 9: Influence of adversarial training on classifier performance for toy experiment variant 1
described in Figure @ Each curve represents the results for different hint qualities h4. The bold lines
indicate the mean of 100 runs and the shaded areas mark the student-t 1 o confidence intervals. In (a)
the network is evaluated against the ground truth. In (b), the output of the network is compared to
the hint labels during test time. Hence, a high accuracy in (b) shows strong overfitting while a high
accuracy in (a) shows that the network learned the actual task of classifying digits from images.

With adversarial training of the stethoscope, the encoder learns to suppress information about the
hints forcing the classifier to purely rely on image data. As can be observed in Figure [9B] for perfect
hints (g, = 1.0) and no adversarial training, the decoder is highly accurate in predicting the hint
(instead of the actual label), suggesting that the classifier is effectively independent of the input image
and purely relies on the hint. With adversarial training, however, we can indeed force the encoder to
hide the hint, therefore forcing it to learn to classify digits from images. As expected, with increasing
hint quality, we need to increase the weight of adversarial training so as to discourage the encoder
from relying on the hint.
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Figure 10: Influence of adversarial training on classifier performance for the second MNIST experi-
ment. The adversarial training is less effective as both the stethoscope and the main network directly
access a single encoding. High adversarial weights can strongly degrade performance on the main
task as a trivial solution would be to suppress all information about the input. Each curve represents
the results for different hint qualities h,. The bold lines indicate the mean of 20 runs and the shaded
areas mark the student-t 1 o confidence intervals.

Hint as Pixel Encoding In the second variant of the MNIST experiment, hints are provided
at training time as a set of high intensity pixels in the input images as opposed to the explicit
concatenation in the previous example. This better reflects the typical scenario where the goal is
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to disentangle the nuisance hints from the informative information related to the main task. Here,
the main network is a two-layer multi-layer perceptron (MLP) with the stethoscope attached after
the first hidden layer. The simpler architecture (compared to the one used in the first toy problem)
was chosen in order to lower the performance on vanilla MNIST classification in order to see clearer
effects. Note that in this setup, giving the same labels to the hints as for the main task in the training
scenario makes the two tasks indistinguishable (in particular for perfect hint quality A, = 1.0). We
therefore introduce a higher number of hint classes with 100 different hints, each of them related
to a single digit in a many-to-one mapping, such that theoretical suppression of hint information is
possible without degrading main performance.

Figure [I0] shows the digit classification accuracy for the main network where the stethoscope is
applied with weights ranging in both the positive and negative directions to reflect auxiliary and
adversarial use of the stethoscope respectively. When using a positive stethoscope loss, which
encourages hg"¢ to focus more on the artificial hints over the actual digit features, the test accuracy
degrades. This is expected for this toy example as the hints have zero correlation with the digit
labels at test time. In the negative case, hg"¢ serves as an adversary to the stethoscope effectively
benefiting the main objectives by removing the misleading hint information leading to an improved
test accuracy. However, as the magnitude of the adversarial strength increases the gains quickly erode
as the encoder begins to suppress information relevant for the main task.
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