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Abstract
An automatic and accurate eye tumor segmentation from Magnetic Resonance images (MRI) could
have a great clinical contribution for the purpose of diagnosis and treatment planning of intra-ocular
cancer. For instance, the characterization of uveal melanoma (UM) tumors would allow the inte-
gration of 3D information for the radiotherapy and would also support further radiomics studies.
In this work, we tackle two major challenges of UM segmentation: 1) the high heterogeneity of
tumor characterization in respect to location, size and appearance and, 2) the difficulty in obtaining
ground-truth delineations of medical experts for training. We propose a thorough segmentation
pipeline consisting of a combination of two Convolutional Neural Networks (CNN). First, we con-
sider the class activation maps (CAM) output from a Resnet classification model and the combina-
tion of Dense Conditional Random Field (CRF) with a prior information of sclera and lens from an
Active Shape Model (ASM) to automatically extract the tumor location for all MRIs. Then, these
immediate results will be inputted into a 2D-Unet CNN whereby using four encoder and decoder
layers to produce the tumor segmentation. A clinical data set of 1.5T T1-w and T2-w images of 28
healthy eyes and 24 UM patients is used for validation. We show experimentally in two different
MRI sequences that our weakly 2D-Unet approach outperforms previous state-of-the-art methods
for tumor segmentation and that it achieves equivalent accuracy as when manual labels are used for
training. These results are promising for further large-scale analysis and for introducing 3D ocular
tumor information in the therapy planning.
Keywords: Activation map, CAM, Unet, tumor segmentation, Uveal melanoma

1. Introduction

UM is the most common primary intraocular malignancy in the white adult population, making
up 79-88% of primary intraocular cancers (Singh et al., 2014; Lemke et al., 1999). Several 2-
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SEGMENTATION OF UVEAL MELANOMA IN MRI

Figure 1: Example of UM in MRI: (left) T2-w; (center) T1-w; (right) manual tumor segmentation.
Red & green arrows indicate the tumor & retinal detachment respectively.

dimensional and 3-dimensional imaging modalities such as 2D Fundus imaging and 3D computed
tomography are needed to properly characterize the tumor, its growth and for any follow-up care.
Recently, 3D MRI is raising interest in the treatment of ocular tumors (de Graaf et al., 2014;
Tartaglione et al., 2014). Thanks to its high spatial resolutions and high intrinsic contrast, 3D MRI
allows for clear overall improved discrimination between anatomical structures and different patho-
logical regions (Tartaglione et al., 2014) (see Fig. 1). An automatic extraction of quantitative and
reliable information of ocular tumors in MR images, i.e the location, size, texture, morphology and
distribution of pathological tissues, would be a breakthrough in current diagnosis, follow-up and
therapy planning procedures. Ultimately, having 3D patient-specific eye model provide an optimal
solution for radiation therapy in the framework of personalized medicine in order to plan and de-
liver very conformal radiation dose to to the tumor while minimizing irradiation of critical structures
(Beenakker et al., 2015).

Few automated methods have been tailored for ocular tumors segmentation from MRI. First
attempts were dedicated to the segmentation of retinoblastoma in children. Two deep learning tech-
niques were proposed, a 3D-Unet (Nguyen et al., 2018a) and a 3D-CNN (Ciller et al., 2017), based
on rather small datasets of 16 and 32 retinoblastoma eyes. The tumor segmentation performance
reported in those pioneer works was , however, relatively low, with an average Dice similarity co-
efficient (DSC) measurement of around 62%. Recently, UM tumors have been tackled in (Hassan
et al., 2018), based on image registration and threshold of MRI, though only four cases were qualita-
tively evaluated. One of the major limitations of these approaches, affecting specifically supervised
techniques, is the lack of manual delineations. Actually, we think the above 3D deep learning archi-
tectures were highly limited by the low number of training samples available. Unfortunately, having
such input labels is very tedious, time consuming and not easily available in practice.

Weakly supervised methods based on CAM for the segmentation of pathological tissues have
recently received a great attention, e.g. pulmonary nodules in CT (Feng et al., 2017) or diabetic
retinopathy lesions in retinal fundus images (Gondal et al., 2017). Here, our first aim is to present
an ocular tumor segmentation framework without the need of manual annotations for training. To
this end, we propose an end-to-end tumor segmentation framework with two CNNs for 2D images
extracted from 3D volume MRI. Our approach is based on the estimation of CAMs from a CNN
architecture that classifies whether there is a tumor or not in the image. Afterwards, we refine the
CAMs by combining an ASM segmentation of the eye structures (Nguyen et al., 2018b) with a dense
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Table 1: MR imaging acquisition parameters at 1.5T with a surface coil.
Repetition
time(ms)

Echo time
(ms)

Flip Angle
Voxel size

(mm3)
FOV

(Voxels)
Healthy UM

T1-VIBE 6.55 2.39 12◦ 0.5x0.5x0.5 256x256x80 28 eyes 24 eyes

T2-SPACE 1400 185 150◦
0.5x0.5x0.5 and
0.82x0.82x0.8

256x256x80 25 eyes 22 eyes

CRF to maximize label agreement between similar pixels in images. Finally, we use these refined
CAMs as input training data for a 2D-Unet segmentation (Ronneberger et al., 2015). The proposed
framework is cheaper in training data (only sclera segmentations are needed for the ASM) and
outperforms in segmentation compared existing deep learning approaches (Nguyen et al., 2018a;
Rosa et al., 2018).

A second major contribution of this work is the quantitative evaluation of several 2D and 3D
architectures for the UM segmentation. To the best of our knowledge this is the first study reporting
automated segmentation accuracy for such ocular tumor. Our proposed segmentation technique will
be compared with previous related work: 1) our previous work tailored for retinoblastoma tumors
in children and based on a 3D-Unet (Nguyen et al., 2018a), with a 2D-Unet using manual labels as
training from an expert, and 2) a cascade of two 3D patch-wise CNNs used for lesion segmentation
in Multiple Sclerosis (Rosa et al., 2018).

2. Dataset

MR acquisitions were performed by a 1.5T Siemens scanner with surface coil for both T1w and
T2w contrasts at the Paul Scherrer Institute. A set of 16 healthy volunteers (mean age 29± 5.4
y.o., range [23− 46] years) and 24 UM patients (mean age 63± 14 y.o., range [36− 74] years)
was considered. The cohort median eye size was 24.4mm of diameter (range, 22.1-26.5). Tab. 1
shows the different parameters used for the MRI acquisition protocol. The study was approved by
the Ethics Committee of the involved institutions and all subjects (anonymized and de-identified)
provided written informed consent prior to participation.

Images were pre-processed as follows. First, an anisotropic diffusion filtering (Perona and Ma-
lik, 1990) was applied to reduce noise without removing significant image content. Second, we
applied the N4 algorithm (Tustison et al., 2010) to correct for bias field variations and performed
histogram-based intensity normalization (Nyul et al., 2000) for an intensity normalisation. Finally,
in order to improve the performance in segmentation and computation time, the whole MRI was
cropped using a volume of interest of 64x64x64 voxels centered in the eye.

Manual delineations were done by radiation oncologist expert for 16 UM patients and all healthy
eyes using Velocity software(Varian Medical System, Palo Alto, CA). First, segmentation for sclera,
lens and tumor was done individually through intensity threshold. Second, manual editing was
performed to refine borders and remove outlier regions.

3. Proposed segmentation framework

The proposed framework is over-viewed in Fig. 2. It mainly consists of the concatenation of a 2D
ResNet model (He et al., 2016) to classify MRI slices (with or without tumor) that combined with

372



SEGMENTATION OF UVEAL MELANOMA IN MRI

Figure 2: Main pipeline of our approach proposed.

(a) Resnet (b) 2DUnet

Figure 3: Neural network architectures used.

the ASM (Nguyen et al., 2018b) and a CRF (Krähenbühl and Koltun, 2011) will provide the initial
labels for training a 2D-Unet (Ronneberger et al., 2015) model to segment tumor.

ResNet classification. In this work, we used the ResNet model (He et al., 2016) for classifica-
tion of 2D input images with the score presence or absence of tumor. ResNet has the advantage of
avoiding the degradation problem of deep CNN, which occurs when the accuracy gets saturated and
rapidly degrades as a result of an increasing network depth. The ResNet replaces a direct mapping
of input x to its score y with a function F(x) by a residual function using F(x)+ x, where F(x) and
x represents the stacked non-linear layers and the identity function respectively. The architecture of
our ResNet is in Fig. 3(a).

Tumor location by CAM. Considering a CNN-based classification, each layer retains detailed
spatial information of object and its characterization used by network to identify the category.
CAMs (Zhou et al., 2016) produce such class-discriminative localization using a linear combination
of fk(i, j) represent the activation of unit k in the last convolutional layer at spatial location (i, j)
and the weight wc

k corresponding to class c for unit k:

Mc(i, j) = ∑
k

wc
k fk(i, j) (1)
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Figure 4: Example of tumor location: (a) original image; (b) grad-cam result; (c) ASM constrain
for sclera (in red), DenseCRF result (in green - Dice overlap 95%).

As a generalization of CAM, Grad-CAM heat map (Selvaraju et al., 2017) is constructed from
the liner combination of the importance weights αc

k and feature maps A of a convolutional layer
with respect to the gradient of the score yc of class c:

Lc = ReLU

(
∑
k

α
c
k Ak

)
(2)

Refinement. We apply a dense CRF (Krähenbühl and Koltun, 2011) to maximize label agree-
ment between similar pixels. The Dense CRF incorporates unary potentials of individual pixels and
pair-wise potentials (in terms of appearance and smoothness) on neighboring pixels to provide more
homogeneous regions. Considering as input image the 2D MRI slice I (either T1w or T2w) and a
probability map P provided by the Grad-CAM, the unary potential is defined to be the negative
log-likelihood ψu(zi) =−logP(zi|I), where zi the predicted label of voxel i. The pair-wise potential
has the form ψp(zi,z j) = µ(zi,z j)k( fi, f j), where µ is a label compatibility function and k( fi, f j) is
characterized by integrating two Gaussian kernels of appearance (first term) and smoothness (sec-
ond term), as follows:

k( fi, f j) = w1 exp
(
−
|pi− p j|2

2θ 2
1
−
|Ii− I j|2

2θ 2
2

)
+w2 exp

(
−
|pi− p j|2

2θ 2
3

)
, (3)

where pi are pixel locations, Ii are pixel intensities, wl are weight factor between the two terms,
and the θ ’s are tunable parameters of the Gaussian kernels. The Gibbs energy of CRF model is
then given by ∑(ψu(zi),ψp(zi,z j)). Here, we apply the inference of Dense CRF with different
iterative numbers {5,20,50} where the mean field approximation is computed by minimizing the
KL-divergence while constraining the distributions.

Finally, prior information about the healthy structures such as the sclera and lens was used as
tumor location constraint. Our previous work (Nguyen et al., 2018b) evaluated the DSC values of
the sclera (94.5%± 1.6) and lens (88.3%± 2.8) on the same data set. The ASM segmentation is
used to constrain the result of the CRF as shown in Fig. 4.

UNet. Similar to the original UNet method (Ronneberger et al., 2015), we consider an encoder
and decoder network that takes as input 2D image with tumor and label output of Grad-cam. Each
encoding pathway contains 4 layers that effectively changes the feature dimension (i.e. 64, 128, 256,
512,1024 - Fig. 3(b)). The same architecture accounts for the decoding pathway. In each case, two
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Figure 5: Boxplot on DSC of tumors segmentation on T1-w and T2-w MR images.

Wilcoxon test compared with M-2DUnet 3D-CNN 3D-Unet
p value on T1 0.679 0.00320 0.000437
p value on T2 0.147 0.00097 0.000436

Table 2: Wilcoxon signed rank test on DSC comparing our method with the other strategies.

convolution layers 3x3 are used with rectified linear unit (Relu) operations and with zero padding.
Between two layers in the encoder pathway, 2x2 max pooling with strides of two in each dimension
are used. In the decoder pathway, a 2x2 deconvolution layer with strides of two is firstly used.
Concatenation is performed to connect the output tensors of two layers of the encoder and decoder
pathways at same level. To train our network, we used the Adam optimizer and the binary cross
entropy loss function. Softmax is used to extract probability maps for each class. Data augmentation
including rotation, shift as well as elastic deformation was applied (Simard et al., 2003).

4. Quantitative evaluation

We computed the DSC value of the predicted output as compared to the manual segmentation for
the quantitative evaluation of all the automated techniques. For the 16 patients with manual seg-
mentation, we used a leave-one-out cross-validations strategy, i.e., iteratively chose one eye as a test
case, two other random eyes as validation cases while the remaining subjects are used as the training
set. Moreover, to show the advantage of the proposed weakly learning 8 additional patients without
manual segmentation are also included into the training set. The average number of 2D slices (con-
taining the tumor) extracted from 3D volume of patient’s eyes is 45 (range [25-60]), overall is 925
images.

Resnet binary classification model construction is trained including also tumor-free eyes. In this
stage, 1915 2D slices extracted from 28 healthy eyes are also added into training set, i.e our training
set have 2840 images of healthy and pathological eyes. CAMs are estimated based on all 2D images
of 24 UM patient. For 2D-Unet, depending on the patients leaved out for test and validation set,
around 850 2D images with tumors were selected for training.

Our framework (Grad-CAM-2DUnet) is evaluated in comparison with three baseline deep learn-
ing architectures. First, the same 2D-Unet architecture included in our framework will be used
trained with the expert manual delineations instead of using the refined activation maps (M-2DUnet).
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Figure 6: The Bland-Altman plot of differences (number of volume voxels) between Grad-CAM-
2DUnet method’s result and manual segmentation.

Second, our previous 3D-Unet (Nguyen et al., 2018a) tested on retinoblastoma patients (3D-Unet).
It is composed of 4 layers of encoder and decoder pathway with different feature sizes (i. e., 32,
64, 128, 256, 512); 3x3x3 convolution with PRelu and 2x2x2 max pooling. Third, a cascade of two
3D patch-wise convolutional neural networks (Valverde et al., 2017; Rosa et al., 2018) (3D-CNN)
that reported high accuracy in segmenting white matter lesions. It is composed of with 4 convo-
lutional layers ([3x3x3,32]x2; [3x3x3,64]x2); patch-size is 11x11x11 (input images interpolated to
256x256x256).

Fig.5 shows the boxplot on DSC of four tumor segmentation methods for both T1-w and T2-
w sequences, where 3DUnet with 65.8± 6.8 (64.9± 6.3) and 3D-CNN with 72.6± 8.2 (70.5±
7.5) perform in average 10% worst than the 2D-Unet strategies. This can be explained by the
increased training set available in 2D as compared to the few training data in 3D. Thus, despite
image acquisition is done in 3D and with a very nice isotropic spatial resolution, 2D approaches
perform better. Let us note that differences in DSC were statistically significant (Wilcoxon signed
rank test, p < 0.005) when comparing Grad-CAM-2DUnet with 3D-UNET and 3D-CNN in both
T1w and T2w scenarios (Tab.2).

Our weakly supervised framework Grad-CAM-2DUnet with average Dice of 84.5±5.6 for T1-
w and 83.9±4.9 for T2-w performs similarly to the M-2DUnet (using muanual segmentations for
training) with 84.8±5.7 and 82.9±5.2 for T1-w and T2-w, respectively. No statistical differences
were found neither for T1-w nor T2-w. The mean False positive and True positive fractions are
0.02 and 0.82 respectively when we compared our Grad-CAM-2DUnet prediction with manual
segmentation. Fig.6 shows a Bland-Altman difference plot of the 3D volume comparison of manual
segmentation and our prediction. This result shows the relevance of our solution for replacing the
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Figure 7: Qualitative results of our tumor prediction (in green) & manual segmentation (in red) on
T1w and T2w: (left) high overlap; (center) automated segmentation fixed better the in-
tensity contour (blue arrows); (right) low accuracy: our prediction cannot separate tumor
and retinal detachment (yellow arrows).

costly manual annotations by free refined activation maps. Fig.7 shows qualitative result of the
tumor segmentation with our proposed approach.

5. Conclusion

In this paper, we introduced an automatic and effective deep learning based approach that allows
a quantitative image analysis of eye tumor tissues in adults that could further support clinicians to
tailor the radiation therapy to the UM in eye tumor patients. The proposed approach takes advantage
of CAMs combined with conditional random field and active shape models to provide an end-to-
end segmentation without need of tumor annotations of medical experts. The paper also provides
an evaluation of several 2D and 3D deep learning strategies for the UM segmentation. To our
knowledge, this is the first set of techniques that have been proposed for the segmentation of UM,
reporting very high accuracy in average. Our study, based on a 3D high-resolution dataset of 24
tumors, demonstrates that the best strategies for tumor segmentation make use of 2D slices instead
of 3D whole volumes, that is including more data for training. Our weakly supervised framework
provides a solid reliable computer-aided tool to further large-scale evaluation of ocular tumors based
on MR imaging features for an enhancing a shift towards non-invasive clinical procedures.
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P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge poten-
tials. Adv. in Neural Information Processing Systems, pages 109–117, 2011.

A. Lemke, N. Hosten, N. Bornfeld, N. Bechrakis, A. Schüler, M. Richter, C. Stroszczynski, and
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