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Abstract. This paper reports on an ongoing Knowledge Graph gener-
ation project at the industrial automation company Festo. The project
aims at establishing a well defined and easily traceable extract, trans-
form, load (ETL) process of technical data on automation products into
Festo’s semantic data platform (FSP) to serve complex configuration
tasks. Starting with a brief illustration of the data sources and require-
ments we describe a staged Knowledge Graph generation process that
draws on common data extraction techniques as well as on specific se-
mantic transformation methods such as the mapping framework R2RML
or ontology reasoning. We will report on the project status as well as dis-
cuss our design decisions towards a reusable FSP Knowledge Graph data
ingestion process.
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1 Introduction

Festo is a multinational industrial control and automation company based in
Germany. The Festo Semantic Platform (FSP) is a major initiative at Festo to
create and provide a Knowledge Graph and reasoning-based services about prod-
ucts and solutions for Festo’s core business: factory automation. For instance,
tasks such as the computation of compatibility of product components within
electrical drive trains is provided by the FSP infrastructure using ontology rea-
soning and SPARQL querying [1].

1.1 Current Solution and its Challenges

Our current solution is structured as an ETL process. We use this approach as
our data undergo a series of sequential processing and refinement steps that in-
clude materialisation of reasoning results and addition of expert data before the
final result is delivered. Ontology based data access (OBDA) [7] is currently not
our focus but might complement our approach in future, e.g. for initial database
exploration. Although our processing is performed stepwise, the logic of the FSP
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is currently implemented as a monolithic Java application. The application uses
SQL to retrieve data from relational databases, Java code to classify the data
and to create unique identifiers (IRIs), and the OWL API [3] to transform the
results into a Knowledge Graph so that it conforms to its respective ontology
schema. Experiences with this ETL solution within the last two years have re-
vealed drawbacks with respect to source data changes and maintainability of
the transformation logic that caused significant data analysis efforts for the FSP
team. The current solution is difficult to debug, as it is hard to identify whether
a Knowledge Graph change or error is caused by a source data update, a bug
in the encoding of the data enrichment or transformation logic, or a flaw in the
ontology schema. Furthermore, the monolithic design is not easy to understand
and to maintain since it consists of multiple processing tasks that are composed
into one piece of code.

To better deal with this issues and to establish a well defined Knowledge
Graph ETL process, Festo has recently started an initiative to improve the
Knowledge Graph generation. The following list summarizes the requirements
for the FSP Knowledge Graph generation pipeline currently in progress:

Change detection and propagation: The FSP services rely on data that is
typically distributed over various source databases that are managed by pro-
cesses that vary in their level of reliability and their update cycles. In the
general use case of technical product data, the ETL process has to integrate
data sources of different quality. There is well maintained data from SAP
about products that have reached a certain development maturity or are
already on sale. In addition there is data about upcoming products from a
database maintained by product development. Data in the latter database
may change without any traceable history or notification of any of its data
consumers. Therefore, it’s a key requirement for our Knowledge Graph gen-
eration pipeline to incorporate a data change detection and tracing mecha-
nisms that can detect data changes as early as possible in the data sources
to support Knowledge Graph debugging.

Tracking and logging: The FSP Knowledge Graph generation should follow a
step wise processing pipeline determined by its functional demands and with
a clear specification of its processing blocks and data interfaces. Furthermore,
each of the processing blocks has to report about its outcome, i.e., whether
it has terminated successfully, and provide statistics on the results. Ideally
there is a test and evaluation step after each of the processing blocks that
checks for unexpected results. All the reporting should be accessible in a way
that supports building a dashboard that allows to operate and monitor the
ETL process to discover potential problems as early as possible.

Declarative approach: Since the FSP is committed to Semantic Technologies,
the ETL logic should be as declarative as possible instead of being buried
somewhere in program code. In other words, we prefer to have data classifi-
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cation done by ontological rules and reasoning as well as data transformation
based on mapping rules rather than by procedures, table functions, etc.

Based on standards: Whenever possible the Knowledge Graph generation
pipeline should employ standards that have shown to work in industry, are
widely adapted in the community and for which tools and engines are avail-
able. This refers in particular to the data classification and transformation
part. Since the FSP already uses OWL 2 RL reasoning and SWRL, the
ETL process should adapt to this fragment and syntax formats. For the
transformation part, we plan to evaluate mappings and tools from relational
database tables to RDF datasets such as R2RML or RML.

2 Data Processing Pipeline

Our target data processing pipeline consists of several processing stages that are
performed on a microservice-oriented architecture as shown in Figure 1. In the
following we describe the stages of this process.
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Fig. 1. Overview of the Knowledge Graph ETL pipeline.

The pipeline is in charge of transforming product data as well as data on com-
plex automation systems into a Knowledge Graph for a given ontology schema.
A typical product in the product domain is an electric axis. An axis can move,
push, or press a work-piece. An axis furthermore is driven by a motor which in
turn is actuated by a controller. The whole chain from axis to controller is called
a drive train. It also incorporates a mounting kit that allows to mount the motor
to the axis and optionally a gear. The ESBF axis3 family is a such a product
tho which we refer in our running example in the following.

Even if the number of products is few in numbers with some thousands the
ETL process to generate a Knowledge Graph of high quality is a business critical
element since it produces the source data of subsequent semantic processing
steps. As an example, based on the basic products and data about technical
compatibility we compute all nearly 100 million technically valid drive trains.

3 https://www.festo.com/cat/en-gb_gb/data/doc_ENGB/PDF/EN/ESBF_EN.PDF
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2.1 Change Data Capture

Due to the fact that one of our main data sources is an un-revisioned database,
we have to deal with new, deleted or updated product data during Knowledge
Graph ingestion. We address this during the Change Data Capture phase.

Technically, this is delivered by a layer of SQL databases, called “Import DB”
in Fig. 1, that are in our sovereignty. We employ type 2 of the Slowly Changing
Dimensions (SCD) method known from Data Warehousing [5] to detect changes
and to historicize the data. SCD type 2 tracks historical data by maintaining
previous versions of source data records by adding so called surrogate keys.
A surrogate key is a unique identifier not derived from the application data
itself but introduced for technical reasons only. For the purpose of tracking data
changes, we generate a composite surrogate key that consists of a product specific
identifier (ID), and two time stamps (VALID-FROM and VALID-UNTIL). The time
stamps specify the time interval the particular product data record was detected
in the source database. The most current data record of a product is the one
that has the predefined surrogate high date for VALID-UNTIL (2099-01-01 in
our case).

On request of the processing pipeline the Change Data Capture stage starts
checking for updates in the source databases by comparing with the current data
records in the import database. The latter will receive new rows for any detected
change to reflect the historical state of the source database.

ID VALID-FROM VALID-UNTIL TYPECODE MAX VELOC MAX LOAD ACCUR

1 2019-01-08 2019-02-09 ESBF-BS-32-%%-5P 0.55 100.0 0.02

1 2019-02-10 2099-01-01 ESBF-BS-32-%%-5P 0.55 100.0 0.01

2 2019-01-01 2099-01-01 ESBF-LS-32-%%-2.5P 0.05 60.0 0.05

3 2019-01-01 2099-01-01 ESBF-LS-32-%%-2.5P-S1 0.05 60.0 0.05

Table 1. SCD type 2 table for axes with validity times and ID as surrogate keys

Table 1 depicts an example of our import database for axes. It contains some
sample axes of the ESBF family and a fraction of its technical data. For the
axis ESBF-BS-32-%%-5P (with ID 1) the import database has two entries which
account for a data update. More precisely, the axis accuracy (last column labeled
ACCUR) changed on February 10th to the new value “0.01”. The corresponding
row represents the current valid data record for this axis since it holds the
predefined surrogate high date in VALID-UNTIL.

In addition to capturing data changes by applying the SCD method, the
import database allows us to presort the data. As a result, the import database
follows the design principle, that every table corresponds to a product category
that is also represented by a class in our ontology schema about drive trains.
Therefore, every row in the table is designed with the intention to represent
an individual with its technical data properties in the Knowledge Graph. Other
tables represent information about relationships between individuals.

To this end, the import database serves two main purposes. It allows to track
changes in our source data on the one hand, and on the other hand it makes
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the translation to a Knowledge Graph easier since it’s a step towards a graph of
individuals and relationships.

2.2 Import Selection

The main task of this stage is to select product data from the import database
and to add unique identifiers to this data in preparation for a mapping into a
Knowledge Graph format.

When considering an initial full load, this stage selects the most current
records from the import database. These records are then aggregated into tables
such that these tables roughly correspond to product classes of the ontology
schema. In the domain of electric drive trains these are axis, mounting kit, gear,
motor, or controller plus accessories etc. Due to the history of data changes in the
import database of the previous step, the ETL process can also select previous
data versions of particular products. For instance, it allows to select the latest
data for all products except for axes for which we can choose to have data from a
particular point in time. As mentioned above, this is key to generate reasonable
Knowledge Graphs from data with varying level of maturity.

ID TYPECODE MAX VELOC MAX LOAD ACCUR

A000576 ESBF-BS-32-%%-5P 0.55 100.0 0.01

A000628 ESBF-LS-32-%%-2.5P 0.05 60.0 0.05

A000629 ESBF-LS-32-%%-2.5P-S1 0.05 60.0 0.05

Table 2. Selection table of axis data with IDs

For each of these domain objects a unique identifier is required. Such an iden-
tifier is important since Knowledge Graphs need a key to distinguish instances
from each other. The management of identifiers is provided by an FSP service.
For electric drives the FIDGET (Festo ID Generator) service is the central au-
thority for looking up an existing or generating a new identifier. Typically, an
identifier is computed from a set of technical characteristics (basic products) or
its components in case of a complex system (e.g. a 3D portal). To facilitate de-
bugging the FIDGET service keeps its identifier constant over time. Therefore,
we can easily compare Knowledge Graphs generated at different times to check
for changes on component level. Table 2 depicts an import selection from the
import database with the latest technical data and identifiers obtained from the
ID service.

2.3 Data Mapping

The mapping step involves the transformation of relational data into instances
of the Knowledge Graph, instance attributes and relations between those in-
stances. The target format for the FSP component ontology is any valid syntax
specified by W3C for RDF or OWL. The mapping step is deliberately designed
to be accomplished by a pure declarative transformation not incorporating any
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procedural data manipulation parts. This is possible because of the preceding
import selection step, that has aggregated and aligned the source data appro-
priately as well as added unique identifiers suitable to serve as IRIs. As a result,
this step can be carried out by a R2RML mapping specification executed by an
R2RML engine. This allows to purely draw on W3C’s R2RML which hopefully
provides flexibility in the selection of tools and engines to choose the optimal
deployment option with respect to performance, data load, etc.

The following exemplary R2RML mapping shows how technical data is trans-
formed into a RDF-based Knowledge Graph:

@prefix rr: <http://www.w3.org/ns/r2rml#>.

@prefix fsp: <http://www.festo.com/edrive#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<#TriplesMap1>

rr:logicalTable [ rr:tableName "import-selection" ];

rr:subjectMap [

rr:template "http://www.festo.com/edrive#{ID}";

rr:class fsp:Axis;];
rr:predicateObjectMap [

rr:predicate rdfs:label ;

rr:objectMap [ rr:column "TYPECODE" ]; ];

rr:predicateObjectMap [

rr:predicate fsp:max-velocity ;

rr:objectMap [ rr:column "MAX_VELOC"; rr:datatype xsd:double ]; ];

rr:predicateObjectMap [

rr:predicate fsp:max-loading ;

rr:objectMap [ rr:column "MAX_LOAD"; rr:datatype xsd:double ]; ];

rr:predicateObjectMap [

rr:predicate fsp:repetition-accuracy ;

rr:objectMap [ rr:column "ACCUR"; rr:datatype xsd:double ]; ].

<#TriplesMap2>

rr:logicalTable [ rr:sqlQuery
"""SELECT ID FROM import-selection

WHERE REGEXP_LIKE(TYPECODE, '.*-S1.*') = '1'""" ];

rr:subjectMap [ rr:template "http://www.festo.com/edrive#{ID}"; ];

rr:predicateObjectMap [

rr:predicate rdf:type;
rr:objectMap [ rr:template "http://www.festo.com/edrive#IP65" ]; ].

The first part of the mapping simply associates a label as well as techni-
cal data to a Knowledge Graph instance that is identified by an IRI compiled
from the given identifier. The second part is an example of a typecode based
instance classification. The latter mapping checks for a particular typecode frag-
ment (“S1”) that indicates a particular protection level (IP65: dust and water
protected). The typecode chart for ESBF axes is shown in Fig. 2.
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Fig. 2. ESBF typecode chart

All Festo products are classified according to typecodes. Not all of these are
relevant within the applications supported by the FSP Knowledge Graph. The
R2RML mapping therefore just takes care of those which are required for later
reasoning tasks.

In a brief analysis we evaluated the R2RML resp. RML editors KARMA [6],
RML Editor [2], and Map-On [9] most notably with respect to mapping expres-
sivity, maturity, and their license model. It turned out, that most of the editors
seem to do the job in principle. Some provide extensions such as Python script-
ing or importing various other data formats that allow much more of what is
required in this step of our Knowledge Graph pipeline. Result of the mapping
in our running example is the following:

@prefix fsp: <http://www.festo.com/edrive#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

fsp:A000576 a fsp:Axis ;

rdfs:label "ESBF-BS-32-%%-5P" ;

fsp:max-velocity "0.55"^^xsd:double ;

fsp:max-loading "100.0"^^xsd:double ;

fsp:repetition-accuracy "0.01"^^xsd:double .

fsp:A000628 a fsp:Axis ;

rdfs:label "ESBF-LS-32-%%-2.5P" ;

fsp:max-velocity "0.05"^^xsd:double ;

fsp:max-loading "60.0"^^xsd:double ;

fsp:repetition-accuracy "0.05"^^xsd:double .
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fsp:A000629 a fsp:Axis, fsp:IP65 ;

rdfs:label "ESBF-LS-32-%%-2.5P-S1" ;

fsp:max-velocity "0.05"^^xsd:double ;

fsp:max-loading "60.0"^^xsd:double ;

fsp:repetition-accuracy "0.05"^^xsd:double .

As mentioned above we are interested in applying a standard mapping ap-
proach not making use of non-standard extensions such as procedures etc. Ideally,
we want to specify the business logic fully within the mapping language. Further
processing should either in the previous or following steps. For those cases where
R2RML does not provide enough mapping expressivity we decided to use SWRL
in the post-R2RML step (see next section).

Although none of the evaluated (R2)RML editors failed for our purpose we
are not using one of them. Instead we are currently add annotations to your
ontology schema that allows us to generate the R2RML mapping above via
transformation from these annotations. The huge advantage of this approach is
that it incorporates this information into the key place of metadata about the
Knowledge Graph, namely the ontology schema.

The engine should then be able to run the mapping specification indepen-
dently from front ends in order to be able to execute it from a workflow engine.

2.4 Data Enrichment

The goal of the enrichment steps is to enhance the Knowledge Graph by making
implicit information explicitly available with the help of OWL reasoning.

A key task in this respect is the categorization of Festo components according
to product families or technical characteristics that are relevant for the subse-
quent services. Some classification tasks are already done at the mapping stage
based on a typecode decomposition with the help of regular expressions (compare
with the protection level IP65 classification above). Other categorization tasks
that do not directly relate to a typecode feature. They are handled via OWL
reasoning either based on OWL axioms or SWRL. For instance, components
suitable for food manufacturing have to comply to different protection classes
depending on their component type (a controller typically requires a lower pro-
tection class because it is less close to food in comparison to an axis). Another
example relates to information that need to be propagated through the Knowl-
edge Graph. For instance, the size of a drive train originate from the respective
size of its axis which is automatically derived by an OWL axiom.

After enrichment the result data of the ETL are ready to be used in the core
part of our semantic platform. For example, instance data about axes, motors,
and controllers are combined with background knowledge that is described in
OWL and SWRL. A reasoning step performed by RDFox [8] can than infer
compatibility relationships between the products as sketched in fig. 3 on the
next page. A description of the model and rules is outside the scope of this
paper. Some more details are described in [1].
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Fig. 3. Fragment of the resulting knowledge graph.

3 Infrastructure and Continuous Delivery

Our original system was conceived as a set of standalone applications. As system
complexity and availability requirements grow, we need to align our system with
software engineering and continuous delivery [4] practices used at Festo. Further
we anticipate that future projects make it necessary to continuously evolve and
restructure the processing pipeline. The main patterns we follow are introduction
of a micro service architecture and container virtualization.

We use Java as programming language. For micro services there is no fixed
framework. However, in our first efforts we use the OpenAPI 3 standard to
specify our REST interfaces and use Swagger to generate Spring Boot service
stubs. Our codebase is maintained in Git repositories. As build system we use
Maven. Builds are triggered and monitored using JetBrains TeamCity. To repro-
duce the system environment we package the artifacts in Docker containers and
use Docker Compose to run multi container applications. Maven artifacts and
Docker images are deployed to the company internal Artifactory repository.

4 Workflow Control and Monitoring

To orchestrate the execution of the processing steps and monitor the progress
we need a workflow solution.

The workflow system should allow automated execution and scheduling of the
execution steps. This includes for example regularly checking the database for
changes and trigger the mapping process. Information of the current state of
processing and failure states should be easily retrievable. Processing state could
for example indicated by means of graph visualization of the workflow. For other
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metrics such as number of generated instances of a specific concept a dashboard
could be helpful.

We currently consider Apache Airflow4 as a platform. It provides to pro-
grammatically author, schedule and monitor workflows. It provides templates
for common workflow steps such as SQL or REST calls. Custom processing
steps can be implemented in Python.

5 Status and Outlook

In this work we described our ongoing effort to refine the data processing pipeline
of the Festo Semantic Platform. The system is currently used productively at
Festo.

In our target architecture, the processing pipeline is structured into four pro-
cessing phases — change data capture, import selection, mapping and enrich-
ment. We are in the process of aligning our processing artifacts to this architec-
ture. For parts of the system we plan to evaluate the technology. We identified
(R2)RML as a promising technology and started evaluating tools and imple-
mentations. However, an upfront evaluation of the overall approach remains a
challenge.

The Festo Semantic Platform will evolve over time as new knowledge do-
mains are added and further company systems are integrated. In order to gain
more flexibility to restructure the processing flow when requirements change we
rework our services as microservices and move to container based application
management. To achieve transparency of the processing we intend to introduce
a workflow control system and monitoring.
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