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ABSTRACT

Recent work has demonstrated how predictive modeling can endow agents with
rich knowledge of their surroundings, improving their ability to act in complex
environments. We propose question-answering as a general paradigm to decode
and understand the representations that such agents develop, applying our method
to two recent approaches to predictive modeling – action-conditional CPC (Guo
et al., 2018) and SimCore (Gregor et al., 2019). After training agents with these
predictive objectives in a visually-rich, 3D environment with an assortment of ob-
jects, colors, shapes, and spatial configurations, we probe their internal state rep-
resentations with a host of synthetic (English) questions, without backpropagating
gradients from the question-answering decoder into the agent. The performance
of different agents when probed in this way reveals that they learn to encode de-
tailed, and seemingly compositional, information about objects, properties and
spatial relations from their physical environment. Our approach is intuitive, i.e.
humans can easily interpret the responses of the model as opposed to inspecting
continuous vectors, and model-agnostic, i.e. applicable to any modeling approach.
By revealing the implicit knowledge of objects, quantities, properties and relations
acquired by agents as they learn, question-conditional agent probing can stimulate
the design and development of stronger predictive learning objectives.

1 INTRODUCTION

Some of the biggest successes in artificial intelligence have relied on learning representations from
large labeled datasets (Krizhevsky et al., 2012; Sutskever et al., 2014) or dense reward signals (Mnih
et al., 2015; Silver et al., 2016). However, an intelligent agent that is capable of functioning in a
complex, open-ended environment should be capable of learning general representations that are
task-agnostic, and should not require exhaustive labeled data collection or careful reward design.

One of the main challenges in developing such agents is the need for general approaches to evaluate
and analyze agents’ internal states. In this work, we propose question-answering as an evaluation
paradigm for analyzing how much objective knowledge about the external environment is encoded
in an agent’s internal representation. Our motivation to do so is twofold. First, question-answering
provides an intuitive investigative tool for humans – one can simply ask an agent what it knows about
its environment and get an answer back, without having to inspect internal activations. Second, the
space of questions is fairly open-ended – we can pose arbitrarily complex questions to an agent,
enabling a comprehensive analysis of its internal states. Question-answering has previously been
studied in textual (Rajpurkar et al., 2016; 2018), visual (Malinowski & Fritz, 2014; Antol et al., 2015;
Das et al., 2017) and embodied (Gordon et al., 2018; Das et al., 2018a) settings. Crucially, however,
these systems are trained end-to-end for the goal of answering questions. Here, we utilize question-
answering simply to probe an agent’s internal representation, without backpropagating gradients
from the question-answering decoder into the agent. That is, we view question-answering as a
general purpose decoder of environment knowledge designed to assist the development of agents.

We are particularly interested in agents that can learn general task-agnostic representations of the
external world. One promising way to achieve this is via self-supervised predictive modeling. In-
spired by learning in humans (Elman, 1990; Quiroga et al., 2005; Nortmann et al., 2013; Rao &
Ballard, 1999; Clark, 2016; Hohwy, 2013; Seth, 2015), predictive modeling, i.e. predicting future
sensory observations, has emerged as a powerful method to learn general-purpose neural network
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Figure 1: We train predictive agents to explore a visually-rich 3D environment with an assortment of objects of
different shapes, colors and sizes. As the agent navigates (trajectory shown in white on the top-down map), it
contains an auxiliary network that learns to simulate representations of future observations (labeled ‘Simulation
Network’) say k steps into the future self-supervised by a loss on the agent’s future prediction against the
ground-truth egocentric observation at t ` k. Simultaneously, another decoder network is trained to extract
answers to a variety of questions about the environment, conditioned on the agent’s internal memory but without
affecting it (notice ‘stop gradient’ – gradients from the QA decoder are not backpropagated into the agent). We
use this question-answering paradigm to decode and understand the internal representations that such agents
develop. Note that the top-down map is only shown for illustration purposes and not available to the agent.

representations (Elias, 1955; Atal & Schroeder, 1970; Schmidhuber, 1991; Schaul & Ring, 2013;
Schaul et al., 2015; Silver et al., 2017; Wayne et al., 2018; Guo et al., 2018; Gregor et al., 2019;
Recanatesi et al., 2019). These representations can be learned while exploring in and interacting
with an environment in a task-agnostic manner, and later exploited for goal-directed behavior.

We evaluate predictive vs. non-predictive agents (both trained for exploration) on our question-
answering testbed to investigate how much objective knowledge about environment semantics can
be captured solely by egocentric prediction. By semantics, here we specifically refer to information
about objects – quantity, colors, shapes, spatial relations. The set of questions is intended to be
holistic, i.e. they require a representation of relevant aspects of the whole environment and in general
cannot be answered from a single observation, nor a few consecutive observations of the episode –
and test a variety of local and global scene understanding, visual reasoning, and recall skills.

Concretely, we make the following contributions:

• In a visually rich 3D room environment developed in the Unity game engine1, we define and
develop a set of questions designed to probe a range of semantic, relational and spatial knowledge
– from identifying shapes and colors (‘What shape is the red object?’) to counting (‘How many blue
objects are there?’) to spatial relations (‘What is the color of the chair near the table?’), exhaustive
search (‘Is there a cushion?’), and comparisons (‘Are there the same number of tables as chairs?’).

• We train RL agents augmented with predictive loss functions – 1) action-conditional CPC (Guo
et al., 2018) and 2) SimCore (Gregor et al., 2019) – for an exploration task and analyze the internal
representations they develop by decoding answers to our suite of questions. Crucially, the QA de-
coder is trained independent of the predictive agent and we find that QA performance is indicative
of the agent’s ability to capture global environment structure and semantics solely through egocen-
tric prediction. We compare these predictive agents to strong non-predictive LSTM baselines as
well as to an agent that is explicitly optimized for the question-answering task.

• We establish generality of the semantic knowledge by testing zero-shot generalization of a trained
QA decoder to compositionally novel questions (unseen combinations of seen attributes), suggest-
ing a degree of compositionality in the internal representations captured by predictive agents.

1unity3d.com
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2 RELATED WORK

Our work relates to, and builds on, prior work on predictive modeling and auxiliary loss functions
in reinforcement learning as well as grounded language learning and embodied question answering.

Predictive modeling and auxiliary loss functions in RL. The power of predictive modeling for
representation learning has been known since at least the seminal work of Elman (1990) on emer-
gent language structures. More recent examples include Word2Vec (Mikolov et al., 2013), Skip-
Thought vectors (Kiros et al., 2015), and BERT (Devlin et al., 2019) in language, while in vision
similar principles have been applied to context prediction (Doersch et al., 2015; Noroozi & Favaro,
2016), unsupervised tracking (Wang & Gupta, 2015), inpainting (Pathak et al., 2016) and coloriza-
tion (Zhang et al., 2016). More related to us is the use of such techniques in designing auxiliary loss
functions for training model-free RL agents, such as successor representations (Dayan, 1993; Zhu
et al., 2017a), value and reward prediction (Jaderberg et al., 2016; Wayne et al., 2018), contrastive
predictive coding (CPC) (Oord et al., 2018; Hénaff et al., 2019), and SimCore (Gregor et al., 2019).

Grounded language learning. Inspired by the work of Winograd (1972) on SHRDLU, several
recent works have explored linguistic representation learning by grounding language into actions
and pixels in physical environments – in 2D gridworlds (Andreas et al., 2017; Yu et al., 2018; Misra
et al., 2017), 3D (Chaplot et al., 2018; Hermann et al., 2017; Das et al., 2018a; Gordon et al., 2018;
Cangea et al., 2019; Puig et al., 2018; Zhu et al., 2017a; Anderson et al., 2018; Gupta et al., 2017;
Zhu et al., 2017b; Oh et al., 2017; Shu et al., 2018; Vogel & Jurafsky, 2010) and textual (Matuszek
et al., 2013; Narasimhan et al., 2015) environments. Closest to our work is the task of Embodied
Question Answering (Gordon et al., 2018; Das et al., 2018a;b; Yu et al., 2019; Wijmans et al., 2019)
– where an embodied agent in an environment (e.g. a house) is asked to answer a question (e.g.
“What color is the piano?”). Typical approaches to EmbodiedQA involve training agents to move
for the goal of answering questions. In contrast, our focus is on learning a good predictive model in
a goal-agnostic exploration phase and using question-answering as a post-hoc testbed for evaluating
the semantic knowledge that can emerge in the agent’s representations from predicting the future.

Neural population decoding. Probing an agent using a QA decoder can be viewed as a variant
of neural population decoding, successfully used as an analysis tool in neuroscience (Georgopoulos
et al., 1986; Bialek et al., 1991; Salinas & Abbott, 1994) and more recently in deep learning (Guo
et al., 2018; Gregor et al., 2019; Azar et al., 2019; Alain & Bengio, 2016). The idea is to test if
desired information is encoded in the learned representation by feeding it as input to a network
tasked to extract the desired information. In deep learning, this is done by training a network to
predict the desired parts of the ground-truth state of the environment, such as an agent’s position
or orientation, without backpropagating through the agent’s internal state. We extend this idea by
using question-answering as a general purpose decoder conditioned by an arbitrary question, through
which we can attempt to extract complex high-level information from the agent’s internal state.

Neurocognition. Predictive modeling is thought to be a fundamental component of human neu-
rocognition (Elman, 1990; Clark, 2016; Hohwy, 2013; Seth, 2015). In particular, it has been pro-
posed that human learning and decision-making rely on the minimization of prediction error (Clark,
2016; Friston, 2010; Friston et al., 2017; Hohwy, 2013; Seth, 2015). A well-established strand of
work has focused on decoding predictive representations in brain states (Quiroga et al., 2005; Nort-
mann et al., 2013; Huth et al., 2016). The question of how prediction of sensory experience relates
to higher-order conceptual knowledge is complex and subject to debate (Williams, 2018; Roskies
& Wood, 2017), though some have proposed that conceptual knowledge, planning, reasoning, and
other higher-order functions emerge in deeper layers of a predictive network. We focus on the emer-
gence of semantics in an artificial predictive agent’s internal representations.

3 ENVIRONMENT & TASKS

Environment. We use a Unity-based visually-rich 3D environment (see Figure 1). It is a single
L-shaped room that can be programmatically populated with an assortment of objects of different
colors at different spatial locations and orientations. In total, we use a library of 50 different objects,
referred to as ‘shapes’ henceforth (e.g. chair, teddy, glass, etc.), in 10 different colors (e.g. red, blue,
green, etc.). For a complete list of objects, attributes, and other environment details, see section A.4.
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At every step, the agent gets a 96 ˆ 72 first-person RGB image as its observation, and the action
space consists of movements (move-tforward,back,left,rightu), turns (turn-tup,down,left,rightu), and
object pick-up and manipulation (4 DoF: yaw, pitch, roll, and movement along the axis between the
agent and object). See Table 5 in the Appendix for the full set of actions.

Question type Template Level codename # QA pairs

Attribute What is the color of the ăshapeą? color 500
What shape is the ăcolorą object? shape 500

Count How many ăshapeą are there? count_shape 200
How many ăcolorą objects are there? count_color 40

Exist Is there a ăshapeą? existence_shape 100

Compare ` Count Are there the same number of ăcolor1ą objects as ăcolor2ą objects? compare_count_color 180
Are there the same number of ăshape1ą as ăshape2ą? compare_count_shape 4900

Relation ` Attribute What is the color of the ăshape1ą near the ăshape2ą? near_color 24500
What is the ăcolorą object near the ăshapeą? near_shape 25000

Table 1: Question-answering task templates. In every episode, objects and their configurations are randomly
generated, and these task templates get translated to question-answer pairs for all unambiguous ăshape,
colorą combinations. There are 50 shapes and 10 colors in total. For more details, see section A.4.

Question-Answering Tasks. We develop a range of question-answering tasks of varying com-
plexity that test the agent’s local and global scene understanding, visual reasoning, and memory
skills. Inspired by Johnson et al. (2017); Das et al. (2018a); Gordon et al. (2018), we programmat-
ically generate a dataset of questions (see Table 1). These questions ask about the presence or ab-
sence of objects (existence_shape), their attributes (color, shape), counts (count_color, count_shape),
quantitative comparisons (compare_count_color, compare_count_shape), and elementary spatial rela-
tions (near_color, near_shape). Unlike the fully-observable setting in CLEVR (Johnson et al., 2017),
the agent does not get a global view of the environment, and must answer these questions from a
sequence of partial egocentric observations. Moreover, unlike prior work on Embodied Question
Answering (Gordon et al., 2018; Das et al., 2018a), the agent is not being trained end-to-end to
move to answer questions. It is being trained to explore, and answers are being decoded (without
backpropagating gradients) from its internal representation. Thus in order to answer these questions,
the agent must learn to encode relevant aspects of the environment in a representation amenable to
easy decoding into symbols (e.g. what does the word “chair” mean? or what representations does
computing “how many” require?).

4 APPROACH

Learning an exploration policy. Predictive modeling has proven to be an effective approach for
an agent to develop general knowledge of its environment as it explores and behaves in the service
of its principal goal, typically maximising environment returns (Gregor et al., 2019; Guo et al.,
2018). Since we wish to evaluate the effectiveness of predictive modeling independent of the agent’s
specific goal, we define a simple task that stimulates the agent to visit all of the ‘important’ places in
the environment (i.e. to acquire an exploratory but otherwise task-neutral policy). This is achieved
by giving the agent a reward of `1.0 every time it visits an object in the room for the first time.
After visiting all objects, rewards are refreshed and available to be consumed by the agent again (i.e.
re-visiting an object the agent has already been to will now again lead to a `1.0 reward), and this
process continues for the duration of each episode (30 seconds or 900 steps).

During training on this exploration task, the agent receives a first-person RGB observation xt at
every timestep t, and processes it using a convolutional neural network to produce zt. This is input
to an LSTM policy whose hidden state is ht and output a discrete action at. The agent optimizes
the discounted sum of future rewards using an importance-weighted actor-critic algorithm (Espeholt
et al., 2018).

Training the QA-decoder. The question-answering decoder is operationalized as an LSTM that
is initialized with the agent’s internal representation ht and receives the question as input at every
timestep (see Figure 2). The question is a string that we tokenise into words and then map to learned
embeddings. The question decoder LSTM is then unrolled for a fixed number of computation steps
after which it predicts a softmax distribution over the vocabulary of one-word answers to questions
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Figure 2: Overview of our approach: at every timestep t, the agent receives an RGB observation xt as input,
processes it using a convolutional neural network to produce zt, which is then processed by an LSTM to select
action at. The agent is learning to explore – it receives a reward of 1.0 for navigating to each object in the
environment. As it explores the environment, it builds up an internal representation ht, which receives pressure
from an auxiliary predictive module to capture environment semantics so as to accurately predict consequences
of its actions multiple steps into the future. We experiment with a vanilla LSTM agent and two recent predictive
approaches – action-conditional CPC (Guo et al., 2018) and SimCore (Gregor et al., 2019). The learnt internal
representations are then analyzed via a question-answering decoder whose gradients are not backpropagated to
the agent core. The QA decoder is an LSTM initialized with ht and receiving the question at every timestep.

in Table 1, and is trained via a cross-entropy loss. Crucially, this QA decoder is trained independent
of the agent policy; i.e. gradients from this decoder are not allowed to flow back into the agent. We
evaluate question-answering performance by measuring top-1 accuracy at the end of the episode –
we consider the agent’s top predicted answer at the last time step of the episode and compare that
with the ground-truth answer.

The QA decoder can be seen as a general purpose decoder trained to extract object-specific knowl-
edge from the agent’s internal state without affecting the agent itself. If this knowledge is not re-
tained in the agent’s internal state, then this decoder will not be able to extract it. This is an important
difference with respect to prior work (Gordon et al., 2018; Das et al., 2018a) – wherein agents were
trained to move to answer questions, i.e. all parameters had access to linguistic information. Recall
that the agent’s navigation policy has been trained for exploration, and so the visual information
required to answer a question need not be present in the observation at the end of the episode. Thus,
through question-answering, we are evaluating the degree to which agents encode relevant aspects
of the environment (object colors, shapes, counts, spatial relations) in their internal representations
and maintain this information in memory beyond the point at which it was initially received2.

4.1 AUXILIARY PREDICTIVE LOSSES

We augment the baseline architecture described above with an auxiliary predictive head consisting of
a simulation network (operationalized as an LSTM) that is initialized with the agent’s internal state
ht and deterministically simulates future latent states s1t , . . . , s

k
t , . . . in an open-loop manner, re-

ceiving the agent’s action sequence as input. We evaluate two predictive losses – action-conditional
CPC (Guo et al., 2018) and SimCore (Gregor et al., 2019). See Fig. 2 for overview, A.1.2 for details.

Action-conditional CPC (CPC|A, Guo et al. (2018)) makes use of a noise contrastive estimation
model to discriminate between true observations processed by the convolutional neural network
z`t`k (k steps into the future) and negatives randomly sampled from the dataset z´t`k, in our case
from other episodes in the minibatch. Specifically, at each timestep t ` k (up to a maximum), the
output of the simulation core skt and z`t`k are fed to an MLP to predict 1, and skt and z´t`k are used
to predict 0.

2See Section A.1.3 for more details about the QA decoder.
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Figure 3: L – Reward in an episode. R – Top-1 QA accuracy. Averaged over 3 seeds. Shaded region is 1 SD.

SimCore (Gregor et al., 2019) uses the simulated state skt to condition a generative model based on
ConvDRAW (Gregor et al., 2016) and GECO (Rezende & Viola, 2018) that predicts the distribution
of true observations ppxt`k|ht, at,...,pt`kqq in pixel space.

Baselines. We evaluate and compare the above approaches with 1) a vanilla RL agent without any
auxiliary predictive losses (referred to as ‘LSTM’), and 2) a question-only agent that receives zero-
masked observations as input and is useful to measure biases in our question-answering testbed.
Such a baseline is critical, particularly when working with simulated environments, as it can un-
cover biases in the environment’s generation of tasks that can result in strong but uninteresting
performance from agents capable of powerful function approximation (Thomason et al., 2019).

No stop gradient. We also compare against an agent without blocking the QA decoder gradients
(labeled ‘No SG’). This model differs from the above in that it is trained end-to-end – with supervi-
sion – to answer the set of questions in addition to the exploration task. Hence, it represents an agent
receiving privileged information about how to answer the questions and its performance provides an
upper bound indicative of how challenging these question-answering tasks are in this context.

5 EXPERIMENTS & RESULTS

5.1 QUESTION-ANSWERING PERFORMANCE

We begin by analyzing performance on a single question-answering task – shape – which consists
of questions of the form “what shape is the ăcolorą object?”. Figure 3 shows the average reward
accumulated by the agent in one episode (left) and the QA accuracy at the last timestep of the episode
(right) for all approaches over the course of training. We make the following observations:

• All agents learn to explore. With the exception ‘question-only’, all agents achieve high reward
on the exploration task. This means that they visited all objects in the room more than once each
and therefore, in principle, have been exposed to sufficient information to answer all questions.

• Predictive models aid navigation. Agents equipped with auxiliary predictive losses – CPC|A
and SimCore – collect the most rewards, suggesting that predictive modeling helps navigate the
environment efficiently. This is consistent with findings in Gregor et al. (2019).

• QA decoding from LSTM and CPC|A representations is no better than chance.

• SimCore’s internal representations lead to best QA accuracy. SimCore gets to a QA accuracy
of „72% indicating that its representations best capture environment knowledge and are the most
suitable for decoding answers to questions. Figure 4a shows example agent predictions.

• Wide gap between SimCore and No SG. There is still a „24% gap between SimCore and the
No SG oracle, suggesting scope for developing better auxiliary predictive losses.

It is worth emphasizing that answering this shape question from observations is not a challenging
task in and of itself. The No SG agent, which is trained end-to-end to optimize both for exploration
and QA, achieves almost-perfect accuracy („96%). The challenge arises from the fact that we are
not training the agent end-to-end – from pixels to navigation to QA – but decoding the answer from
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Baseline: Question-only 0.29 0.04 0.1 0.63 0.24 0.24 0.49 0.70 0.04 0.09

LSTM 0.31 0.04 0.1 0.54 0.34 0.38 0.53 0.70 0.04 0.09
CPC|A 0.32 0.06 0.08 0.64 0.39 0.39 0.50 0.70 0.06 0.10
SimCore 0.60 0.72 0.81 0.72 0.39 0.57 0.56 0.73 0.30 0.59

Oracle: No SG 0.63 0.96 0.81 0.60 0.45 0.57 0.51 0.76 0.41 0.72

Table 2: Top-1 accuracy on question-answering tasks.

the agent’s internal state, which is learned agnostic to the question. The answer can only be decoded
if the agent’s internal state contains relevant information represented in an easily-decodable way.

Decoder complexity. To explore the possibility that answer-relevant information is present in the
agent’s internal state but requires a more powerful decoder, we experiment with QA decoders of a
range of depths. As detailed in Figure 6 in the appendix, we find that using a deeper QA decoder
with SimCore does lead to higher QA accuracy (from 1 Ñ 12 layers), although greater decoder
depths become detrimental after 12 layers. Crucially, however, in the non-predictive LSTM agent,
the correct answer cannot be decoded irrespective of the capacity of the QA decoder. This high-
lights an important aspect of our question-answering evaluation paradigm – that while the absolute
accuracy at answering questions may also depend on decoder capacity, relative differences provide
an informative comparison between the internal representations developed by different agents.

Table 2 shows QA accuracy for all QA tasks (see Figure 7 in appendix for training curves). The
results reveal large variability in difficulty across question types. Questions about attributes (color
and shape), which can be answered from a single well-chosen frame of visual experience, are the
easiest, followed by spatial relationship questions (near_color and near_shape), and the hardest are
counting questions (count_color and count_shape). We further note that:

• All agents perform ě question-only, which captures any biases in the environment or question
distributions (enabling strategies such as constant prediction of the most-common answer).

• CPC|A representations are not better than LSTM on most question types.
• SimCore representations achieve higher QA accuracy than all other approaches, sub-

stantially above question-only on count_color (57% vs. 24%), near_shape (30% vs. 4%) and
near_color (59% vs. 9%), demonstrating a strong tendency for encoding and retaining informa-
tion about the identity of objects, their properties, and both spatial as well as temporal relations.

Finally, as before, the No SG agent trained to answer questions without stopped gradients achieves
highest accuracy for most questions, although not all – perhaps due to trade-offs between simulta-
neously optimizing performance for different QA losses and the exploration task.

5.2 COMPOSITIONAL GENERALIZATION

While there is a high degree of procedural randomization in our environment and QA tasks, over-
parameterized neural-network-based models in limited environments are always prone to overfitting
or rote memorization. We therefore constructed a test of the generality of the information encoded
in the internal state of an agent. The test involves a variant of the shape question type (i.e. ques-
tions like “what shape is the ăcolorą object?”), but in which the possible question-answer pairs
are partitioned into mutually exclusive training and test splits. Specifically, the test questions are
constrained such that they are compositionally novel – the ăcolor, shapeą combination involved in
the question-answer pair is never observed during training, but both attributes are observed in other
contexts. For instance, a test question-answer pair “Q: what shape is the blue object?, A: table” is
excluded from the training set of the QA decoder, but “Q: what shape is the blue object?, A: car”
and “Q: What shape is the green object?, A: table” are part of the training set (but not the test set).

We evaluate only the SimCore agent on this test of generalization (since other agents perform poorly
on the original task itself). Figure 4b shows that the QA decoder applied to SimCore’s internal states
performs at substantially above-chance (and all baselines) on the held-out test questions (although
somewhat lower than training performance). This indicates that the QA decoder extracts and applies
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(a) Sample trajectory (1 Ñ 4) and QA decoding predictions (for top 5 most probable
answers) for the question ‘What shape is the green object?’ from the SimCore agent.
Note that the top-down map is only shown for illustration and not available to the agent. (b) QA accuracy on disjoint train and test splits.

Figure 4

information in a comparatively factorized (or compositional) manner, and suggests (circumstan-
tially) that the knowledge acquired by the simcore may also be represented in this way.

6 DISCUSSION

We introduced question-answering as a paradigm to evaluate and analyze representations learned
by artificial agents. In particular, we tested how much knowledge about the external environment
can be decoded from predictive vs. non-predictive RL agents. We started by developing a range of
question-answering tasks in a visually-rich 3D environment serving as a diagnostic test of an agent’s
scene understanding, visual reasoning, and memory skills. Next, we trained agents to optimize an
exploration objective with and without auxiliary self-supervised predictive losses, and evaluated the
representations they form as they explore an environment via this question-answering testbed. We
found that predictive agents (in particular SimCore (Gregor et al., 2019)) are able to reliably capture
detailed environment semantics in their internal states, which can be easily decoded as answers to
questions, while non-predictive agents do not, even if they optimize the exploration objective well.

Interestingly, not all predictive agents are equally good at forming these representations. We com-
pared a model explicitly learning the probability distribution of future frames in pixel space via
a generative model (SimCore (Gregor et al., 2019)) with a model based on discriminating frames
through contrastive estimation (CPC|A (Guo et al., 2018)). We found that while both learned to
navigate well, only the former developed representations that could be used for answering ques-
tions about the environment. Gregor et al. (2019) previously showed that the choice of predictive
model has a significant impact on the ability to decode an agent’s position, orientation and top-down
map reconstructions of the environment. Here we extend this idea to more high-level and complex
aspects of the environment and show the value of our question-answering approach in comparing
existing agents and its potential utility as a tool for developing better ones.

Finally, the fact that we can even decode answers to questions (i.e. symbolic information) from an
agent’s internal representations learned solely from egocentric future predictions without exposing
the agent to any questions is encouraging. It indicates that the agent is learning to form and maintain
invariant object identities and properties (modulo limitations in decoder capacity) in its internal
state without explicit supervision. It is almost 30 years since Elman (1990) showed how syntactic
structures and semantic organization can emerge in the units of a neural network as a consequence
of the simple objective of predicting the next word in a sequence. This work corroborates Elman’s
belief in the power of prediction by demonstrating the diversity of knowledge that can emerge when
a situated neural-network agent is endowed with powerful predictive objectives applied to raw pixel
observations. We think we have just scratched the surface of this problem, and hope our work
inspires future research in evaluating predictive agents using natural linguistic interactions.
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Cătălina Cangea, Eugene Belilovsky, Pietro Liò, and Aaron Courville. Videonavqa: Bridging the gap between
visual and embodied question answering. arXiv preprint arXiv:1908.04950, 2019. 3

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj Rajagopal, and
Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language grounding. In AAAI Confer-
ence on Artificial Intelligence, 2018. 3

A. Clark. Surfing uncertainty. Oxford University Press, Oxford, 2016. 1, 3

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F. Moura, Devi Parikh, and
Dhruv Batra. Visual Dialog. In CVPR, 2017. 1

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embodied Ques-
tion Answering. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018a. 1, 3, 4, 5

Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Neural Modular Control for
Embodied Question Answering. In Proceedings of International Conference on Robot Learning (CoRL),
2018b. 3

Peter Dayan. Improving generalization for temporal difference learning: The successor representation. Neural
Computation, 1993. 3

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL, 2019. 3

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by context
prediction. In Proceedings of IEEE International Conference on Computer Vision (ICCV), 2015. 3

Peter Elias. Predictive coding – I. IRE Transactions on Information Theory, 1955. 2

Jeffrey L Elman. Finding structure in time. Cognitive science, 1990. 1, 3, 8

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018. 4, 13

K. Friston. The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11:127–138,
2010. 3

9

http://arxiv.org/abs/1612.03801


Under review as a conference paper at ICLR 2020

K. Friston, T. FitzGerald, F. Rigoli, P. Schwartenbeck, and G. Pezzulo. Active inference: A process theory.
Neural Computation, 29:1–49, 2017. 3

Apostolos P Georgopoulos, Andrew B Schwartz, and Ronald E Kettner. Neuronal population coding of move-
ment direction. Science, 233(4771):1416–1419, 1986. 3

Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, and Ali Farhadi.
IQA: Visual Question Answering in Interactive Environments. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018. 1, 3, 4, 5

Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan Wierstra. Towards conceptual
compression. In Advances in Neural Information Processing Systems (NeurIPS), 2016. 6, 13

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aaron van den Oord.
Shaping Belief States with Generative Environment Models for RL. In Advances in Neural Information
Processing Systems (NeurIPS), 2019. 1, 2, 3, 4, 5, 6, 8, 13, 15

Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A Pires, Toby Pohlen, and Rémi
Munos. Neural predictive belief representations. arXiv preprint arXiv:1811.06407, 2018. 1, 2, 3, 4, 5, 8, 13

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive mapping
and planning for visual navigation. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 13

Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord. Data-efficient image recog-
nition with contrastive predictive coding. arXiv preprint arXiv:1905.09272, 2019. 3

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David Szepesvari,
Wojtek Czarnecki, Max Jaderberg, Denis Teplyashin, et al. Grounded language learning in a simulated 3D
world. arXiv preprint arXiv:1706.06551, 2017. 3

J. Hohwy. The predictive mind. Oxford University Press, Oxford, 2013. 1, 3

Alexander G Huth, Tyler Lee, Shinji Nishimoto, Natalia Y Bilenko, An T Vu, and Jack L Gallant. Decoding
the semantic content of natural movies from human brain activity. Frontiers in systems neuroscience, 2016.
3

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver,
and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397, 2016. 3

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross Gir-
shick. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. In CVPR,
2017. 4

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. Skip-thought vectors. In Advances in Neural Information Processing Systems (NIPS), 2015. 3

Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. ImageNet Classification with Deep Convolutional Neural
Networks. In Advances in Neural Information Processing Systems (NIPS), 2012. 1

Mateusz Malinowski and Mario Fritz. A Multi-World Approach to Question Answering about Real-World
Scenes based on Uncertain Input. In Advances in Neural Information Processing Systems (NIPS), 2014. 1

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. Learning to parse natural language com-
mands to a robot control system. In Experimental Robotics, 2013. 3

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013. 3

Dipendra Misra, John Langford, and Yoav Artzi. Mapping instructions and visual observations to actions with
reinforcement learning. In Proceedings of the Annual Meeting on Association for Computational Linguistics
(ACL), 2017. 3

10



Under review as a conference paper at ICLR 2020

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hass-
abis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 02 2015. URL
http://dx.doi.org/10.1038/nature14236. 1

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-based games using
deep reinforcement learning. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2015. 3

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles.
In Proceedings of European Conference on Computer Vision (ECCV), 2016. 3

Nora Nortmann, Sascha Rekauzke, Selim Onat, Peter König, and Dirk Jancke. Primary visual cortex represents
the difference between past and present. Cerebral Cortex, 2013. 1, 3

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with multi-task
deep reinforcement learning. In Proceedings of the International Conference on Machine Learning (ICML),
2017. 3

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018. 3

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context encoders: Fea-
ture learning by inpainting. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 3

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba. Virtu-
alhome: Simulating household activities via programs. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018. 3

R Quian Quiroga, Leila Reddy, Gabriel Kreiman, Christof Koch, and Itzhak Fried. Invariant visual representa-
tion by single neurons in the human brain. Nature, 2005. 1, 3

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ Questions for Machine
Comprehension of Text. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2016. 1

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions for squad.
In Proceedings of the Annual Meeting on Association for Computational Linguistics (ACL), 2018. 1

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpretation of some
extra-classical receptive-field effects. Nature neuroscience, 1999. 1

Stefano Recanatesi, Matthew Farrell, Guillaume Lajoie, Sophie Deneve, Mattia Rigotti, and Eric Shea-Brown.
Predictive learning extracts latent space representations from sensory observations. bioRxiv, 2019. 2

Danilo Jimenez Rezende and Fabio Viola. Taming VAEs. arXiv preprint arXiv:1810.00597, 2018. 6

A. Roskies and C. Wood. Catching the prediction wave in brain science. Analysis, 77:848–857, 2017. 3

Emilio Salinas and LF Abbott. Vector reconstruction from firing rates. Journal of computational neuroscience,
1(1-2):89–107, 1994. 3

Tom Schaul and Mark Ring. Better generalization with forecasts. In Proceedings of the International Joint
Conference on Artificial Intelligence, 2013. 2

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In
Proceedings of the International Conference on Machine Learning (ICML), 2015. 2

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint conference on
neural networks, 1991. 2

A. K. Seth. The cybernetic bayesian brain: From interoceptive inference to sensorimotor contingencies. In
T. Metzinger & J. M. Windt (ed.), Open MIND: 35(T). MIND Group, Frankfurt am Main, 2015. 1, 3

Tianmin Shu, Caiming Xiong, and Richard Socher. Hierarchical and interpretable skill acquisition in multi-
task reinforcement learning. In Proceedings of the International Conference on Learning Representations
(ICLR), 2018. 3

11

http://dx.doi.org/10.1038/nature14236


Under review as a conference paper at ICLR 2020

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks
and tree search. Nature, 2016. 1

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-Arnold,
David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-to-end learning and planning.
In Proceedings of the International Conference on Machine Learning (ICML), 2017. 2

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with Neural Networks. In
Advances in Neural Information Processing Systems (NIPS), 2014. 1

Jesse Thomason, Daniel Gordan, and Yonatan Bisk. Shifting the baseline: Single modality performance on
visual navigation & QA. In NAACL, 2019. 6

Adam Vogel and Dan Jurafsky. Learning to follow navigational directions. In Proceedings of the Annual
Meeting on Association for Computational Linguistics (ACL), 2010. 3

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos. In Proceed-
ings of IEEE International Conference on Computer Vision (ICCV), 2015. 3

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-Barwinska, Jack
Rae, Piotr Mirowski, Joel Z Leibo, Adam Santoro, et al. Unsupervised predictive memory in a goal-directed
agent. arXiv preprint arXiv:1803.10760, 2018. 2, 3

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa,
Devi Parikh, and Dhruv Batra. Embodied Question Answering in Photorealistic Environments with Point
Cloud Perception. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019. 3

Daniel Williams. Predictive coding and thought. Synthese, pp. 1–27, 2018. 3

Terry Winograd. Understanding natural language. Cognitive Psychology, 1972. 3

Haonan Yu, Haichao Zhang, and Wei Xu. Interactive Grounded Language Acquisition and Generalization in a
2D World. In Proceedings of the International Conference on Learning Representations (ICLR), 2018. 3

Licheng Yu, Xinlei Chen, Georgia Gkioxari, Mohit Bansal, Tamara L. Berg, and Dhruv Batra. Multi-target
embodied question answering. In Proceedings of IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019. 3

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In Proceedings of European
Conference on Computer Vision (ECCV), 2016. 3

Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox, Li Fei-Fei, Abhinav Gupta, Roozbeh Mottaghi, and Ali
Farhadi. Visual Semantic Planning using Deep Successor Representations. In Proceedings of IEEE Interna-
tional Conference on Computer Vision (ICCV), 2017a. 3

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-
driven visual navigation in indoor scenes using deep reinforcement learning. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2017b. 3

12



Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 NETWORK ARCHITECTURES AND TRAINING SETUP

A.1.1 IMPORTANCE WEIGHTED ACTOR-LEARNER ARCHITECTURE

Agents were trained using the IMPALA framework (Espeholt et al., 2018). Briefly, there are N
parallel ‘actors’ collecting experience from the environment in a replay buffer and one learner taking
batches of trajectories and performing the learning updates. During one learning update the agent
network is unrolled, all the losses (RL and auxiliary ones) are evaluated and the gradients computed.

A.1.2 AGENTS

Input encoder To process the frame input, all models in this work use a residual network (He
et al., 2016) of 6 64-channel ResNet blocks with rectified linear activation functions and bottleneck
channel of size 32. We use strides of (2, 1, 2, 1, 2, 1) and don’t use batch-norm. Following the
convnet we flatten the ouput and use a linear layer to reduce the size to 500 dimensions. Finally, We
concatenate this encoding of the frame together with a one hot encoding of the previous action and
the previous reward.

Core architecture The recurrent core of all agents is a 2-layer LSTM with 256 hidden units per
layer. At each time step this core consumes the input embedding described above and update its
state. We then use a 200 units single layer MLP to compute a value baseline and an equivalent
network to compute action logits, from where one discrete action is sampled.

Simulation Network Both predictive agents have a simulation network with the same architecture
as the agent’s core. This network is initialized with the agent state at some random time t from the
trajectory and unrolled forward for a random number of steps up to 16, receiving only the actions
of the agent as inputs. We then use the resulting LSTM hidden state as conditional input for the
prediction loss (SimCore or CPC|A).

SimCore We use the same architecture and hyperparameters described in Gregor et al. (2019). The
output of the simulation network is used to condition a Convolutional DRAW (Gregor et al., 2016).
This is a conditional deep variational auto-encoder with recurrent encoder and decoder using convo-
lutional operations and a canvas that accumulates the results at each step to compute the distribution
over inputs. It features a recurrent prior network that receives the conditioning vector and computes
a prior over the latent variables. See more details in Gregor et al. (2019).

Action-conditional CPC We replicate the architecture used in Guo et al. (2018). CPC|A uses the
output of the simulation network as input to an MLP that is trained to discriminate true versus false
future frame embedding. Specifically, the simulation network outputs a conditioning vector after
k simulation steps which is concatenated with the frame embedding zt`k produced by the image
encoder on the frame xt`k and sent through the MLP discriminator. The discriminator has one
hidden layer of 512 units, ReLU activations and a linear output of size 1 which is trained to binary
classify true embeddings into one class and false embeddings into another. We take the negative
examples from random time points in the same batch of trajectories.

A.1.3 QA NETWORK ARCHITECTURE

Question encoding The question string is first tokenized to words and then mapped to integers
corresponding to vocabulary indices. These are then used to lookup 32-dimensional embeddings
for each word. We then unroll a 64-units single-layer LSTM for a fixed number of 15 steps. The
language representation is then computed by summing the hidden states for all time steps.

QA decoder. To decode answers from the internal state of the agents we use a second LSTM initial-
ized with the internal state of the agent’s LSTM and unroll it for a fix number of steps, consuming
the question embedding at each step. The results reported in the main section were computed using
12 decoding steps. The terminal state is sent through a two-layer MLP (sizes 256, 256) to compute
a vector of answer logits with the size of the vocabulary and output the top-1 answer.

A.1.4 HYPER-PARAMETERS

The hyper-parameter values used in all the experiments are in Table 3.
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Agent
Learning rate 1e-4
Unroll length 50
Adam β1 0.90
Adam β2 0.95
Policy entropy regularization 0.0003
Discount factor 0.99
No. of ResNet blocks 6
No. of channel in ResNet block 64
Frame embedding size 500
No. of LSTM layers 2
No. of units per LSTM layer 256
No. of units in value MLP 200
No. of units in policy MLP 200
Simulation Network
Overshoot length 16
No. of LSTM layers 2
No. of units per LSTM layer 256
No. of simulations per trajectory 6
No. of evaluations per overshoot 2
SimCore
No. of ConvDRAW Steps 8
GECO kappa 0.0015
CPC|A
MLP discriminator size 64
QA network
Vocabulary size 1000
Maximum question length 15
No. of units in Text LSTM encoder 64
Question embedding size 32
No. of LSTM layers in question decoder 2
No. of units per LSTM layer 256
No. of units in question decoder MLP 200
No. of decoding steps 12

Table 3: Hyperparameters.

A.1.5 NEGATIVE SAMPLING STRATEGIES FOR CPC|A

We experimented with multiple sampling strategies for the CPC|A agent (whether or not negative
examples are sampled from the same trajectory, the number of contrastive prediction steps, the
number of negative examples). We report the best results in the main text. The CPC|A agent did
provide better representations of the environment than the LSTM-based agent, as shown by the
top-down view reconstruction loss (Figure 5a). However, none of the CPC|A agent variations that
we tried led to better-than-chance question-answering accuracy. As an example, in Figure 5b we
compare sampling negatives from the same trajectory or from any trajectory in the training batch.

A.2 EFFECT OF QA NETWORK DEPTH

To study the effect of the QA network capacity on the answer accuracy, we tested decoders of differ-
ent depths applied to both the SimCore and the LSTM agent’s internal representations (6). The QA
network is an LSTM initialized with the agent’s internal state that we unroll for a fix number of steps
feeding the question as input at each step. We found that, indeed, the answering accuracy increased
with the number of unroll steps from 1 to 12, while greater number of steps became detrimental. We
performed the same analysis on the LSTM agent and found that regardless of the capacity of the QA
network, we could not decode the correct answer from its internal state, suggesting that the limiting
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(a) To test whether the CPC|A loss provided improved represen-
tations we reconstructed the environment top-down view, similar
to Gregor et al. (2019). Indeed the reconstruction loss is lower
for CPC|A than for the LSTM agent.

(b) QA accuracy for the CPC|A agent is not better than the
LSTM agent, for both sampling strategies of negatives.

Figure 5

factor is not the capacity of the decoder but the lack of useful representations in the LSTM agent
state.

Figure 6: Answer accuracy over training for increasing QA decoder’s depths. Left subplot shows the results for
the SimCore agent and right subplot for the LSTM baseline. For SimCore, the QA accuracy increases with the
decoder depth, up to 12 layers. For the LSTM agent, QA accuracy is not better than chance regardless of the
capacity of the QA network.

A.3 ANSWERING ACCURACY DURING TRAINING FOR ALL QUESTIONS

The QA accuracy over training for all questions is shown in Figure 7.

A.4 ENVIRONMENT

Our environment is a single L-shaped 3D room, procedurally populated with an assortment of ob-
jects.

Actions and Observations. The environment is episodic, and runs at 30 frames per second. Each
episode takes 30 seconds (or 900 steps). At each step, the environment provides the agent with two
observations: a 96x72 RGB image with the first-person view of the agent and the text containing the
question.

The agent can interact with the environment by providing multiple simultaneous actions to control
movement (forward/back, left/right), looking (up/down, left/right), picking up and manipulating
objects (4 degrees of freedom: yaw, pitch, roll + movement along the axis between agent and object).

Rewards. To allow training using cross-entropy, as described in Section 4, the environment provides
the ground-truth answer instead of the reward to the agent.

Object creation and placement. We generate between 2 and 20 objects, depending on the task,
with the type of the object, its color and size being uniformly sampled from the set described in
Table 4.
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Figure 7: QA accuracy over training for all questions and all models.

Objects will be placed in a random location and random orientation. For some tasks, we required
some additional constraints - for example, if the question is "What is the color of the cushion near
the bed?", we need to ensure only one cushion is close to the bed. This was done by checking the
constraints and regenerating the placement in case they were not satisfied.

A.5 RESULTS IN THE DEEPMIND LAB ENVIRONMENT

In order to check if our results are robust to the choice of environment, we developed a similar setup
using the DeepMind Lab (Beattie et al., 2016) environment. It consists of a rectangular room that is
populated with a random selection of objects of different shapes and colors in each episode. There
are 6 distinct objects in each room, selected from a pool of 20 objects and 9 different colors. We use
a similar exploration reward structure as in our earlier environment to train the agents to navigate
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Attribute Options

Object basketball, cushion, carriage, train, grinder, candle, teddy, chair,
scissors, stool, book, football, rubber duck, glass, toothpaste, arm chair,
robot, hairdryer, cube block, bathtub, TV, plane, cuboid block,
car, tv cabinet, plate, soap, rocket, dining table, pillar block,
potted plant, boat, tennisball, tape dispenser, pencil, wash basin,
vase, picture frame, bottle, bed, helicopter, napkin, table lamp,
wardrobe, racket, keyboard, chest, bus, roof block, toilet

Color aquamarine, blue, green, magenta, orange, purple, pink, red,
white, yellow

Size small, medium, large

Table 4: Randomization of objects in the Unity room. 50 different types, 10 different colors and 3 different
scales.

Body movement actions Movement and grip actions Object manipulation
NOOP GRAB GRAB + SPIN_OBJECT_RIGHT
MOVE_FORWARD GRAB + MOVE_FORWARD GRAB + SPIN_OBJECT_LEFT
MOVE_BACKWARD GRAB + MOVE_BACKWARD GRAB + SPIN_OBJECT_UP
MOVE_RIGHT GRAB + MOVE_RIGHT GRAB + SPIN_OBJECT_DOWN
MOVE_LEFT GRAB + MOVE_BACKWARD GRAB + SPIN_OBJECT_FORWARD
LOOK_RIGHT GRAB + LOOK_RIGHT GRAB + SPIN_OBJECT_BACKWARD
LOOK_LEFT GRAB + LOOK_LEFT GRAB + PUSH_OBJECT_AWAY
LOOK_UP GRAB + LOOK_UP GRAB + PULL_OBJECT_CLOSE
LOOK_DOWN GRAB + LOOK_DOWN

Table 5: Environment action set.

and observe all objects. Finally, in each episode, we introduce a question of the form ‘What is the
color of the ăshapeą?’ where ăshapeą is replaced by the name of an object present in the room.

Figure 8b shows question-answering accuracies in the DeepMind Lab environment. Consistent with
the results presented in the main text, internal representations of the SimCore agent lead to the high-
est answering accuracy while CPC|A and the vanilla LSTM agent perform worse and similar to each
other. Crucially, for running experiments in DeepMind Lab, we did not change any hyperparameters
from the experimental setup described in the main paper. This demonstrates that our approach is not
specific to a single environment and that it can be readily applied in a variety of settings.
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(a) DeepMind Lab environment (Beattie et al., 2016):
Rectangular-shaped room with 6 randomly selected objects
out of a pool of 20 different objects of different colors.

(b) QA accuracy for color questions (What
is the color of the ăshapeą?) in Deep-
Mind Lab. Consistent with results in the
main paper, internal representations of the
SimCore agent lead to the highest accuracy
while CPC|A and LSTM perform worse and
similar to each other.

Figure 8
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