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Abstract

Runoff predictions of a river from meteorological inputs is a key task in the field of
hydrology. However, current hydrological models require a substantial amount of
parameter tuning on basis of historical records. If no historical runoff observations
are available it is very challenging to produce good predictions. In this study we
explore the capability of LSTMs for simulating the runoff for these ungauged cases.
A single LSTM is trained to learn a general hydrological model from hundreds
of catchments throughout the contiguous United States of America and evaluated
against catchments not used during training. Our results suggest that LSTMs a)
are able to learn a general hydrological model and b) in the majority of catchments
outperform an established hydrological model, which was especially trained for
these catchments.

1 Introduction

Runoff predictions from meteorological observations provide the basic information for the manage-
ment of water resources, the design of hydropower plants and the planning of irrigation schemes.
They also provide an important backbone to reduce the damages and casualties from floods, which
are among the most frequent and destructive natural hazards [2]. Between 1980 and 2017 the World
was affected by almost 6000 damaging flood events that claimed over 220000 lives and produced
overall economic losses of USD 1007 billion [13]. Notwithstanding that the monetization of human
losses is non-trivial, this monetary value can be put in perspective: It approximately correspond to
the Gross Domestic Product (GDP) of Indonesia in 2017 (the 16th largest national economy in the
world [16]).

Currently, most runoff predictions are based on (hydrological) models that require extensive parameter
tuning on basis of historical runoff records. According to Worldbank [17] however, 80 % of the
hydro-meteorological observation networks in middle to low-income countries are in a poor or
declining state or inadequate to meet user needs. But, also in industrial, high-income nations the
number of hydrological measurements are declining, e.g. in the USA 2632 stream gauges with 30 or
more years of runoff records were discontinued between 1972 and 2006 [15]. Missing observations
can make the task of model calibration challenging. Although more and more hydrological relevant
data is becoming available due to space-borne remote sensing products, the opposite is the case for
in-situ data [3]. Accordingly, forecasting the runoff of ungauged catchments (i.e. catchments without
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Figure 1: Location of the basins used in this study across the contiguous United States of America.
The marker type shows exemplarily the data split for one of the 6 folds and the color of the marker
depicts the aridity of the basin.

historic observations, where a catchment is the drainage area of a river) is seen as a key challenge in
hydrology. The International Association of Hydrological Sciences even devoted an entire scientific
decade to the to address the problem of ungauged catchments (“Predictions in Ungauged Basins” in
the period 2003-2012). And, albeit this coordinated effort brought many advances, the central goal
remains a challenge [7].

Recently, Kratzert et al. [9] have shown that LSTMs are well suited for rainfall-runoff modelling.
In this study, we explore the capability of LSTMs for the task of predicting the runoff in ungauged
catchments. We train a single LSTM to learn a general hydrological model of hundreds of catchments
in various regions in the contiguous United States of America and assess if the model can simulate
catchments not used in the training.

2 Case Study

2.1 Data and Setup

We use the publicly available CAMELS dataset [10] and the same 531 catchments (see Fig. 1) used
by Newman et al. [12]. For each catchment approximately 35 years of catchment-aggregated daily
meteorological observations (precipitation, min. and max. temperature, solar radiation and vapor
pressure) as well as runoff records are available. A single day of runoff is predicted from the previous
365 days of meteorological observations. We hypothesize that this window is large enough to account
for most long-term dependencies inherent in the system, such as e.g. snow accumulation and melting.

Additionally, we use a selection of the catchment attributes released by Addor et al. [1]. These
attributes describe a wide range of characteristics for the given catchments (e.g. the corresponding
climate and geography). We only use the set of attributes, that are not calculated from in-situ
observations. This guarantees that the model can be used for catchments with missing measurement
stations (for a comprehensive list of attributes see Appendix A).

We use k-fold cross-validation (with k = 6) to assess the capacity of the approach. The training
set consists of four splits (353 catchments) and the validation and test set of one split each (which
amounts to 89 catchments each). This setup is realized for two different settings: In the first setting,
we only provide the meteorological time series data as input to the LSTM (hereafter: Baseline LSTM).
In the second setting, we add the static catchments attributes as additional inputs for each time step
(hereafter: Global LSTM). The comparison of both settings allows us to examine, if these additional
features enable the LSTM to learn a “catchment-characteristic aware” hydrological model, which has
the property to simulate a wider array of different hydrological responses.

Furthermore, we added two simple data-driven baselines. In the first one, we determine for each test
set basin the most similar basin in the training set by using the minimal euclidean distance in the
feature space of the catchment attributes. For this most similar basin we calculate the long-term mean
discharge for each day of the year and use these values as prediction for the entire period of the test
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basin (hereafter: NN). The second baseline is a simple multilayer perceptron (MLP) which uses the
entire input sequence plus the catchment attributes as one long input vector. The MLP consists of a
single layer with 45 hidden units to approximately match the number of learnable parameters of the
Global LSTM.

The CAMELS dataset also includes a hydrological reference model (SAC-SMA + Snow-17, hereafter
SAC-SMA, for details see [11]), against which we also compare. It can be seen as an upper benchmark,
since it is a well-established model that was calibrated for each catchment specifically (using the first
15 years of available data).

2.2 Model

For the sake of simplicity we use a Vanilla LSTM [6, 4] with a single layer and 125 hidden neurons.
The final runoff prediction is calculated by a dense layer from the output of the LSTM layer at the last
time step. We use a batch size of 256, the mean-squared-error (MSE) as loss function and train the
model using Adam optimizer [8] with a learning rate of 1 ∗ 10−3 (β1 = 0.9, β2 = 0.999). We train
the models for various epochs and select the final model by the lowest mean MSE of all catchments
in the validation set. For the final evaluation we use the Nash-Sutcliffe-Efficiency (NSE), the most
common measure in hydrology [5], which equals the R2 of the observed and simulated discharge.
Furthermore, because negative predictions of the runoff are physically implausible, we clip negative
predictions to 0.

3 Results and Discussion

Figure 2 shows the results of our experiments, as well as the performance of the hydrological
reference model. The two data-driven benchmarks perform (expectedly) bad, with both having
negative average NSE. This means that using the mean of the runoff (assuming availability of
observations) as a prediction would on average outperform both approaches. From Fig. 2 we can
also see that adding catchment attributes to the meteorological inputs helps the LSTM in general
to increase its performance (Comparison Baseline vs. Global LSTM): The Global LSTM (which
receives additionally catchment attributes as inputs) has a higher median, higher mean, and a more
skewed distribution towards better model performance in general. This is an expected result, since
we assume that the additional features (i.e. the catchment attributes) provide additional information
which can help the LSTM e.g. to cluster the basins internally and learn different hydrological
behaviours for different catchment groups.

More interestingly however, is the fact that the Global Model (here we compare the Global Model*,
for which the NSE values are calculate for the same period as the validation period of the SAC-SMA)
has also a higher median (0.68) and higher 75th percentile (0.76) compared to the hydrological
reference model, the SAC-SMA (0.65 and 0.74, respectively). This is a somewhat unexpected result
for two reasons: (i) The SAC-SMA is a well established hydrological model that is used also by
federal agencies, such as the United States National Weather Service. (ii) We compare a model
(LSTM) that has never seen data of a specific catchment against a hydrological model that was
especially calibrated for this catchment. And still in 293 out of the 531 catchments (55 %), the
(Global) LSTM achieves higher accuracies compared to the SAC-SMA.

From Fig. 3b it can be seen that SAC-SMA is predominantly better in the regions of arid catchments
(aridity > 1, see Fig. 1 for a reference). These basins also represent the lower outliers in the boxplot
and explain, why the mean is slightly lower in the Global LSTM, compared the the SAC-SMA. Arid
catchments are in general difficult to model, due to their hydrological behavior: During very long
periods (sometimes even for multiple years), the river in these catchments dry-out because of too
little rain (and/or in combination with a high potential evapotranspiration). Training a data-driven
model, like LSTMs, on these periods provides very little information in the error signal. Runoff
values above 0 give more information concerning the current underlying hydrological characteristics.
For the case that no runoff is observed, in contrast, the interpretation of the underlying hydrological
system becomes significantly more difficult. Simulating this special case of a threshold process is
non-trivial, in general for all model types. For learning to predict the few days with actual runoff,
very few data samples are effectively available. It might thus be beneficial to treat arid catchments
similar to classification problems with unbalanced data and to oversample the data points for which a
runoff signal greater zero exists. In contrast, classical hydrological models, like the SAC-SMA have
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Figure 2: Boxplot of the model performances. Both LSTM variants with an asterisk (*) mean that the
NSEs were only calculated for a part of the time series, which corresponds to the validation period of
the SAC-SMA. The horizontal lines mark the median, the squares the mean, the box the 25th and
75th percentile and the black horizontal lines the 5th and 95th percentile, respectively. Underlying
data is plotted at the side. Boxplot is capped at -2 for better clarity.

Figure 3: (a) Shows the NSE of each Basin of the Global LSTM*. (b) Shows the difference between
the NSE of the Global LSTM* and the SAC-SMA hydrological reference model, where positive
numbers (blue colors) mean the Global LSTM* outperforms the SAC-SMA and negative numbers
(red colors) the opposite.

the advantage of (a) knowing basic physical laws like mass balance and (b) having the knowledge of
these arid regions and their behaviour already implemented in the model routine. Generally speaking,
it is however also worth mentioning that SAC-SMA also performs bad for said regions (see [11]).

Additionally, we can see that in areas with a high catchment density, especially the East and West
coast, the LSTM seems to perform better (see Fig. 3b for a comparison between Global LSTM and
SAC-SMA). This could imply that in the regions with a larger number of similar behaving catchments
a beneficial cross learning (between catchments) takes place. If we abstract this result, it could mean
that if we include data from catchments world-wide, we could increase the model performance due to
more samples of all kind of catchment types in general.

4 Conclusion

Predictions in ungauged basins is a major challenge in the field of hydrology. In this study we
presented a new data-driven approach, using a single LSTM with meteorological inputs and catchment
attributes for hundreds of catchments. The so trained LSTM is able to achieve comparable model
performance for unseen catchments compared to the well established SAC-SMA (which, in contrast,
was especially calibrated for each of the catchments). Two future studies may follow this one: One
study could consists of aggregating data from catchments all around the world and to train a single
LSTM for the entire world. Another one could be to use ConvLSTMs [14] with gridded input data
(from e.g. satellite products) in contrast to catchment-aggregated values used in this study.
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A List of catchment attributes used in this study

Table 1: Table of catchment attributes used in this experiments. Description taken from the data set
[1]

Attribute Description
p_mean Mean daily precipitation.

pet_mean Mean daily potential evapotranspiration.
aridity Ratio of mean PET to mean precipitation.

p_seasonality

Seasonality and timing of precipitation. Estimated by representing annual
precipitation and temperature as sin waves. Positive (negative) values
indicate precipitation peaks during the summer (winter). Values of approx.
0 indicate uniform precipitation throughout the year.

frac_snow_daily Fraction of precipitation falling on days with temperatures below 0◦C.
high_prec_freq Frequency of high precipitation days (>= 5 times mean daily precipitation).

high_prec_dur Average duration of high precipitation events (number of consecutive days
with >= 5 times mean daily precipitation).

low_prec_freq Frequency of dry days (< 1 mm/day).

low_prec_dur Average duration of dry periods (number of consecutive days with
precipitation < 1 mm/day).

gauge_x Transformed x-coordinated in 3D-space from latidude and longitude.
gauge_y Transformed y-coordinated in 3D-space from latidude and longitude.
gauge_z Transformed z-coordinated in 3D-space from latidude and longitude.

elev_mean Catchment mean elevation.
slope_mean Catchment mean slope.
area_gages2 Catchment area.

forest_frac Forest fraction.
lai_max Maximum monthly mean of leaf area index.

lai_diff Difference between the maximum and minimum mean of the leaf
area index.

gvf_max Maximum monthly mean of green vegetation fraction.

gvf_diff Difference between the maximum and minimum monthly mean of the
green vegetation fraction.

soil_depth_pelletier Depth to bedrock (maximum 50m).

soil_depth_statsgo Soil depth (maximum 1.5m, layers marked as water and bedrock
were excluded).

soil_porosity Volumetric porosity.
soil_conductivity Saturated hydraulic conductivity.

max_water_content Maximum water content of the soil.
sand_frac Fraction of sand in the soil.

silt_frac Fraction of silt in the soil.
clay_frac Fraction of clay in the soil.

carb_rocks_frac Fraction of the catchment area characterized as "Carbonate
sedimentary rocks".

geol_permeability Surface permeability (log10).
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