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Abstract

Bayesian inference offers a theoretically grounded and general way to train neural networks
and can potentially give calibrated uncertainty. However, it is challenging to specify a
meaningful and tractable prior over the network parameters, and deal with the weight
correlations in the posterior. To this end, this paper introduces two innovations: (i) a
Gaussian process-based hierarchical model for the network parameters based on recently
introduced unit embeddings that can flexibly encode weight structures, and (ii) input-
dependent contextual variables for the weight prior that can provide convenient ways to
regularize the function space being modeled by the network through the use of kernels. We
show these models provide desirable test-time uncertainty estimates, demonstrate cases of
modeling inductive biases for neural networks with kernels and demonstrate competitive
predictive performance on an active learning benchmark.

1. Introduction

The question of which priors one should use for Bayesian neural networks is largely unan-
swered, as two considerations need to be balanced: First, we want to keep inference in the
high dimensional weight posterior tractable; Second, we desire to express our beliefs about
the properties of the modeled functions compactly by modeling the collection of weights.
Especially the latter is typically hard, as functional regularization for weight-based models
is non-trivial. In order to cope with richer posterior inference than mean-field typically
achieves, a variety of structured posterior models have been proposed recently, for instance
utilizing radial posteriors (Oh et al., 2019), or rich weight posteriors based on Gaussian
processes (Louizos and Welling, 2016). When it comes to modeling priors on weights with
correlations, recent work has attempted to capture feature-level correlations using for in-
stance a horseshoe prior (Ghosh et al., 2018). One interesting direction of inquiry has
focused on utilizing hyper-networks in order to model distributions over weights for an en-
tire network (Ha et al., 2016; Pradier et al., 2018), or alternatively to utilize unit-level level
variables combined with compact hyper-networks to regress to single weights and capture
weight correlations through the auxiliary variables (Karaletsos et al., 2018). We propose to
tackle some of the challenges in modeling weight priors by extending the latter work and
combining it with ideas from the Gaussian process literature to replace the hyper-network
with a Gaussian process prior over weights. We explore the use of compositional kernels
to add input-dependence to the prior for our model and obtain rich models with beneficial
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properties in tasks such as active learning, and generalization, while maintaining tractable
inference properties.

2. Meta-representing weights and networks

In (Karaletsos et al., 2018) each unit (visible or hidden) of the l-th layer of the network has
a corresponding latent hierarchical variable zl,i, of dimensions Dz, where i denotes the index
of the unit in a layer. These latent variables are used to construct the weights in the network
such that a weight in the l-th weight layer, wl,i,j is linked to the latent variables z’s of the i-th
input unit and the j-th output unit of the weight layer. We can summarize this relationship
by introducing a set of weight encodings, Cw(z), one for each individual weight, cwl,i,j

=[
zl+1,i, zl,j

]
. The probabilistic description of the relationship between the weight codes and

the weights w is: p(w|z) = p(w|Cw(z)) =
∏L−1
l=1

∏Hl
i=1

∏Hl+1

j=1 p(wl,i,j |zl+1,i, zl,j), where l
denotes a visible or hidden layer and Hl is the number of units in that layer, and w denotes
all the weights in this network. In (Karaletsos et al., 2018), a small parametric neural
network regression model maps the latent variables to the weights, p(wl,i,j |zl+1,i, zl,j , θ) =
N (wl,i,j ;µl,i,j , σ

2
l,i,j), where (µl,i,j , log σl,i,j) = NNθ([zl+1,i, zl,j ]). We will call this network a

meta mapping. We assume p(z) = N (z; 0, I). We can thus write down the joint density of
the resulting hierarchical model as follows,

p(y,w, z|x, θ) =

[
L∏
l=1

p(zl)

]
[p(w|Cw(z), θ)]

[
N∏
n=1

p(yn|w,xn)

]
. (1)

Variational inference was employed in prior work to infer z (and w implicitly), and to obtain
a point estimate of θ, as a by-product of optimising the variational lower bound.

Figure 1: Graphical depiction of various models: vanilla BNNs, BNNs with hierarchical GP-
MetaPriors, and BNNs with hierarchical GP-MetaPriors and auxiliary variables.

3. Meta-representing weights with Gaussian processes

Notice that in Sec.2, the meta mapping from the hierarchical latent variables to the weights
is a parametric non-linear function, specified by a neural network. We replace the parametric
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neural network by a probabilistic functional mapping and place a nonparametric Gaussian
process (GP) prior over this function. That is,

p(wl,i,j |f, cwl,i,j
) = N (wl,i,j ; f([zl+1,i, zl,j ]), σ

2
w); p(f |γ) = GP(f ; 0, kcw(·, ·|γ)),

where we have assumed a zero-mean GP, kγ(·, ·) is a covariance function and γ is a small
set of hyper-parameters. The effect is that the latent function introduces correlations for
the individual weight predictions,

P (w|z) = P (w|Cw(z)) =

∫
p(f)

[ L−1∏
l=1

Hl+1∏
i=1

Hl∏
j=1

p(wl,i,j |f, zl+1,i, zl,j)
]
df. (2)

Notably, while the number of latent variables and weights can be large, the input dimen-
sion to the GP mapping is only 2Dz, where Dz is the dimensionality of each latent variable
z. The GP mapping effectively performs one-dimensional regression from latent variables
to individual weights while capturing their correlations. We will refer to this mapping as
a GP-MetaPrior (metaGP). We define the following factorized kernel at the example of
two weights in the network,

kcw(cw1 , cw2) = k([zl1+1,i1 , zl1,j1 ], [zl2+1,i2 , zl2,j2 ]) = kout(zl1+1,i1 , zl2+1,i2) · kin(zl1,j1 , zl2,j2).

In this section and what follows, we will use the popular exponentiated quadratic (EQ)

kernel with ARD lengthscales, k(x1,x2) = σ2k exp
(∑2Dz

d=1
−(x1,d−x2,d)2

2l2d

)
, where {ld}2Dz

d=1 are

the lengthscales and σ2k is the kernel variance. We cover inference and learning in App. A.

3.1. Contextual variables for modulating function priors

We first note that whilst the hierarchical latent variables and meta mappings introduce non-
trivial coupling between the weights a priori, the weights and latent variables are inherently
global. That is, a function drawn from the model, represented by a set of weights, does
not take into account the inputs at which the function will be evaluated. To this end,
we introduce the input variable into the weight codes cwl,i,j

=
[
zl+1,i, zl,j ,xn

]
. In turn,

this yields input-conditional weight models p(wn,l,i,j |f, zl+1,i, zl,j ,xn). We again turn to
compositional kernels and introduce a new input kernel Kx which we use as follows,

kcw(cw1 , cw2) = kout(zl1+1,i1 , zl2+1,i2) · kin(zl1,j1 , zl2,j2) · kx(x1, x2).

As a result of having private contextual inputs to the meta mapping, the weight priors
are now also local to each data point. We can utilize multiple useful kernels from the GP
literature that allow modelers to describe relationships between data, but were previously
inaccessible to neural network modelers. We consider this a novel form of functional reg-
ularization, as the entire network can be given structure that will constrain its function
space. To scale this to large inputs, we learn transformations of inputs for the conditional
weight model εεεn = g(Vxn), for a learned mapping V and a nonlinearity g:

p(wn,l,i,j |f, zl+1,i, zl,j ,xn,V) = N (wn,l,i,j ; f([zl+1,i, zl,j , εεεn]), σ2w).
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3.2. Bayesian Neural Networks with GP-MetaPriors

We write down the joint density of all variables in the model when using our weight prior
in a neural network:

p(y,w, z, f |x) = p(z)p(f)p(w|f, z)p(y|w,x)

= p(z)p(f)

N∏
n=1

[p(wn|f,Cw(z))p(yn|w,xn)] .

We discuss inference and learning in the Appendix Sec. A.

4. Experiments

We study our suggested priors empirically in two distinct settings in the following: first, we
study the effect of kernel choice in the local model for a regression problem where we may
have available intuitions as inductive biases. Second, we explore how the input-dependence
behaves in out of distribution generalization tasks.

4.1. Inductive Biases For Neural Networks With Input-Dependent Kernels

We explore the utility of the contextual variable towards modeling inductive biases for neural
networks and evaluate on predictive performance on a regression example. In particular, we
generate 100 training points from a synthetic sinusoidal function and create two test sets
that contains in-sample inputs and out-of-sample inputs, respectively. We test an array
of models and inference methods, including BNN with MFVI, metaGP and metaGP with
contextual variables. We can choose the covariance function to be used for the auxiliary
variables to encode our belief about how the weights should be modulated by the input.
We pick EQ and periodic kernels (MacKay, 1998) in this example. Fig. 2 summarizes the
results and illustrate the qualitative difference between models. Note that the periodic
kernel allows the model to discover and encode periodicity, allowing for more long-range
confident predictions compared to that of the EQ kernel.

4.2. Input Dependent Neural Networks For Uncertainty Quantification

We test the ability of this model class to produce calibrated predictive uncertainty to out-
of-distribution samples. We first train a neural network classifier with one hidden layer
of 100 rectified linear units on the MNIST dataset, and apply the metaGP prior only to
the last layer of the network. After training, we compute the entropy of the predictions
on various test sets, including notMNIST, fashionMNIST, Kuzushiji-MNIST, and uniform
and Gaussian noise inputs. Following (Lakshminarayanan et al., 2017; Louizos and Welling,
2017), the CDFs of the predictive entropies for various methods are shown in Fig. 3. In
most out-of-distribution sets considered, metaGP and metaGP with local auxiliary variables
demonstrate competitive performance to Gaussian MFVI. Notably, MAP estimation tends
to give wildly poor uncertainty estimates on out-of-distribution samples.
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Figure 2: Illustration of the effect of local variables and different kernels for these variables.

Figure 3: The CDFs of predictive entropies on in-distribution and out-of-distribution test
sets for various methods [Left] and the predictive class probability for represen-
tative samples from in-distribution/out-of-distribution test sets [Right].

5. Summary

We illustrated the utility of a GP-based hierarchical prior over neural network weights and
a variational inference scheme that captures weight correlations and allows input-dependent
contextual variables. We plan to evaluate the performance of the model on more challenging
decision making tasks and to extend the inference scheme to handle continual learning.
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Appendix A. Appendix: Inference and learning using stochastic
structured variational inference

Performing inference is challenging due to the non-linearity of the neural network and
the need to infer an entire latent function f . To address these problems, we derive a
structured variational inference scheme that makes use of innovations from inducing point
GP approximation literature (Titsias, 2009; Hensman et al., 2013; Quiñonero-Candela and
Rasmussen, 2005; Matthews et al., 2016; Bui et al., 2017) and previous work on inferring
meta-representations (Karaletsos et al., 2018). As a reminder, we write down the joint
density of all variables in the model:

p(y,w, z, f |x) = p(z)p(f)p(w|f, z)p(y|w,x)

= p(z)p(f)

N∏
n=1

[p(wn|f,Cw(z))p(yn|w,xn)] .

We first partition the space Z of inputs to the function f into a finite set of M variables
called inducing inputs zu and the remaining inputs, Z = {xu,Z 6=xu}. The function f is
partitioned identically, f = {u, f6=u}, where u = f(xu). We can then rewrite the GP prior
as follows, p(f) = p(f6=u |u, zu)p(u|zu).1 The inducing inputs and outputs, {xu,u}, will
be used to parameterize the approximation. In particular, a variational approximation is
judiciously chosen to mirror the form of the joint density:

q(w, z, f) = q(z)p(f6=u |u, zu)q(u)p(w|f, z), (3)

where the variational distribution over w is made to explicitly depend on remaining variables
through the conditional prior, and q(z) is chosen to be a diagonal (mean-field) Gaussian

1. The conditioning on Z6=xu in p(f 6=u |u, zu) is made implicit here and in the rest of this paper.
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densitie, q(z) = N (z;µµµz, diag(σσσ2z)), and q(u) is chosen to be a correlated multivariate Gaus-
sian, q(u) = N (u;µµµu,Σu). This approximation allows convenient cancellations yielding a
tractable variational lower bound as follows,

LmetaGP(·) =

∫
w,z,f

q(w, z, f) log
p(z)((((

(((p(f6=u |u, zu)p(u|zu)���
��p(w|f, z)p(y|w,x)

q(z)((((
(((p(f6=u |u, zu)q(u)���

��p(w|f, z)

≈ −KL[q(z)||p(z)]−KL[q(u)||p(u|xu)]

+
1

K

K∑
k=1

∫
w,f

q(w, f |zk) log p(y|w,x)

where the last expectation has been partly approximated using simple Monte Carlo with
the reparameterization trick, i.e. zk ∼ q(z). We will next discuss how to approximate the
expectation Fk =

∫
w,f q(w, f |zk) log p(y|w,x). Note that we split f into f6=u and u, and

that we can integrate f6=u out exactly to give, q(w|zk,u) = N (w; A(k)u,B(k)),

A(k) = K
(k)
f 6=uu

K−1uu; B(k) = K
(k)
l,f 6=uf 6=u

−K
(k)
f 6=uu

K−1uuK
(k)
uf 6=u

+ σ2wI. (4)

At this point, we can either (i) sample u from q(u), or (ii) integrate u out analytically. We
opt for the second approach, which gives

q(w|zk) = N (w; A(k)µµµu,B
(k) + A(k)ΣuAᵀ,(k)). (5)

In contrast to GP regression and classification in which the likelihood term is factorized
point-wise w.r.t. the parameters and thus their expectations only involve a low dimensional
integral, we have to integrate out w in this case, which is of much higher dimensions.
When necessary or practical, we resort to Kronecker factored models or make an additional
diagonal approximation as follows,

q̂(w|zk) = N (w; A(k)µµµu, diag(B(k) + A(k)ΣuAᵀ,(k))). (6)

Whilst the diagonal approximation above might look poor from the first glance, it is con-
ditioned on a sample of the latent variables zk and thus the weights’ correlations are retained
after integrating out z. Such correlation is illustrated in 4 where we show the marginal and
conditional covariance structures for the weights of a small neural network, separated into
diagonal and full covariance models. The diagonal approximation above has been observed
to give pathological behaviours in the GP regression case (Bauer et al., 2016), but we did not
observe these in practice. Fk is approximated by Fk ≈

∫
w q̂(w|zk) log p(y|w,x) which can

be subsequently efficiently estimated using the local reparameterization trick (Kingma et al.,
2015). The final lower bound is then optimized to obtain the variational parameterers of
q(u), q(z), and estimates for the noise in the meta-GP model, the kernel hyper-parameters
and the inducing inputs.
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Appendix B. Extra experimental results

B.1. Covariance structures

Figure 4: Marginal and conditional covariance structures over weights in a 1x50x1 neural
network. Sampling from the posterior of the hierarchical model reveals that
even a diagonal GP approximation can capture off-diagonal correlations induced
through unit correlations. Also note the off-diagonal bands in the marginal plots
above, which indicate the correlation structures induced by the latent variables
of the hidden units connecting the layers.We remove the diagonal in the marginal
plots for clarity.

B.2. Active learning

We next stress-test the performance of the proposed model in a pool-based active learning
setting for real-valued regression, where limited training data is provided initially and the
target is to sequentially select points from a pool set to add to the training set. The criterion
to select the next best point from the pool set is based on the entropy of the predictive
distribution, i.e. we pick one with the highest entropy. In practice, we approximate the
predictive density by a Gaussian density, which results in a tractable entropy computation.
Note that this selection procedure can be interpreted as selecting points that maximally
reduce the posterior entropy of the network parameters Houlsby et al. (2011). Four UCI
regression datasets were considered, where each with 40 random train/test/pool splits. For
each split, the initial train set has 20 data points, the test set has 100 data points, and
the remaining points are used for the pool set, similar to the active learning set-up in
Hernández-Lobato and Adams (2015). We compare the performance of the proposed model
and inference scheme to that of Gaussian mean-field variational inference and show the
average results in 5. Across all runs, we observe that active learning is superior to random
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Figure 5: Active learning with BNNs using mean-field Gaussian variational inference
[MFVI] and a meta-GP hierarchical prior [MetaGP] on several UCI regression
datasets. Each trace shows the root mean squared error (RMSE) on the test set
as more data points are selected and moved from the pool set to the training set,
averaged over 40 runs. The objective function for selecting points from the pool
set is the predictive variance. Best viewed in colour.

selection and more crucially using the proposed model and inference scheme seems to yield
comparable or better predictive errors with a similar number of queries. This simple setting
quantitatively reveals the inferior performance of MFVI, compared to MAP and metaGP.
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