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ABSTRACT

We develop a normative theory of hierarchical model-based policy optimization
for Markov decision processes resulting in a full-depth, full-width policy iteration
algorithm. This method performs policy updates which integrate reward informa-
tion over all states at all horizons simultaneously thus sequentially maximizing
the expected reward obtained per algorithmic iteration. Effectively, policy path
programming ascends the expected cumulative reward gradient in the space of
policies defined over all state-space paths. An exact formula is derived which
finitely parametrizes these path gradients in terms of action preferences. Policy
path gradients can be directly computed using an internal model thus obviating
the need to sample paths in order to optimize in depth. They are quadratic in
successor representation entries and afford natural generalizations to higher-order
gradient techniques. In simulations, it is shown that intuitive hierarchical reasoning
is emergent within the associated policy optimization dynamics.

1 INTRODUCTION

Reinforcement learning algorithms can leverage internal models of environment dynamics to facilitate
the development of good control policies (Sutton & Barto, 2018). Dynamic programming methods
iteratively implement one-step, full-width backups in order to propagate reward information across a
state-space representation and then use this information to perform policy updates (Bellman, 1954).
Stochastic approximations of this approach underpin a wide range of model-free reinforcement
learning algorithms which can be enhanced by the ability to query samples from an “internal”
environment model as in the DYNA architecture (Sutton, 1990). State-space search strategies apply
heuristic principles to efficiently sample multi-step paths from internal models and have formed a core
component of recent state-of-the-art game playing agents (Silver et al., 2016). Model-based policy
search (Deisenroth & Rasmussen, 2011; Abdolmaleki et al., 2015) and gradient methods (Sutton
et al., 1999) require sampled paths to approximate policy gradients based on either pure Monte Carlo
estimation or by integrating long-run value estimates. All such methods rely on alternating between
simulating paths over various horizons and then using this information to improve the policy either
directly or indirectly by backing up value estimates and then inferring a policy (Sutton & Barto,
2018; Puterman, 1994). In this study, we introduce policy path programming (3P) which, given an
environment model, normatively improves policies in a manner sensitive to the distribution of all
future paths without requiring multi-step simulations. In particular, path programming follows the
unique trajectory through policy space which iteratively maximizes the expected cumulative reward
obtained. We develop 3P for entropy-regularized discounted Markov decision processes (Levine,
2018).

In the entropy-regularized MDP framework, a policy complexity penalty is added to the expected
cumulative reward objective (Levine, 2018) (see Section 2 for details). Entropy regularization has
several implications which have been investigated previously. The entropy penalty forces policies to
be stochastic thereby naturally integrating an exploratory drive into the policy optimization process
(Ahmed et al., 2018). In particular, the optimal policy can be immediately derived using calculus of
variations as a Boltzmann-Gibbs distribution and reveals a path-based consistency law relating optimal
value estimates and optimal policy probabilities which can be exploited to form a learning objective
(Nachum et al., 2017). Furthermore, several studies have successfully used the relative entropy
penalty to impose a conservative policy “trust region” to constrain policy updates thereby reducing
erroneous policy steps due to the high variance in gradient estimation (Azar et al., 2012; Schulman
et al., 2015). With this setup, we seek to compute this gradient exactly based on a consideration of
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the distribution of all possible paths that the currently estimated policy will generate. Therefore, we
express the MDP objective as a “sum-over-paths” and develop our model in this representation.

In the sum-over-paths formalism (Kappen, 2005; Theodorou et al., 2013), the central object of
interest is not a state-action pair (Fig. 1A), as is the standard perspective in reinforcement learning
in discrete MDPs, but complete state-action sequences or paths (Fig. 1B). The entropy-regularized
cumulative reward objective can be re-written in terms of paths and a path policy can be expressed
as an assignment of a probability to each path individually (see Section 3 for details). Gradient
ascent in the space of policies over paths integrates information over all possible future paths in
expectation at every step. 3P is defined as the gradient ascent algorithm which performs policy
updates with respect to this path gradient. As a policy iteration method, we show that this is
analogous to full-depth, full-width backups. Furthermore, we describe the associated natural path
gradient which is fundamentally distinct from previous natural gradient techniques which utilize the
asymptotic time limit of local, state-specific, natural policy gradients (Kakade, 2001; Peters et al.,
2005). In Section 2, we summarize the mathematical framework of entropy-regularized MDPs from
the path-based perspective and define our notation. In Section 3, we derive policy path programming.
In Section 4, we apply the algorithm in state-spaces drawn from a variety of domains and analyze the
resulting policy optimization dynamics. We conclude with a discussion in Section 5.

2 BACKGROUND AND NOTATION
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Figure 1: A. State-action representation of a simple state-space with recurrency and terminal states.
B. A path space representation of the same state-space. C. A backup diagram (Sutton & Barto,
2018) where each full-width, one-step backup is color-coded by state. D. A backup diagram of the
full-width, full-depth backups performed by policy path programming.

We develop the path programming formalism in the context of stochastic environmental dynamics.
A state-space X is composed of states x ∈ X and the policy π(aj |si) describes the probability of
selecting action aj in state si. The reward associated with transitioning from state si to state sk after
selecting action aj is denoted R(si, aj , sk) ≡ Rijk. Bold-typed notation, s ∈ S, a ∈ A, and u ∈ U
denotes sequences of states s ∈ S, actions a ∈ A, and state-action combinations u ≡ (su, au) ∈ U
respectively. The action set A is the union of the sets of actions available at each state A = ∪si∈SAi.
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A valid state-action sequence u := (. . . , st,at, st+1,at+1, . . .) is referred to as a state-action path.
The path probability p(u) is defined as the joint distribution over states s and actions a

p(u) :=

∞∏
t=0

p(st+1|st,at)π(at|st) = p(s+1|s,a)π(a|s) (1)

where

π(a|s) :=

∞∏
t=0

π(at|st) , p(s+1|s,a) :=
∞∏
t=0

p(st+1|st,at) . (2)

The environment dynamics are expressed in the function p(sk|si, aj) which denotes the probability of
transitioning to state sk after selecting action aj in state si. The MDP objective as a sum-over-paths
(Kappen, 2005; Theodorou et al., 2013) is

π∗ := argmax
π

〈R(u)〉p

R(u) =

∞∑
t=0

R(st,at, st+1) (3)

where the angled brackets 〈·〉p denote the expectation operation over the path density p. The form of
the MDP objective in Equation 3 expresses a sequential decision-making problem as the determination
a single decision but over paths. From this point of view, the max operation in Eqn. 3 is a full-width,
full-depth policy iteration which converges in one step. We use the term full-depth because the paths
incorporate information over all horizons (thus deep in time) and the term full-width because the
max operation considers all paths (Fig. 1D). In contrast, policy iteration algorithms use full-width,
one-step backups (Fig. 1C). This full-depth, full-width max operation is intractable since it requires a
search over all possible paths and so we relax this problem using entropy regularization.

In the entropy-regularized reinforcement learning framework (Levine, 2018), a policy description
length penalty for each path u weighted by a temperature parameter τ is added to the MDP objective
(Eqn. 3). The relative entropy regularizer DKL[π||π0] measures policy complexity as the deviation
from a prior (possibly non-uniform) policy π0 (Todorov, 2007; Kappen et al., 2012; Theodorou
et al., 2013). In this case, the policy description length penalty is −τ log π(a|s)

π0(a|s) and the resulting
entropy-regularized transition rewards Jijk := J(si, aj , sk), path rewards J(u), and policy objective
J [π] are then

Jijk := Rijk − τ log πij + τ log π0
ij

J(u) :=

∞∑
t=0

J(at, st, st+1)

= R(u)− τ logπ(a|s) + τ logπ0(a|s)
= R(u)− τ logp(u) + τ logp0(u)

J [π] = 〈J(u)〉p
= −τDKL

[
p(u)||p0(u)eτ

−1R(u)
]
. (4)

where we have made use of the compressed notation πij ≡ π(aj |si) and p0(u) :=
p(s+1|s,a)π0(a|s).
From an information-theoretic point of view, the optimal policy π∗ which maximizes J [π] gives
the best trade-off between maximizing reward and minimizing policy encoding costs. An implica-
tion of the description length penalty is that encoding deterministic transitions is infinitely costly
[logπ(a|s) → −∞ as π(a|s) → 0] and therefore the optimal policy will be stochastic. Taking
the temperature parameter to zero τ → 0 recovers the standard MDP problem of identifying a
deterministic policy in pursuit of maximum expected cumulative reward.

In the main text, policy path programming (3P) is developed for entropy-regularized MDPs with
stochastic environment dynamics. It is straightforward to derive analogous update equations in
the presence of deterministic environmental transitions which correspond to the subset of control
problems known as KL-control (Kappen et al., 2012) or linearly-solvable Markov decision processes
(Todorov, 2007)). Furthermore, our analysis can be applied to MDPs with absorbing states. Thus,
path programming can be applied to a broad class of MDPs.
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3 POLICY PATH PROGRAMMING IN DISCRETE MARKOV DECISION PROCESSES

The policy objective function (Eqn. 4) can be re-expressed as

J [π] =
∑
u∈U

∏
si,sk∈S
aj∈Ai

(πijpijk)
nijk(u)


∑

si,sk∈S
aj∈Ai

nijk(u)
[
Rijk − τ

(
log πij − log π0

ij

)]
s.t. πij > 0 ∀si ∈ S, aj ∈ Ai ,

∑
aj∈A

πij = 1 ∀si ∈ S (5)

where we have expressed the objective (Eqn. 4) in terms of counters nijk(u) which quantify the
number of times that sk is occupied after selecting action aj in state si on path u. We reparametrize
the policy parameters πij in terms of natural parameters Aij in an exponential model πij := eAij

(Nagaoka, 2005). These natural parameters are examples of action preferences in reinforcement
learning parlance1 (Sutton & Barto, 2018) and can take any negative real value. Substituting
Aij := log πij ,

J [A] =
∑
u∈S

eA·n(u)+C·n(u)

 ∑
si,sk∈X
aj∈Ai

nijk(u)
(
Rijk − τAij + τA0

ij

)
eA·n(u) = e

∑
si,aj,sk

Aijnijk(u) = e
∑

si,aj
Aijnij(u)

eC·n(u) = e
∑

si,aj,sk
Cijknijk(u) (6)

where Cijk := log pijk and A0
ij := log π0

ij has been analogously substituted, and n is a tensor with
components nijk and [A]ij := Aij have been used for the event counters and action preferences
respectively. Considering the set of probabilities e(A+C)·n(u) parametrized by A as an exponential
family (Nagaoka, 2005), the vector n of transition counters nijk(u) constitutes a sufficient statistic
for the path u. Given that the policy transition probabilities πij = eAij are drawn from the action
preferences Aij ∈ R− via an exponential transformation, we are guaranteed that 0 < πij ≤ 1 for all
state-action combinations.

In order to ensure that πt always forms a probability distribution at every state, we eliminate a
redundant action preference at each state. This is accomplished by defining an arbitrary transition
probability at each state in terms of the probabilities of alternative transitions at that state. We index
this dependent action preference using an ω subscript as in Aiiω in order to distinguish it from the
independent action preferences which will be directly modified during policy optimization. We define
iω as the action index of an arbitrary action available in state si. Under the local policy normalization
constraint, the action preferences are equivalently constrained via

Aiiω = log

1−
∑

aiω 6=aj∈Ai

eAij

 . (7)

3.1 PATH GRADIENT CALCULATION

The goal is to iteratively update the action preferences At characterizing the current policy by gradient
descent

At+1 ← At + αI−1∇AJ
[
At
]

(8)

where I is the Fisher information of the path probability density which naturalizes the gradient, and
α is the stepsize. The partial derivatives underpinning the path policy gradient are derived using
Corollary B.3.1 and Corollary B.2.1 which can be found in Section B of the Supplementary Material
(SM).

1In particular, these action preferences converge to optimal advantage values (Levine, 2018).
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Theorem 3.1. The policy path gradient in the exponential parametrization is defined by the partial
derivatives

∂AijJ [A] =
∑
sk∈S
al∈Ak

[
Cij,kl − eAij−Aiiω Ciiω,kl

]
Jkl (9)

where Cij,kl := 〈nij(u)nkl(u)〉p are state-action correlation functions and Jkl :=

〈J(si, aj , sk)〉p(sk|si,aj).

Proof.

∂Aij
J [A] = ∂Aij

[∑
u∈U

p(u)J(u)

]
=
∑
u∈U

[
∂Aij

p(u)
]
J(u) +

∑
u∈U

p(u)
[
∂Aij

J(u)
]

=
∑
u∈U

[
∂Aijp(u)

]
J(u) (⇐ Corollary B.3.1)

=
∑
u∈U

[
p(u)

[
nij(u)− eAij−Aiiωniiω (u)

]]
J(u) (⇐ Corollary B.2.1)

=
∑
u∈U

{
p(u)

[
nij(u)− eAij−Aiiωniiω (u)

]} ∑
sk,sm∈S
al∈Ak

nklm(u)Jklm


=

∑
sk,sm∈S
al∈Ak

[
〈nij(u)nklm(u)〉p − e

Aij−Aiiω 〈niiω (u)nklm(u)〉p
]
Jklm

=
∑

sk,sm∈S
al∈Ak

[
Cij,kl − eAij−Aiiω Ciiω,kl

]
pklmJklm

=
∑
sk∈S
al∈Ak

[
Cij,kl − eAij−Aiiω Ciiω,kl

]
Jkl .

A closed-form expression for the state-action correlations Cij,kl is derived using Markov chain theory
(Kemeny & Snell, 1983). The Fisher information I with respect to the path density is calculated in
Section B.2 (SM).
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3.2 ALGORITHM SUMMARY AND INTUITION

Based on these derivations, the policy path programming algorithm in the exponential parametrization
which implements the updates in Eqn. 8 is:

πtij := eA
t
ij

T tij :=
∑

ai′∈Ai

πtii′pii′j ∀si, sj ∈ X

Dt
ij =

[
(I − λT )−1

]
ij

Et(ij)k :=
[
PDt

]
(ij)k

Ctij,kl = Dt
0ie

At
ijδikδjl +

[
Dt

0iE
t
(ij)k +Dt

0kE
t
(kl)i

]
eA

t
ijeA

t
kl

Itij,kl = Ctij,kl − eA
t
kl−A

t
kkω Ctij,kkω − e

At
ij−A

t
iiω Ctkl,iiω + eA

t
ij+A

t
kl−A

t
iiω
−At

kkω Ctiiω,kkω
J tkl = Rkl − τAtkl + τA0

kl

At+1
ij ← Atij + α

∑
xm,xn∈X

[
Itmn,ij

]−1 ∑
sk,xl∈X

[
Ctij,kl − eA

t
ij−A

t
iiω Ctiiω,kl

]
J tkl

 (10)

At+1
iiω

= log

1−
∑

xiω 6=sj∈Xi

eA
t+1
ij

 .

where λ is a free parameter controlling the agent’s “foresight” or how far into the future it can “see”.
3P requires that 0λ < 1 in order to ensure that the components of the path gradient expression
converge to finite quantities. This parameter can also be conceptualized as a standard reward discount
parameter γ as in discounted MDPs. Note that the regularized transition reward J , transient transition
matrix T , successor representation D, Fisher information I, and counter correlations C, all depend
on the current policy estimate πt. The initialization of action preferences A0

ij is discussed in the
SM (subsection B.3). In all simulations, we fix the foresight λ = 0.99 (thus simulating an “expert”
planner with “deep” foresight), the stepsize α = 0.001 (chosen such that 3P tracked the policy
evolution at high precision for the purposes of visualization), and the temperature τ = 1 (taking the
natural default parameter). In future work, we will explore the implications of reducing λ to simulate
a planner with short “foresight” and using the path Hessian to optimize α. The temperature τ controls
the policy stochasticity which has been explored previously in model-free (Ahmed et al., 2018) and
model-based (Azar et al., 2012) reinforcement learning.

The path gradient (Eqn. 10) has several intuitive properties. For each state, it backups rewards
from all other states based on all future paths thus implementing a full-depth, full-width update
from a dynamic programming point of view (Sutton & Barto, 2018). The matrix D is the successor
representation (Dayan, 1993). An entry Dij counts the expected number of times that state sj will
be occupied after starting from state si. Therefore the counter correlations C, which is quadratic
in successor representations, reflect the rate of co-occurrence of pairs of state-actions on average
under the policy-generated path distribution. This enables the algorithm to understand the correlative
structure of state occupations under the current policy. For example, if a temporally remote action
sk → xl has high reward Jkl and if there is a high counter correlation Cij,kl between a local action
si → sj and the remote action (over all horizons), then the reward Jkl associated with the remote
action will be weighted heavily in the path gradient and added to the local action preference Aij . The
magnitude of this backup is explicitly normalized with respect to a baseline counter correlation Ciiω,kl
associated with the dependent action preference. That is, if the action si → xiω is also strongly
correlated with sk → xl then the backup to Aij is attenuated since the unique contribution of si → sj
in generating sk → xl is diminished. Using such attributional logic, path programming updates
action preferences based on the degree to which a state-action independently leads to rewarding
state-space paths over all depths.
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4 SIMULATIONS

We simulate path programming (Eqn. 10) in a variety of simple reinforcement learning environments
in order to gain insight into the dynamics of the policy iteration process.

4.1 ANALYSIS

After running policy path programming until convergence, its dynamics are interrogated using two
measures. The first measure is the KL-divergence between the policy densities at each iteration πt
and the prior policy π0. We compute this policy divergence measure PD locally at each state x ∈ X :

PD(x, t) := DKL

[
πtx·||π0

x·
]

(11)

Policy divergence quantifies the degree to which the algorithm is modifying the local policy at each
state as a function of planning time. The second measure is the difference between the expected
number of times a state will be occupied under the currently optimized policy versus the prior policy.
Specifically, the counter difference measure CD is

CD(x, t) := Dt
0x −D0

0x . (12)

where x0 is the initial state. Counter differences shows how path programming prioritizes the
occupation of states in time. We study these measures as well as their time derivatives in their original
form as well as after max-normalizing per state in order to facilitate comparisons across states:

P̃D(x, t) :=
PD(x, t)

maxt PD(x, t)
, C̃D(x, t) :=

CD(x, t)

maxt |CD(x, t)|
. (13)

4.2 EXPERIMENTS

We implement path programming in decision trees (Fig. 2 and Fig. S1, SM), the Tower of Hanoi
problem (Fig. 3 and Fig. S2, SM), and four-room grid worlds with and without a wormhole (Fig. 4
and Fig. S4, SM). The decision tree example shows how path programming optimizes with respect to
the path structure of the environment, the Tower of Hanoi example highlights its intuitive hierarchical
qualities, and, in the grid worlds, the capacity of 3P to radically alter its dynamics in response to the
state-space modifications is observed.

In the decision tree environments, 3P implements a backward induction strategy from the terminal
goal node to the initial state along the optimal path. Path programming increases the probability of
the agent moving along the optimal path only and leaves all other paths untouched throughout the
policy optimization process. The added decision complexity at state 2 Fig. 2A is reflected in the total
policy divergence at that state and consequently the time-to-peak as compared to the other states
along the optimal path.

In our Tower of Hanoi simulation (Fig. 3), the agent is endowed with the ability to remain at a
state thus the optimal policy is to transit to state G and then choose to remain there (since it can
then accumulate a reward on every time step). When path programming, the agent prioritizes the
adaptation of its policy so that it remains at the goal state. This can be observed in the relatively rapid
policy divergence2 P̃D at the goal state (Fig. 3B) and the fact that the policy divergence velocity peaks
for the goal state before all others (Fig. 3D). The second highest priority is assigned to bottleneck
states along the optimal path. The optimization of the local policy at the start state is deferred to last.
Through the counter difference measure C̃D, we can observe how path programming increases the
occupation density of all states in the same cluster as the goal state (in blue) before subsequently
reducing the occupation density of non-goal states in the goal cluster (Fig. 3E). These non-monotonic
counter difference trajectories suggest that path programming treats all blue states as a single unit
initially before refining its planning strategy to distinguish individual states within the goal cluster.
Increasing the resolution at which it distinguishes states over time as well as prioritizing local policy
adaptations starting with the goal state through the bottleneck states and ending with the start state,
suggests that path programming is sensitive to the hierarchical structure of the state-space. In the SM,

2Here, we present normalized policy divergence curves to facilitate comparisons across states. The equivalent
unnormalized curves may be found in the Fig. S2, SM.
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Figure 2: Decision tree with added decision complexity. Panels as in Fig. 3. A higher local policy
divergence at state 2 is observed (as compared to Fig. S1).

Figure 3: Path programming the optimal policy in the Tower of Hanoi game. A. Tower of Hanoi
state-space graph. B-C. Normalized policy divergence P̃D and its time derivative for each state.
The color of the curve indicates which state it corresponds to in panel A. Dotted lines correspond
to bottleneck states marked + in panel A. Lines for states which are not along the optimal path are
plotted transparently. D. Policy value as a function of planning time. Time-to-max policy divergence
velocities (i.e. the peaks of the curves in panel C) are dotted along the policy value curve for states
along the optimal path. E-F. Normalized counter difference C̃D and its time derivative.

we present the results of path programming under an alternative scenario whereby the agent is reset
back to the start state on arrival at the goal (Fig. S3, SM).

In the room world simulation (Fig. 4), the agent must navigate from the start state S in the northwest
room to the goal state G in the southeast room (panel A). It can do so via a path through the other
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rooms or, for the shortest route, step through the “wormhole” W from the northwest room directly to
the southeast room. We compare policy path programming in this scenario against the same scenario
but with the wormhole removed (Fig. S4, SM). Despite the relatively minor modification to the
transition structure of the state-space, policy path programming restructures its processing with the
key distinction being that policy path programming prioritizes the wormhole at the earliest stages of
processing. Specifically, the policy at the wormhole entrance initially diverges most rapidly from
its prior policy (Fig. 4B, red line, long dashes) is due to the steepest acceleration in PD (Fig. 4C).
Conversely, the wormhole exit is prioritized based on the counter difference measure CD (Fig. 4E,
blue line, long dashes). This shows that path programming begins with policy improvements which
ensure that the agent makes use of the wormhole.

Figure 4: Path programming the optimal policy in a grid world with a wormhole. Panels as in
Fig. 3. Dotted lines with short dashes correspond to bottleneck states marked + in panel A. Dotted
lines with long dashes correspond to wormhole states marked W in panel A. The darkness of the state
coloring reflects state occupation density under the optimal policy.

5 DISCUSSION

We introduced a novel natural gradient procedure sensitive to the on-policy path density. If the
environmental model is known, then this gradient can be computed in analytically. As a policy
iteration procedure, policy path programming implements full-depth, full-width backups in contrast
to other dynamic programming methods (operating on tabular representations) which use one-step,
full-width backups (Sutton & Barto, 2018). In previous work, natural policy gradient and actor-critic
methods (Kakade, 2001; Bagnell & Schneider, 2003; Peters et al., 2005) have modified standard
policy search methods using Fisher information matrices in order to perform policy updates in a
manner that is sensitive to the KL-divergence between old and new local policies on average at each
state. However, the definition of the natural path gradient used in these studies diverges from that
elucidated here in a crucial way. They define the Fisher information matrix asymptotically in time
which converges to the average of the local natural policy gradients at each state weighted by the
induced stationary state distribution. This implies that these Fisher information matrices do not
relate the parametrization of the policy gradient across time as in our method and thus is agnostic
to the structure of the state-space. Indeed, in the action preference parametrization used here, the
time-asymptotic Fisher information matrix will be diagonal. Though this time-asymptotic method
is the only way to define a convergent metric for infinite horizon MDPs, it is not necessary for
discounted (or episodic) MDPs as revealed in this study. The specific natural path gradient introduced
here results in a hierarchical model-based policy optimization which, we suggest, may serve as a
normative process model of optimal planning.
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Policy path programming may be leveraged as a theoretic tool for analyzing the hierarchical structure
of policy space since functional relationships between actions over all spatiotemporal scales are
explicitly embedded within policy path gradients. This can be observed in the policy optimization
dynamics generated by policy path programming. In the classic hierarchical tasks simulated here, path
programming implicitly prioritizes policy improvements at critical bottleneck states, the evolution of
occupation densities over states are dynamically clustered then distinguished (Fig. 3), and the policy
evolution can be restructured in order to take advantage of shortcuts when available at the earliest
stages of processing (Fig. 4). Whereas these effects manifest the output of path programming, it may
be informative to explore the internal dynamical structure of path programming by analyzing how the
counter correlation functions evolve over time.

As with other dynamic programming methods, path programming does not scale however it may
provide some insights for developing novel scalable algorithms. For example, the path gradient
components

[
Cij,kl − eAij−Aiiω Ciiω,kl

]
J tkl (Eqn. 10) may form an alternative, potentially more

stable, objective for reinforcement learning based on path consistency (Nachum et al., 2017) since
they will equal zero only at the globally optimal policy. Furthermore, the state-action counter
correlation functions Cij,kl may integrated with function approximation methods in order to derive
value representations which linearize the natural path gradient in a manner analogous to asymptotic
natural gradient methods Kakade (2001). Indeed, algorithms already designed to learn function
approximators based on the successor representation could be adapted to this purpose (Barreto et al.,
2016). While the successor representation facilitates the rapid evaluation of a policy, path gradients
enable one to immediately improve a policy. In this respect, path programming reflects a shift from
a representation learning strategy based on policy evaluation (Dayan, 1993) to one based on policy
improvement. Importantly, policy path gradients exhibit the key successor representation property of
decoupling the environment representation from the reward function and thus the same correlation
functions can be flexibly transferred across tasks.
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A EXTENDED SIMULATIONS AND ANALYSIS

A.1 DECISION TREES

In Fig. S1 (main text), and Fig. 2, we apply path programming to a series of decision trees of
increasing complexity. The agent acquires a reward of 10 points on arrival at the goal state G and is
then teleported back to the start state S in order to play again.

Figure S1: Breadth two, depth three decision tree. Panels as in Fig. 3. A. The state-space graph
of a breadth two, depth three decision tree. States on the optimal path are highlighted in blue.
Edge thickness reflects the optimal policy. According to the normalized policy divergences P̃D,
path programming prioritizes policy optimization in state 4, then state 2, and then the start state S.
This is reminiscent of a backward induction strategy. The counter differences C̃D shows that path
programming smoothly increases the probability that the agent will occupy the optimal path at the
expense of all other paths.
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A.2 TOWER OF HANOI

Figure S2: Tower of Hanoi with the option to remain at a state. Panels as in Fig. 3. We present
an extended set of results. Panels C, D, G, and H have already been displayed in Fig. 3 while panels
A, B, E, and F show their unnormalized counterparts.

Figure S3: Tower of Hanoi with forced resets on arrival at the goal. Instead of having the option
to remain at a goal state, we consider an alternative scenario in which the agent is automatically
transported back to the initial state on after arriving at the goal. The path gradient dynamics are
broadly similar and retain their hierarchical characteristics however the prominence of the goal state
is diminished both in terms of policy divergence (since the agent no longer has any choice at the goal
state) and counter difference (since they goal state can no longer be repeatedly exploited for reward).
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A.3 ROOM WORLD

Figure S4: Path programming the optimal policy in a grid world without a wormhole. Panels
as in Fig. 3. Dotted lines with short dashes correspond to bottleneck states marked + in panel A.
Dotted lines with long dashes correspond to wormhole states marked W in panel A. Darker state
colors indicate higher densities of state occupation under the optimal policy.
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B POLICY PATH PROGRAMMING IN THE EXPONENTIAL PARAMETRIZATION

We derive results which are used to compute the gradient of J [π] (Eqn. 6) with respect to the
parameters Aij = log πij in the main text.

B.1 PRELIMINARY CALCULATIONS

In this section, we record several complementary calculations.

Proposition B.1. The partial derivative ∂Aij
Akl of an independent action preferenceAkl with respect

to another independent action preference Aij is

∂Aij
Akl = δikδkl := δij,kl . (14)

The partial derivative ∂Aij
Akkω of a dependent action preferenceAkkω with respect to an independent

action preference Aij is
∂Aij

Akkω = −δikeAkj−Akkω . (15)

Proof. Eqn. 14 follows by definition. For Eqn. 15, we recall the constraint equation for dependent
action preferences

∂Aij
Akkω = ∂Aij

log
1−

∑
akω 6=al∈Ak

eAkl


=

1−
∑

akω 6=al∈Ak

eAkl

−1 δik [−eAkj
]

= −δikeAkj−Akkω . (16)

Proposition B.2. The partial derivatives of the log path density logp(u) and log path policy logπ(u)
with respect to action preference Aij is

∂Aij [logp(u)] = ∂Aij [logπ(u)] (17)

= nij(u)− eAij−Aiiωniiω (u) . (18)

Proof.

∂Aij logp(u) = ∂Aij

[
logπ(a|s) + logp(s+1|s,a)

]
= ∂Aij [A · n(u)]

= ∂Aij

∑
sk∈S

 ∑
akω 6=al∈Ak

Aklnkl(u) +Akkωnkkω (u)


=

∑
sk∈S

 ∑
akω 6=al∈Ak

(
∂Aij

Akl
)
nkl(u) +

(
∂Aij

Akkω
)
nkkω (u)


= nij(u)− eAij−Aiiωniiω (u) (19)

based on the results in Prop. B.1.
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Corollary B.2.1. The partial derivative of the path density p(u) with respect to action preference
Aij is

∂Aij
logp(u) = p(u)

[
nij(u)− eAij−Aiiωniiω (u)

]
. (20)

Proof. Using the log-derivative trick ∂Aij
p(u) = p(u)∂Aij

[logp(u)].

Proposition B.3. The path-expectation of the partial derivatives of logp(u) and logπ(u) with
respect to an action preference is zero:∑

u∈U
p(u)

[
∂Aij

logp(u)
]
= 0 . (21)

Proof. Proving for logp(u)∑
u∈U

p(u)
[
∂Aij

logp(u)
]

=
∑
u∈U

p(u)

[
nij(u)−

eAij

eAiiω
niiω (u)

]

= 〈nij(u)〉p −
eAij

eAiiω
〈niiω (u)〉p

= Cij − eAij−Aiiω Ciiω . (22)

The two-point state counter correlations Cij can be expressed in terms of the successor representation
D and policy πij = eAij as Cij = D0ie

Aij . Therefore, we continue∑
u∈U

p(u)
[
∂Aij

logp(u)
]

= −τD0ie
Aij + τeAij−AiiωD0ie

Aiiω

= −τD0ie
Aij + τD0ie

Aij

= 0 . (23)

Corollary B.3.1. The partial derivative of the regularized path reward term J(u) with respect to Aij
is

∂Aij
J(u) = −τnij(u) + τniiω (u)e

Aij−Aiiω . (24)

and its path-expectation is zero for all action preferences.

Proof. Since ∂AijJ(u) = −∂Aij [logπ(u)].

B.2 FISHER INFORMATION

State transition occupations are not independent. Modifying one transition occupation probability
under the policy π may change the occupation probability of another transition. This is in contrast to
the expected reward objective in path space where policy modifications are independent along each
path dimension (apart from an overall normalization factor). In order to identify a policy gradient
in transition space with independent gradient components, we will transform the gradient derived
in Section 3 into the natural path gradient pulled back to transition space. In order to make this
gradient ascent natural in the space of transitions, we pre-multiply the gradient by the inverse Fisher
information I−1 (Kakade, 2001) which relates the policy densities in path space π and transition
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space π. The Fisher information matrix I has components

Iij,kl :=
〈[
∂Aij

logp(u)
]
[∂Akl

logp(u)]
〉
p

=
〈[
nij(u)− eAij−Aiiωniiω (u)

] [
nkl(u)− eAkl−Akkωnkkω (u)

]〉
p

= 〈nij(u)nkl(u)〉π − e
Akl−Akkω 〈nij(u)nkkω (u)〉p +

−eAij−Aiiω 〈nkl(u)niiω (u)〉p + eAij−Aiiω eAkl−Akkω 〈niiω (u)nkkω (u)〉p
= Cij,kl − eAkl−Akkω Cij,kkω − eAij−Aiiω Ckl,iiω + eAij+Akl−Aiiω−Akkω Ciiω,kkω .

(25)

where we have used Prop. B.2. The Fisher information I depends on the counter correlation functions
C. The counter correlation functions can be derived using Markov chain theory (Kemeny & Snell,
1983).

B.3 INITIALIZATION

The prior policy π0 can be set to any stochastic policy with corresponding initial action preferences

A0
ij = τ log π0

ij . (26)

Assuming that π0 is initialized at the random policy, we have

π0
ij =

1

|Ai|
(27)

A0
ij = −τ log |Ai| (28)

for all states si ∈ S and actions aj ∈ Ai.
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