
[RE] LANGUAGE AS AN ABSTRACTION FOR
HIERARCHICAL DEEP REINFORCEMENT LEARNING

A PREPRINT

Abaho Katabarwa
Department of Computer Science

Brown University
Providence, RI

abaho_katabarwa@brown.edu

Berkan Hiziroglu
Department of Computer Science

Brown University
Providence, RI

berkan_hiziroglu@brown.edu

Amy Pu
Department of Computer Science

Brown University
Providence, RI

amy_pu@brown.edu

Omer Dai
Department of Computer Science

Brown University
Providence, RI

omer_dai@brown.edu

December 1, 2019

Abstract

We tackle the issue of long-horizon planning and temporally-extended tasks in our1

replication, using language as abstraction for hierarchical reinforcement learning.2

The proposed approach selects language as the choice of abstraction because of its3

compositional structure, ensuring an ability to break down tasks into smaller sub-4

tasks. The authors train a low-level policy and high-level policy using an interactive5

environment built using the MuJoCo physics engine and the CLEVR engine. The6

authors show that using language as the framework between low-level policy and7

high-level policy allows the agent to learn complex tasks requiring long term8

planning, including object sorting and multi-object rearrangement. We focused on9

implementing and training the low-level policy from scratch, as that is where HIR10

is first introduced. For the low-level policy, we show that encoding the instruction11

with a GRU and using HIR performs better than a one-hot encoded representation12

of the instruction. However, our results for one-hot encoded representation as13

the number of total instructions grew contradicted what the conclusions from the14

original paper.15

1 Introduction16

Deep reinforcement learning faces open problems of long-horizon planning and receiving instructions17

from a human. Hierarchical reinforcement learning (HRL) attempts to solve tasks requiring long18

term planning. Agents utilize a hierarchy of policies to learn complex skills and accomplish tasks.19

The high-level policy completes the long term tasks by directing the low-level policy and generating20

goals to satisfy some simpler objective. The low-level policy address more short term and simpler21

tasks, used in a combination to fulfill the high-level policy’s objective.22

In this paper, we reproduce the paper of Jiang et al [11]. The authors present a new framework for23

incorporating language abstractions into hierarchical reinforcement learning, using a low-level policy24

that follows language instructions and a high-level policy that can produce actions in the space of25

language. The low-level policy’s objective is to manipulate specific objects in the environment such26

that a description is satisfied, and the high-level policy’s objective is to instruct the low-level policy27

by generating goals to satisfy some reconfiguration or sorting of the objects in the environment.28

One of the shortcomings of HRL is that rewards are often infrequent, so to address this problem,29

the authors develop a procedure called Hindsight Instruction Relabeling (HIR), an adaptation of30

Hindsight Experience Replay (HER) [8].31

2 Related Work32

Using abstractions are especially important in reinforcement learning to solve MDPs to avoid33

hand-engineered methods for specific problems and to build agents which are effective against34

broader range of problems [3, 4]. Q-learning algorithm is one of the most popular RL algorithms to35

solve MDPs, but it is not always effective because it suffers from scaling where the MDP may be too36

complex due to large state space and/or sparse rewards in the environment.37

38

Hierarchical reinforcement learning tries to solve this issue by creating an abstraction between39

solving the sub-problems by using low-level policies and the main problem by learning a high-level40

policy [3, 4]. The classical approach of HRL focuses on learning the high-level policy which choose41

a set of hard coded low-level sub-policies [7]. This approach suffers from generality because we42

may not know enough about the problem to hand-engineer sub policies; even if we did, it could43

take an unreasonable amount of time to implement which would make this approach infeasible. A44

more general learning method is using the options framework [9] where the high-level policy and45

low-level sub-policies are learned separately which provides better abstractions between the policies46

because the only communication between the high-policy and the low-level policy is satisfying the47

sub-goal. Bacon et al. [7] have approached HRL using the option-critic architecture using Deep48

Q-learning, learning low-level policies directly from final task rewards. However, this approach49

suffers when rewards of the environment are sparse because it can seriously hinder the agent’s50

low-level learning. To contrast, Jiang et al. [11] demonstrate how language can be used to represent51

complex tasks, and Wu et al. [12] show that language can improve performance when compared with52

naïve representations.53

54

Moreover, it is known that a vanilla DQN can over-estimate action values when the action values are55

not accurate with respect to the source of the approximation error. If these optimistic values are not56

uniform and are not concentrated on the states which we wish to explore, it can lead to sub-optimal57

policies. Double DQN solves this issue which is used by the original authors to train high and low58

level policies [2].59

3 Implementation60

The CLEVR-Robot environment engine was made available by the authors [10]. The engine was61

written in Python. We replicated the architecture presented in the paper using PyTorch. Our goal62

was to reproduce the graphs produced solely by the low-level policy, so our project only includes63

the implementation and the experiments of the low-level policy. The overarching architecture of64

the low-level policy was the Double DQN model described in Deep Reinforcement Learning with65

Double Q-learning” [2]. τ = 0.05, γ = 0.993 were used as parameters to the Double DQN model66

as stated in the paper. The primary and target model within the Double DQN model contained our67

conception of the feed-forward network described in the paper. While the feed-forward model was68

singular in that it took as inputs a state representation of the environment and a target question, two69

slightly different sub models were used in order to create the tensor representation of the target input70

question. One represented the input question as an embedding vector and the another represented the71

input question as a one-hot vector.72

73

The embedding vector model took the input question as input and transformed each word74

in the question into a embedding vector of size 30. These embedding vectors were fed to a GRU layer.75

The GRU’s final state was used as the representation of the question. This vector was concatenated76

with the direct state observation as depicted in Figure 7 in the original paper. The resulting matrix is77

the input to the Double DQN model.78

2

Figure 1: Computation graph of the state-based low level policy (from the original paper).

79

The one hot vector model’s initialization indexed every question in the question bank and80

used a bin number to determine the size of the one-hot vectors. The one-hot vector size was81

|questions in bank| ∗ num_bins. Given a question, the one hot vector was determined by82

sampling uniformly from the all the possible one-hot representations of the question within its bin.83

Subsequently, this one-hot vector was passed through a linear layer whose output was used as the84

output representation of the question.85

86

Given the state and the vector representation of the target question, O and E respectively,87

the DQN model first builds a Z matrix which is constructed of the every pairing of every88

object in oi|oj ∈ O passed through a linear layer f1. Therefore the elements of the Z are89

f1(oi|oj),∀ij ∈ range(|O|). Now an attention matrix P is created for Z. P is constructed by90

softmax(∀z ∈ Z,E · z). Ẑ = E ∗ Z Finally for each object in the environment, Ẑ, Z, E, are91

concatenated to form the input to the final linear layer F2 that will produce the action space92

probabilities.93

Figure 1 shows the architecture for the state-based low level policy. The output dimensions of the f194

function is not stated. Moreover, reducing a 2d matrix along axes 1,2 would output a scalar value.95

However, the original authors state that Z̄ is a fixed size vector. Although this seems like a minor96

detail, this could be the main reason between our results and the original results.97

4 Reproducibility98

4.1 Methodology99

As part of the reproducibility challenge, we would like to share our architecture, experiments and100

results. In addition to these, we would also like to suggest minor modifications as to better reproduce101

the results from the paper and possibly provide some improvement techniques. Specifically, we102

want to replicate the exact settings for the results shown in Figures 2 and 3. Although the paper was103

missing few key implementation details, we think that the paper was well written overall. The figures104

given provided a better understanding of the architecture.105

4.2 Dataset106

The environment engine provided by the authors also included the instruction set that was used for107

training and testing of the agent (Figure 1). We followed the standard approach of random split of the108

600 instructions into train and test sets. The number of effective instructions used in training were109

3

Figure 2: Environment and some instructions (from the original paper).

changing dynamically depending on the bin number for one-hot encoding scheme. It was still for the110

non-compositional one.111

4.3 Details112

The performance evaluation of the agent on the test set is reported in Table 1 in the original paper.113

Due to computational limits, we are not reporting the final performance graph of the low-level policy114

on different training and test instruction distributions but we are providing the training performance115

graph that is depicted in Figure 4 in the original paper. We show that the proposed architecture and116

methodology for hierarchical reinforcement learning show practical potential.117

4.4 Cost118

The original paper state that the training time is 2 days for the state-based low-level policy.119

We only experimented with the low-level policy so we are only going to report the required120

computational cost for those experiments. The instruction set size is very small, only 600 questions.121

However, the unique architecture of this model prevents parallel computation and hence the usage122

of GPUs do not decrease the training time significantly. The construction of state-based low123

policy requires a function f1 to be applied to every element of the Z matrix which is a pair-wise124

concatenation of the objects. These operations cannot be broadcasted or run in parallel and therefore125

the computational complexity of the training time grows linearly with respect to the model parameters.126

127

On the other hand, the environment itself is very costly to run. In Figure 2 of the original128

paper, the authors reported that they trained for 2 million training steps. Using the given original129

hyperparameters for epochs, cycles, episodes, the authors aimed to train for a total of 12.5 million130

training steps, but never reached that far. One call of the step function in the provided environment131

takes around 0.02 seconds, making 2 million training steps takes around 12 hours. This time does132

not include the inference, the loss calculation and the update of the model parameters. So, it would133

normally take more than 2 days just to interact with the environment without any training if the134

authors did not stop the training early. We believe it is reasonable to say that the experiments reported135

in this paper are very costly in terms of time.136

5 Results137

In this section we will describe the results of our experiments and compare the proposed architectures’138

performances. Our experiments centered on the replication of the first two graphs shown in figure 4139

in the original paper. The first experiment attempted to replicate the curve labeled HIR 600 and the140

second attempted to replicate the second graph in figure 4 in the original paper.141

5.1 HIR 600 training142

Results for low-level policies show us that HIR-model reaches the highest number of instructions143

fulfilled in an episode. In the original paper, as the number of training instructions increase, the144

performance of the HIR-model also increases. The original graph is shown below.145

4

We, however, were unable to replicate this result as we do not have the information about paraphrasing146

and synonym substitution. The HIR model performs better than the one-hot encoded representation147

model in our experiments and this confirms the original paper.148

Figure 3: HIR with different number of instructions and results with non-compositional representation
and with no relabeling (from the original paper).

Figure 4: HIR 600 Training

5

5.2 One-hot encoding with instruction sets149

We attempted to recreate the results show in the second/middle graph of Figure 4 in the paper. This150

figure is shown below.151

Figure 5: Middle graph from figure 4 from original paper. Performance suffers as instruction set
grows

The purpose of this graph was to demonstrate that as the instruction set grows performance suffers,152

since the model cannot leverage the compositionality of the language. Because we were not able to153

train these models for the 2 ∗ 1e6 steps shown in due to cost and time constraints, we trained our154

models for 1000 cycles. Furthermore, our graph shows reward per cycle since rewards per episode155

were often low and the variance was high. Our results contradict the conclusions made in the paper.156

In our experiments, as the instruction set grew, performance increased, but in the original paper,157

performance decreased as the instruction set grew. "one hot 1 bin" corresponds to "onehot 600, "one158

hot 4 bin" corresponds to "onehot 2400", and "one hot 10 bin" corresponds to "onehot 6k".159

Figure 6: Replication of one-hot encoded representations.

6

6 Conclusion160

Overall, the paper clearly explains the framework for using language as abstraction for hierarchical161

deep learning and the HIR procedure. We were able to train the low-level policy using the instructions162

provided by the environment and implement Hindsight Instruction Relabeling. We were also able to163

show that changing the bin size does in fact affect the agent’s ability to learn. From our experiments, 1164

bin per instruction performed the worst, whereas 4 bins per instruction performed the best. Regardless,165

we have shown that one-hot encoded representation model faces challenges in scaling, even when the166

underlying number of instructions does not change. Moreover, we have shown that HIR with 600167

instructions achieves higher reward than the one-hot encoded representation.168

For future improvement of our results, we hope to train HIR with more than 10,000 instructions by169

paraphrasing and using synonyms and train the low-level policy on the test set to ensure that it is170

able to generalize on unseen instructions for HIR. We also hope to scale up and beyond the CLEVR171

environment so as to increase the body of instructions used in training the low-level policy.172

7 Acknowledgements173

We would like to thank to Evan Cater for clarifying aspects in implementing HIR and mentoring174

us throughout this process. We would also like to thank Prof. Michael Littman for providing the175

required resources for this project.176

References177

[1] Qianqian Fang and David A. Boas, "Monte Carlo Simulation of Photon Migration in 3D Turbid178

Media Accelerated by Graphics Processing Units", Opt. Express 17, 20178-20190 (2009)179

[2] Hado van Hasselt and Arthur Guez and David Silver, "Deep Reinforcement Learning with Double180

Q-learning", CoRR, abs/1509.06461, 2015,http://arxiv.org/abs/1509.06461181

[3] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in neural182

information processing systems, pages 271–278, 1993.183

[4] Ronald Parr and Stuart J Russell. Reinforcement learning with hierarchies of machines. In184

Advances in neural information processing systems, pages 1043–1049, 1998.185

[5] Martin Stolle and Doina Precup. Learning options in reinforcement learning. In International186

Symposium on abstraction, reformulation, and approximation, pages 212–223. Springer, 2002.187

[6] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-188

work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2) 181–211,189

1999.190

[7] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, pages191

1726–1734, 2017.192

[8] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,193

Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience194

replay. In Advances in Neural Information Processing Systems, pages 5048–5058, 2017.195

[9] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option:196

Learning options with a deliberation cost. arXiv preprint arXiv:1709.04571, 2017.197

[10] CLEVR-Robot Environment, 2019, GitHub, GitHub repository, https://github.com/198

google-research/clevr_robot, 38bf0bc3e06bc169e92478f33eae57fa71836309199

[11] Yiding Jiang, Shixiang Gu, Kevin Murphy, and Chelsea Finn. Language as an abstraction for200

hierarchical deep reinforcement learning. CoRR, abs/1906.07343, 2019.201

[12] Yuhuai Wu, Harris Chan, Jamie Kiros, Sanja Fidler, and Jimmy Ba. ACTRCE: Augmenting202

experience via teacher’s advice, 2019. URL https://openreview.net/forum?id=HyM8V2A9Km.203

7

https://github.com/google-research/clevr_robot
https://github.com/google-research/clevr_robot
https://github.com/google-research/clevr_robot

8 Supplemental Material204

Code available at https://github.com/abahocodes/cs2951f_final_project.205

8

https://github.com/abahocodes/cs2951f_final_project

	Introduction
	Related Work
	Implementation
	Reproducibility
	Methodology
	Dataset
	Details
	Cost

	Results
	HIR 600 training
	One-hot encoding with instruction sets

	Conclusion
	Acknowledgements
	Supplemental Material

