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ABSTRACT

The fruit fly Drosophila’s olfactory circuit has inspired a new locality sensitive hash-
ing (LSH) algorithm, FlyHash. In contrast with classical LSH algorithms that
produce low dimensional hash codes, FlyHash produces sparse high-dimensional
hash codes and has also been shown to have superior empirical performance com-
pared to classical LSH algorithms in similarity search. However, FlyHash uses
random projections and cannot learn from data. Building on inspiration from
FlyHash and the ubiquity of sparse expansive representations in neurobiology,
our work proposes a novel hashing algorithm BioHash that produces sparse high
dimensional hash codes in a data-driven manner. We show that BioHash outper-
forms previously published benchmarks for various hashing methods. Since our
learning algorithm is based on a local and biologically plausible synaptic plasticity
rule, our work provides evidence for the proposal that LSH might be a computa-
tional reason for the abundance of sparse expansive motifs in a variety of biological
systems. We also propose a convolutional variant BioConvHash that further
improves performance. From the perspective of computer science, BioHash and
BioConvHash are fast, scalable and yield compressed binary representations
that are useful for similarity search.

1 INTRODUCTION

Sparse expansive representations are ubiquitous in neurobiology. Expansion means that a high-
dimensional input is mapped to an even higher dimensional secondary representation. Such expansion
is often accompanied by a sparsification of the activations: dense input data is mapped into a sparse
code, where only a small number of secondary neurons respond to a given stimulus.

A classical example of the sparse expansive motif is the Drosophila fruit fly olfactory system. In this
case, approximately 50 projection neurons send their activities to about 2500 Kenyon cells (Turner
et al., 2008), thus accomplishing an approximately 50x expansion. An input stimulus typically
activates approximately 50% of projection neurons, and less than 10% Kenyon cells (Turner et al.,
2008), providing an example of significant sparsification of the expanded codes. Another example
is the rodent olfactory circuit. In this system, dense input from the olfactory bulb is projected into
piriform cortex, which has 1000x more neurons than the number of glomeruli in the olfactory bulb.
Only about 10% of those neurons respond to a given stimulus (Mombaerts et al., 1996). A similar
motif is found in rat’s cerebellum and hippocampus (Dasgupta et al., 2017).

From the computational perspective, expansion is helpful for increasing the number of classification
decision boundaries by a simple perceptron (Cover, 1965) or increasing memory storage capacity in
models of associative memory (Hopfield, 1982). Additionally, sparse expansive representations have
been shown to reduce intrastimulus variability and the overlaps between representations induced by
distinct stimuli (Sompolinsky, 2014). Sparseness has also been shown to increase the capacity of
models of associative memory (Tsodyks & Feigelman, 1988).

The goal of the present work is to use this “biological” inspiration about sparse expansive motifs,
as well as local Hebbian learning, for designing a novel hashing algorithm BioHash that can be
used in similarity search. Below we describe the task, the algorithm, and demonstrate that BioHash
improves retrieval performance on common benchmark datasets.
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Similarity search and LSH. In similarity search, given a query q ∈ Rd, a similarity measure
sim(q, x), and a database X ∈ Rn×d containing n items, the objective is to retrieve a ranked list of R
items from the database most similar to q. When data is high-dimensional (e.g. images/documents)
and the databases are large (millions or billions items), this is a computationally challenging problem.
However, approximate solutions are generally acceptable, with Locality Sensitive Hashing (LSH)
being one such approach (Wang et al., 2014). Similarity search approaches maybe unsupervised or
supervised. Since labelled information for extremely large datasets is infeasible to obtain, our work
focuses on the unsupervised setting. In LSH (Indyk & Motwani, 1998; Charikar, 2002), the idea is to
encode each database entry x (and query q) with a binary representation h(x) (h(q) respectively) and
to retrieve R entries with smallest Hamming distances dH(h(x), h(q)). Intuitively, (see (Charikar,
2002), for a formal definition), a hash function h : Rd −→ {−1, 1}m is said to be locality sensitive, if
similar (dissimilar) items x1 and x2 are close by (far apart) in Hamming distance dH(h(x1), h(x2)).
LSH algorithms are of fundamental importance in computer science, with applications in similarity
search, data compression and machine learning (Andoni & Indyk, 2008).

Drosophila olfactory circuit and FlyHash. In classical LSH approaches, the data dimensionality
d is much larger than the embedding space dimension m, resulting in low-dimensional hash codes
(Wang et al., 2014; Indyk & Motwani, 1998; Charikar, 2002). In contrast, a new family of hashing
algorithms has been proposed (Dasgupta et al., 2017) where m� d, but the secondary representation
is highly sparse with only a small number k of m units being active, see Figure 1. We call this
algorithm FlyHash in this paper, since it is motivated by the computation carried out by the fly’s
olfactory circuit. The expansion from the d dimensional input space into an m dimensional secondary
representation is carried out using a random set of weights W (Dasgupta et al., 2017; Caron et al.,
2013). The resulting high dimensional representation is sparsified by k-Winner-Take-All (k-WTA)
feedback inhibition in the hidden layer resulting in top ∼ 5% of units staying active (Lin et al., 2014;
Stevens, 2016).

While FlyHash uses random synaptic weights, sparse expansive representations are not necessarily
random (Sompolinsky, 2014), perhaps not even in the case of Drosophila (Gruntman & Turner, 2013;
Zheng et al., 2018). Moreover, using synaptic weights that are learned from data might help to
further improve the locality sensitivity property of FlyHash. Thus, it is important to investigate
the role of learned synapses on the hashing performance. A recent work SOLHash (Li et al.,
2018), takes inspiration from FlyHash and attempts to adapt the synapses to data, demonstrating
improved performance over FlyHash. However, every learning update step in SOLHash invokes
a constrained linear program and also requires computing pairwise inner-products between all
training points, making it very time consuming and limiting its scalability to datasets of even modest
size. These limitations restrict SOLHash to training only on a small fraction of the data (Li et al.,
2018). Additionally, SOLHash is biologically implausible (for an extended discussion, see Sec. 5).
BioHash also takes inspiration from FlyHash and demonstrates improved performance compared
to random weights used in FlyHash, but it is fast, online, scalable and, importantly, BioHash is
neurologically plausible.
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Figure 1: It is convenient to think about different hashing algorithms in terms of representational
contraction (large dimension of input is mapped into a smaller dimensional latent space), or expansion
(large dimensional input is mapped into an even larger dimensional latent space). The projections can
be random or data driven.

Not only "biological" inspiration can lead to improving hashing techniques, but the opposite might
also be true. One of the statements of the present paper is that BioHash satisfies locality sensitive
property, and, at the same time, utilizes a biologically plausible learning rule for synaptic weights
(Krotov & Hopfield, 2019). This provides evidence toward the proposal that the reason why sparse
expansive representations are so common in biological organisms is because they perform locality
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sensitive hashing. In other words, they cluster similar stimuli together and push distinct stimuli far
apart. Thus, our work provides evidence toward the proposal that LSH might be a fundamental
computational principle utilized by the sparse expansive circuits Fig. 1 (right). Importantly, learning
of synapses must be neurobiologically plausible (the synaptic plasticity rule should be local).

Contributions. Building on inspiration from FlyHash and more broadly the ubiquity of sparse,
expansive representations in neurobiology, our work proposes a novel hashing algorithm BioHash,
that in contrast with previous work (Dasgupta et al., 2017; Li et al., 2018), produces sparse high
dimensional hash codes in a data-driven manner and with learning of synapses in a neurobiologically
plausible way. We provide an existence proof for the proposal that LSH maybe a fundamental
computational principle in neural circuits (Dasgupta et al., 2017) in the context of learned synapses.
We incorporated convolutional structure into BioHash, resulting in a hashing with improved perfor-
mance compared to previously published benchmarks. From the perspective of computer science,
we show that BioHash is simple, scalable to large datasets and demonstrates good performance
for similarity search. Interestingly, BioHash outperforms a number of recent SOTA deep hashing
methods trained via backpropogation.

2 APPROXIMATE SIMILARITY SEARCH VIA BIOHASHING

Formally, if we denote a data point as x ∈ Rd, we seek a binary hash code y ∈ {−1, 1}m. We define
the hash length of a binary code as k, if the exact Hamming distance computation is O(k). Below we
present our bio-inspired hashing algorithm.

2.1 BIO-INSPIRED HASHING (BIOHASH)

We adopt a biologically plausible unsupervised algorithm for representation learning from Krotov &
Hopfield (2019). Denote the synapses from the input layer to the hash layer as W ∈ Rm×d. The
learning dynamics for the synapses of an individual neuron µ, denoted by Wµi, is given by

τ
dWµi

dt
= g
[
Rank

(
〈Wµ, x〉µ

)](
xi − 〈Wµ, x〉µWµi

)
, (1)

where Wµ = (Wµ1,Wµ2...Wµd), and

g[µ] =


1, µ = 1

−∆, µ = r

0, otherwise
(2)

and 〈x, y〉µ =
∑
i,j η

µ
i,jxiyj , with ηµi,j = |Wµi|p−2δij , where δij is Kronecker delta and τ is the time

scale of the learning dynamics. The Rank operation in equation (1) sorts the inner products from
the largest (µ = 1) to the smallest (µ = m). It can be shown that the synapses converge to a unit
(p−norm) sphere (Krotov & Hopfield, 2019). The training dynamics can be shown to minimize the
following energy function

E = −
∑
A

m∑
µ=1

g
[
Rank

(
〈Wµ, x

A〉µ
)] 〈Wµ, x

A〉µ
〈Wµ,Wµ〉

p−1
p

µ

, (3)

where A indexes the training example. Note that the training dynamics do not perform gradient
descent, i.e Ẇµ 6= ∇WµE. However, time derivative of the energy function under dynamics (1) is
always negative (we show this for the case ∆ = 0 below),

τ
dE

dt
= −

∑
A

τ(p− 1)

〈Wµ̂,Wµ̂〉
p−1
p +1

µ̂

[
〈dWµ̂

dt
, xA〉µ̂〈Wµ̂,Wµ̂〉µ̂ − 〈Wµ̂, x

A〉µ̂〈
dWµ̂

dt
,Wµ̂〉µ̂

]
=

= −
∑
A

τ(p− 1)

〈Wµ̂,Wµ̂〉
p−1
p +1

µ̂

[
〈xA, xA〉µ̂〈Wµ̂,Wµ̂〉µ̂ − 〈Wµ̂, x

A〉2µ̂
]
≤ 0,

(4)

where Cauchy-Schwartz inequality is used. For every training example A the index of the activated
hidden unit is defined as

µ̂ = arg max
µ

[
〈Wµ, x

A〉µ
]
. (5)
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Figure 2: (Panel A) Distribution of the hidden units (red circles) for a given distribution of the data
(in one dimension). (Panel B) Arrangement of hidden units for the case of homogeneous distribution
of the training data ρ = 1/(2π). For hash length k = 2 only two hidden units are activated (filled
circles). If two data points are close to each other (x and y1) they elicit similar hash codes, if the two
data points are far away from each other (x and y3) - the hash codes are different.

Thus, the energy function decreases during learning. A similar result can be shown for ∆ 6= 0.

After the learning-phase is complete, the hash code is generated, as in FlyHash, via WTA sparsifi-
cation: for a given query x we generate a hash code y ∈ {−1, 1}m as

yµ =

{
1, 〈Wµ, x〉µ is in top k
−1, otherwise.

(6)

Thus, the hyperparameters of the method are p, r,m and ∆. Note that the synapses are updated
based only on pre- and post-synaptic activations resulting in Hebbian or anti-Hebbian updates. Many
"unsupervised" learning to hash approaches provide a sort of "weak supervision" in the form of
similarities evaluated in the feature space of deep CNNs trained on ImageNet (Jin et al., 2019)
to achieve good performance. BioHash does not assume such information is provided and is
completely unsupervised.

2.2 INTUITION BEHIND THE LEARNING ALGORITHM

An intuitive way to think about the learning algorithm is to view the hidden units as particles that
are attracted to local peaks of the density of the data, and that simultaneously repel each other.
To demonstrate this, it is convenient to think about input data as randomly sampled points from a
continuous distribution. Consider the case when p = 2 and ∆ = 0. In this case, the energy function
can be written as (since for p = 2 the inner product does not depend on the weights, we drop the
subscript µ of the inner product)

E = − 1

n

∑
A

〈Wµ̂, x
A〉

〈Wµ̂,Wµ̂〉 12
= −

∫ ∏
i

dvi
1

n

∑
A

δ(vi − xAi )
〈Wµ̂, v〉
〈Wµ̂,Wµ̂〉 12

=

= −
∫ ∏

i

dviρ(v)
〈Wµ̂, v〉
〈Wµ̂,Wµ̂〉 12

,

(7)

where we introduced a continuous density of data ρ(v). Furthermore, consider the case of d = 2, and
imagine that the data lies on a unit circle. In this case the density of data can be parametrized by a
single angle ϕ. Thus, the energy function can be written as

E = −
π∫
−π

dϕρ(ϕ) cos(ϕ− ϕµ̂), where µ̂ = arg max
µ

[
cos(ϕ− ϕµ)

]
(8)

It is instructive to solve a simple case when the data follows an exponential distribution concentrated
around zero angle with the decay length σ (α is a normalization constant),

ρ(ϕ) = αe−
|ϕ|
σ . (9)

In this case, the energy (8) can be calculated exactly for any number of hidden units m. However,
minimizing over the position of hidden units cannot be done analytically for general m. To further

4



Under review as a conference paper at ICLR 2020

simplify the problem consider the case when the number of hidden units m is small. For m = 2 the
energy is equal to

E = −ασ(1 + e−
π
σ )

1 + σ2

(
cos(ϕ1) + σ sin(ϕ1) + cos(ϕ2)− σ sin(ϕ2)

)
(10)

Thus, in this simple case the energy is minimized when

ϕ1,2 = ± arctan(σ) (11)

In the limit when the density of data is concentrated around zero angle (σ → 0) the hidden units are
attracted to the origin and |ϕ1,2| ≈ σ. In the opposite limit (σ →∞) the data points are uniformly
distributed on the circle. The resulting hidden units are then organized to be on the opposite sides of
the circle |ϕ1,2| = π

2 , due to mutual repulsion.

Another limit when the problem can be solved analytically is the uniform density of the data
ρ = 1/(2π) for arbitrary number m of hidden units. In this case the hidden units span the entire
circle homogeneously - the angle between two consecutive hidden units is ∆ϕ = 2π/m.

These results are summarized in an intuitive cartoon in Figure 2, panel A. After learning is complete,
the hidden units, denoted by circles, are localized in the vicinity of local maxima of the probability
density of the data. At the same time, repulsive force between the hidden units prevents them from
collapsing onto the exact position of the local maximum. Thus the concentration of the hidden units
near the local maxima becomes high, but, at the same time, they span the entire support (area where
there is non-zero density) of the data distribution.

For hashing purposes, trying to find a data point x “closest” to some new query q requires a definition
of “distance”. Since this measure is wanted only for nearby locations q and x, it need not be accurate
for long distances. If we pick a set of m reference points in the space, then the location of point x
can be specified by noting the few reference points it is closest to, producing a sparse and useful local
representation. Uniformly tiling a high dimensional space is not a computationally useful approach.
Reference points are needed only where there is data, and high resolution is needed only where
there is high data density. The learning dynamics in 1 distributes m reference vectors by an iterative
procedure such that their density is high where the data density is high, and low where the data
density is low. This is exactly what is needed for a good hash code.

The case of uniform density on a circle is illustrated in Figure 2, panel B. After learning is complete
the hidden units homogeneously span the entire circle. For hash length k = 2, any given data point
activates two closest hidden units. If two data points are located between two neighboring hidden
units (like x and y1) they produce exactly identical hash codes with hamming distance zero between
them (black and red active units). If two data points are slightly farther apart, like x and y2, they
produce hash codes that are slightly different (black and green circles, hamming distance is equal to 2
in this case). If the two data points are even farther, like x and y3, their hash codes are not overlapping
at all (black and magenta circles, hamming distance is equal to 4). Thus, intuitively similar data
activate similar hidden units, resulting in similar representations, while dissimilar data result in very
different hash codes.

2.3 COMPUTATIONAL COMPLEXITY AND METABOLIC COST.

In classical LSH algorithms (Charikar, 2002; Indyk & Motwani, 1998), typically, k = m and m� d,
entailing a storage cost of k bits per database entry andO(k) computational cost to compute Hamming
distance. In BioHash (and in FlyHash), typically m � k and m > d entailing storage cost of
k log2m bits per database entry and O(k) 1 computational cost to compute Hamming distance. Note
that while there is additional storage/lookup overhead over classical LSH in maintaining pointers, this
is not unlike the storage/lookup overhead incurred by quantization methods like Product Quantization
(PQ) (Jégou et al., 2011), which stores a lookup table of distances between every pair of codewords
for each product space. From a neurobiological perspective, a highly sparse representation such as
the one produced by BioHash keeps the same metabolic cost (Levy & Baxter, 1996) as a dense
low-dimensional (m� d) representation, such as in classical LSH methods. At the same time, as we
empirically show below, it better preserves similarity information.

1If we maintain sorted pointers to the locations of 1s, we have to compute the intersection between 2 ordered
lists of length k, which is O(k).
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Top RetrievalsQuery

Figure 3: Examples of queries and top 15 retrievals using BioHash (k = 16) on VGG16 fc7 features
of CIFAR-10. Retrievals have a green (red) border if the image is in the same (different) semantic
class as the query image. We show some success (top 4) and failure (bottom 2) cases. However, it
can be seen that even the failure cases are reasonable.

Hash Length (k)
Method 2 4 8 16 32 64
LSH 12.45 13.77 18.07 20.30 26.20 32.30

PCAHash 19.59 23.02 29.62 26.88 24.35 21.04
FlyHash 18.94 20.02 24.24 26.29 32.30 38.41

SH 20.17 23.40 29.76 28.98 27.37 24.06
ITQ 21.94 28.45 38.44 41.23 43.55 44.92
DH - - - 43.14 44.97 46.74

UH-BNN - - - 45.38 47.21 -
NaiveBioHash 25.85 29.83 28.18 31.69 36.48 38.50

BioHash 44.38 49.32 53.42 54.92 55.48 -
BioConvHash 64.49 70.54 77.25 80.34 81.23 -

Table 1: mAP@All (%) on MNIST (higher is better). Best results (second best) for each hash
length are in bold (underlined). BioHash demonstrates the best retrieval performance, substantially
outperforming other methods including deep hashing methods DH and UH-BNN, especially at small k.
Performance for DH and UH-BNN is unavailable for some k, since it is not reported in the literature.

2.4 CONVOLUTIONAL BIOHASH

In order to take advantage of the spatial statistical structure present in images, we use the dynamics in
1 to learn convolutional filters by training on image patches as in Grinberg et al. (2019). Convolutions
in this case are unusual since the patches of the images are normalized to be unit vectors before
calculating the inner product with the filters. Differently from Grinberg et al. (2019), we use cross
channel inhibition to suppress the activities of the hidden units that are weakly activated. Specifically,
if there are F convolutional filters, then only the top kCI of F activations are kept active per spatial
location.

Patch normalization is reminiscent of the canonical computation of divisive normalization (Carandini
& Heeger, 2011) and performs local intensity normalization. This is not unlike divisive normalization
in the fruit fly’s projection neurons. Divisive normalization has also been found to be beneficial
(Ren et al., 2016) in CNNs trained end-to-end by the backpropogation algorithm on a supervised
task. We found that the cross channel inhibition is important for a good hashing performance. Post
cross-channel inhibition, we use a max-pooling layer, followed by a BioHash layer as in Sec. 2.1.
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Hash Length (k)
Method 2 4 8 16 32 64
LSH 11.73 12.49 13.44 16.12 18.07 19.41

PCAHash 12.73 14.31 16.20 16.81 17.19 16.67
FlyHash 14.62 16.48 18.01 19.32 21.40 23.35

SH 12.77 14.29 16.12 16.79 16.88 16.44
ITQ 12.64 14.51 17.05 18.67 20.55 21.60

NaiveBioHash 11.79 12.43 14.54 16.62 17.75 18.65
BioHash 20.47 21.61 22.61 23.35 24.02 -

BioConvHash 26.94 27.82 29.34 29.74 30.10 -

Table 2: mAP@1000 (%) on CIFAR-10 (higher is better). Best results (second best) for each hash
length are in bold (underlined). BioHash demonstrates the best retrieval performance, especially at
small k.

3 SIMILARITY SEARCH

In this section, we empirically evaluate BioHash, investigate the role of sparsity in the latent
space, and compare our results with previously published benchmarks. We consider two settings for
evaluation: a) the training set contains unlabeled data, and the labels are only used for the evaluation
of the performance of the hashing algorithm and b) where supervised pretraining on a different dataset
is permissible. Features extracted from this pretraining are then used for hashing. In both settings
BioHash outperforms previously published benchmarks for various hashing methods.

3.1 EVALUATION METRIC

Following previous work (Dasgupta et al., 2017; Li et al., 2018; Su et al., 2018), we use Mean
Average Precision (mAP) as the evaluation metric, a measure that averages precision over different
recall. Specifically, given a query set Q, we evaluate mAP@R as

mAP@R
def
=

1

|Q|

|Q|∑
q=1

1∑
Rel(l)

R∑
l=1

Precision(l)Rel(l), (12)

where R is number of retrievals, Rel(l) = 1(document l is relevant) and Precision(l) is the precision
of the top l retrievals. Notation: when R is equal to size of the entire database, i.e a ranking of the
entire database is desired, we use the notation mAP@All or simply mAP, dropping the reference to
R.

3.2 DATASETS AND PROTOCOL

To make our work comparable with recent related work, we used common benchmark datasets:
a) MNIST (Lecun et al., 1998), a dataset of 70k grey-scale images (size 28 x 28) of hand-written
digits with 10 classes of digits ranging from "0" to "9", b) CIFAR-10 (Krizhevsky, 2009), a dataset
containing 60k images (size 32x32x3) from 10 classes (e.g: car, bird).
Following the protocol in Lu et al. (2017); Chen et al. (2018), on MNIST we randomly sample 100
images from each class to form a query set of 1000 images. We use the rest of the 69k images as the
training set for BioHash as well as the database for retrieval post training. Similarly, on CIFAR-10,
following previous work (Su et al., 2018; Chen et al., 2018; Jin, 2018), we randomly sampled 1000
images per class to create a query set containing 10k images. The remaining 50k images were used
for both training as well as the database for retrieval as in the case of MNIST. Ground truth relevance
for both dataset is based on class labels. Following previous work (Chen et al., 2018; Lin et al.,
2015; Jin et al., 2019), we use mAP@1000 for CIFAR-10 and mAP@All for MNIST. It is common
to benchmark the performance of hashing methods at hash lengths k ∈ {16, 32, 64}. However, it
was observed in Dasgupta et al. (2017) that the regime in which FlyHash outperformed LSH was
in the regime of low hash lengths k ∈ {2, 4, 8, 16, 32}. Accordingly, we evaluate performance for
k ∈ {2, 4, 8, 16, 32, 64}.
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Figure 4: Effect of varying sparsity (activity): optimal activity % for MNIST and CIFAR-10 are 5%
and 0.25%. Since the improvement in performance is small from 0.5 % to 0.25 %, we use 0.5% for
CIFAR-10 experiments. The change of activity is accomplished by changing m at fixed k.

3.3 BASELINES

As baselines we include random hashing methods FlyHash (Dasgupta et al., 2017), classical LSH
(LSH (Charikar, 2002)), and data-driven hashing methods PCAHash (Gong & Lazebnik, 2011),
Spectral Hashing (SH (Weiss et al., 2009)), Iterative Quantization (ITQ (Gong & Lazebnik, 2011)).
As in Dasgupta et al. (2017), for FlyHash we set the sampling rating from PNs to KCs to be 0.1
and m = 10d. Additionally, where appropriate, we also compare performance of BioHash to deep
hashing methods: DeepBit (Lin et al., 2015), DH (Lu et al., 2017), USDH (Jin et al., 2019), UH-BNN
(Do et al., 2016), SAH (Do et al., 2017) and GreedyHash (Su et al., 2018). As previously discussed,
in nearly all similarity search methods, a hash length of k entails a dense representation using k units.
In order to clearly demonstrate the utility of sparse expansion in BioHash, we include a baseline
(termed "NaiveBioHash"), which uses the learning dynamics in 1 but without sparse expansion,
i.e the input data is projected into a dense latent representation with k hidden units. The activations
of those hidden units are then binarized to generate a hash code of length k.

3.4 RESULTS AND DISCUSSION

The performance of BioHash on MNIST is shown in Table 1. BioHash demonstrates the best
retrieval performance, substantially outperforming other methods, including deep hashing methods
DH and UH-BNN, especially at small k. Indeed, even at a very short hash length of k = 2, the
performance of BioHash is comparable to or better than DH for k ∈ {16, 32}, while at k = 4, the
performance of BioHash is better than the DH and UH-BNN for k ∈ {16, 32, 64}. The performance
of BioHash saturates around k = 16, showing only a small improvement from k = 8 to k = 16 and
an even smaller improvement from k = 16 to k = 32; accordingly, we do not evaluate performance
at k = 64. We note that while SOLHash also evaluated retrieval performance on MNIST and is
a data-driven hashing method inspired by Drosophila’s olfactory circuit, the ground truth in their
experiment was top 100 nearest neighbors of a query in the database, based on Euclidean distance
between pairs of images in pixel space and thus cannot be directly compared2. Nevertheless, we
adopt that protocol (Li et al., 2018) and show that BioHash substantially outperforms SOLHash in
Sec 5.
The performance of BioHash on CIFAR-10 is shown in Table 2. Similar to the case of MNIST,
BioHash demonstrates the best retrieval performance, substantially outperforming other methods,
especially at small k. Even at k ∈ {2, 4}, the performance of BioHash is comparable to other
methods with k ∈ {16, 32, 64}. This suggests that BioHash is a particularly good choice when
short hash lengths are required.

Effect of sparsity For a given hash length k, we parametrize the total number of neurons m in
the hash layer as m × a = k, where a is the activity i.e the fraction of active neurons. For each
hash length k, we varied % of active neurons and evaluated the performance on a validation set

2Due to missing values of the hyperparameters we are unable to reproduce the performance of SOLHash to
enable a direct comparison.
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Activity (%): 1.0 Activity (%): 5.0 Activity (%): 20.0 Activity (%): 70.0

Figure 5: tSNE embedding of MNIST as the activity is varied for a fixed m = 160 (the change
of activity is accomplished by changing k at fixed m). When the sparsity of activations decreases
(activity increases), some clusters merge together, though highly dissimilar clusters (e.g. orange and
blue in the lower left) stay separated.

Hash Length (k)
kCI 2 4 8 16
1 56.16 66.23 71.20 73.41
5 58.13 70.88 75.92 79.33

10 64.49 70.54 77.25 80.34
25 56.52 64.65 68.95 74.52
100 23.83 32.28 39.14 46.12

Hash Length (k)
kCI 2 4 8 16
1 26.94 27.82 29.34 29.74
5 24.92 25.94 27.76 28.90

10 23.06 25.25 27.18 27.69
25 20.30 22.73 24.73 26.20
100 17.84 18.82 20.51 23.57

Table 3: Effect of Channel Inhibition. Left: mAP@All (%) on MNIST, Right: mAP@1000 (%)
on CIFAR-10. The number active channels per spatial location is denoted by kCI. It can seen that
channel inhibition (high sparsity) is critical for good performance. Total number of available channels
for each kernel size was 500 and 400 for MNIST and CIFAR-10 respectively.

(see appendix for details), see Figure 4. There is an optimal level of activity for each dataset. For
MNIST and CIFAR-10, a was set to 0.05 and 0.005 respectively for all experiments. We visualize
tSNE embeddings for different settings of activity levels in Figure 5. Interestingly, at lower sparsity
levels, dissimilar images may become nearest neighbors though highly dissimilar images stay apart.
This is reminiscent of an experimental finding (Lin et al., 2014) in Drosophila. Sparsification of
Kenyon cells in Drosophila is controlled by feedback inhibition from the anterior paired lateral
neuron. Disrupting this feedback inhibition leads to denser representations, resulting in fruit flies
being able to discriminate between dissimilar odors but not similar odors.

Convolutional BioHash In the case of MNIST, we trained 500 convolutional filters (as described
in Sec. 2.4) of kernel sizes K = 3, 4. In the case of CIFAR-10, we trained 400 convolutional
filters of kernel sizes K = 3, 4 and 10. The convolutional variant of BioHash, which we call
BioConvHash shows further improvement over BioHash on MNIST as well as CIFAR-10, with
even small hash lengths k ∈ {2, 4} substantially outperforming other methods at larger hash lengths.
Channel Inhibition is critical for performance of BioConvHash across both datasets, see Table 3.
A high amount of sparsity is essential for good performance. As discussed previously discussed,
convolutions in our network are atypical in yet another way, due to patch normalization. We show in
Sec 6, that patch normalization results in robustness of BioConvHash to "shadows", a robustness
also characteristic of biological vision.

Hashing using deep CNN features State-of-the-art hashing methods generally adapt deep CNNs
trained on ImageNet (Su et al., 2018; Jin et al., 2019; Chen et al., 2018; Lin et al., 2017). These
approaches derive large performance benefits from the semantic information learned in pursuit of the
classification goal on ImageNet (Deng et al., 2009). To make a fair comparison with our work, we
trained BioHash on features extracted from fc7 layer of VGG16 (Simonyan & Zisserman, 2014),
since previous work (Su et al., 2018; Lin et al., 2015; Chen et al., 2018) has often adapted this
pre-trained network. BioHash demonstrates substantially improved performance over recent deep
unsupervised hashing methods with mAP@1000 of 63.47 for k = 16; example retrievals are shown
in Figure 3. Even at very small hash lengths of k ∈ {2, 4}, BioHash outperforms other methods at
k ∈ {16, 32, 64}. For performance of other methods and performance at varying hash lengths see
Table 4.
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Hash Length (k)
Method 2 4 8 16 32 64
LSH∗ 13.25 17.52 25.00 30.78 35.95 44.49

PCAHash∗ 21.89 31.03 36.23 37.91 36.19 35.06
FlyHash∗ 25.67 32.97 39.46 44.42 50.92 54.68

SH∗ 22.27 31.33 36.96 38.78 39.66 37.55
ITQ∗ 23.28 32.28 41.52 47.81 51.90 55.84

DeepBit - - - 19.4 24.9 27.7
USDH - - - 26.13 36.56 39.27
SAH - - - 41.75 45.56 47.36

GreedyHash 10.56 23.94 34.32 44.8 47.2 50.1
NaiveBioHash∗ 18.24 26.60 31.72 35.40 40.88 44.12

BioHash∗ 57.33 59.66 61.87 63.47 64.61 -

Table 4: mAP@1000 (%) on CIFAR-10CNN. Best results (second best) for each hash length
are in bold (underlined). BioHash demonstrates the best retrieval performance, substantially
outperforming other methods including deep hashing methods GreedyHash, SAH, DeepBit and
USDH, especially at small k. Performance for DeepBit,SAH and USDH is unavailable for some
k, since it is not reported in the literature. ∗ denotes the corresponding hashing method using
representations from VGG16 fc7.

It is worth remembering that while exact Hamming distance computation is O(k) for all the methods
under consideration, unlike classical hashing methods, BioHash (and also FlyHash) incurs a
storage cost of k log2m instead of k per database entry. In the case of MNIST (CIFAR-10), BioHash
at k = 2 corresponds to m = 40 (m = 400) entailing a storage cost of 12 (18) bits respectively.
Even in scenarios where storage is a limiting factor, BioHash at k = 2 compares favorably to other
methods at k = 16, yet Hamming distance computation remains cheaper for BioHash.

4 CONCLUSIONS, DISCUSSION, AND FUTURE WORK

Inspired by the recurring motif of sparse expansive representations in neural circuits, we introduced
a new hashing algorithm, BioHash. In contrast with previous work (Dasgupta et al., 2017; Li
et al., 2018), BioHash is both a data-driven algorithm and has a reasonable degree of biological
plausibility. BioHash demonstrates strong empirical results outperforming recent unsupervised
deep hashing methods. The biological plausibility of our work provides support toward proposal that
LSH might be a general computational function (Valiant, 2014) of the neural circuits featuring sparse
expansive representations. From the perspective of computer science BioHash is easy to train and
scalable to large datasets.

Compressed sensing/sparse coding have also been suggested as computational roles of sparse expan-
sive representations in biology (Ganguli & Sompolinsky, 2012). These ideas, however, require that
the input be reconstructable from the sparse latent code. This is a much stronger assumption than
LSH - downstream tasks might not require such detailed information about the inputs, e.g: novelty
detection (Dasgupta et al., 2018).

In this work, we limited ourselves to linear scan using fast Hamming distance computation for image
retrieval, like much of the relevant literature (Dasgupta et al., 2017; Su et al., 2018; Lin et al., 2015;
Jin, 2018). Yet, there is potential for improvement. One line of future inquiry would be to speed
up retrieval using multi-probe methods, perhaps via psuedo-hashes (Sharma & Navlakha, 2018).
Another line of inquiry would be to adapt BioHash for Maximum Inner Product Search (Shrivastava
& Li, 2014; Neyshabur & Srebro, 2015).
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SUPPLEMENTARY MATERIAL

We expand on the discussion of related work in section 5. We also include here some additional
results. In section 6, we show that BioConvHash enjoys robustness to intensity variations. In
section 7, we show that the strong empirical performance of BioHash is not specific to the choice
of VGG16. Finally, we include technical details about implementation and architecture in section 8.

5 APPENDIX A: RELATED WORK

Sparse High-Dimensional Representations in Neuroscience. Previous work has explored the
nature of sparse high-dimensional representations through the lens of sparse coding and compressed
sensing (Ganguli & Sompolinsky, 2012). Additionally, Sompolinsky (2014) has examined the
computational role of sparse expansive representations in the context of categorization of stimuli as
appetitive or aversive. They studied the case of random projections as well as learned/"structured"
projections. However, structured synapses were formed by a Hebbian-like association between each
cluster center and a corresponding fixed, randomly selected pattern from the cortical layer; knowledge
of cluster centers provides a strong form a "supervision"/additional information, while BioHash
does not assume access to such information. To the best of our knowledge no previous work has
systematically examined the proposal that LSH maybe a computational principle in the brain in the
context of structured synapses learned in a biologically plausible manner.

Classical LSH. A classic LSH algorithm for angular similarity is SimHash (Charikar, 2002),
which produces hash codes by h(x) = sign(W ᵀx), where entries of W ∈ Rm×d are i.i.d from a
standard normal distribution and sign() is element-wise. While LSH is a property and consequently
is sometimes used to refer to hashing methods in general, when the context is clear we refer to
SimHash as LSH following previous literature.

Fruit Fly inspired LSH. The fruit fly’s olfactory circuit has inspired research into new families
(Dasgupta et al., 2018; Sharma & Navlakha, 2018; Li et al., 2018) of Locality Sensitive Hashing (LSH)
algorithms. Of these, FlyHash (Dasgupta et al., 2017) and DenseFly (Sharma & Navlakha, 2018)
are based on random projections and cannot learn from data. Sparse Optimal Lifting (SOLHash)
(Li et al., 2018) is based on learned projections and results in improvements in hashing performance.
SOLHash attempts to learn a sparse binary representation Y ∈ Rn×m, by optimizing

arg min
Y ∈[−1,1]n×m

Y ed=(−m+2k)em

||XXᵀ − Y Y ᵀ||2F + γ||Y ||p, (13)

em is an all 1’s vector of size m. Note the relaxation from a binary Y ∈ {−1, 1}n×m to continuous
Y ∈ [−1, 1]n×m. After obtaining a Y , queries are hashed by learning a linear map from X to Y by
minimizing

arg min
W∈[−1,1]d×m

Wed=(−m+2c)em

||Y −XW ||2F + β||W ||p, (14)

Here, c is the # of synapses with weight 1; the rest are −1. To optimize this objective, Li et al.
(2018) resorts to Franke-Wolfe optimization, wherein every learning update involves solving a
constrained linear program involving all of the training data, which is biologically unrealistic. In
contrast, BioHash is neurobiologically plausible involving only Hebbian/Anti-Hebbian updates and
inhibition.

From a computer science perspective, the scalability of SOLHash is highly limited; not only does
every update step invoke a constrained linear program but the program involves pairwise similarity
matrices, which can become intractably large for datasets of even modest size. This issue is further
exacerbated by the fact that m� d and Y Y ᵀ is recomputed at every step (Li et al., 2018). Indeed,
though Li et al. (2018) uses the SIFT1M dataset, the discussed limitations limit training to only
5% of the training data. Nevertheless, we make a comparison to SOLHash in Table 5 and see that
BioHash results in substantially improved performance.

Deep LSH. A number of state-of-the-art approaches (Su et al., 2018; Jin, 2018; Do et al., 2017; Lin
et al., 2015) to unsupervised hashing for image retrieval are perhaps unsurprisingly, based on deep
CNNs trained on ImageNet Deng et al. (2009); A common approach (Su et al., 2018) is to adopt
a pretrained DCNN as a backbone, replace the last layer with a custom hash layer and objective
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Hash Length (k)
Method 2 4 8 16 32 64
BioHash 39.57 54.40 65.53 73.07 77.70 80.75
SOLHash 11.59 20.03 30.44 41.50 51.30 -

Table 5: mAP@100 (%) on MNIST, using Euclidean distance in pixel space as the ground truth,
following protocol in Li et al. (2018). BioHash demonstrates the best retrieval performance,
substantially outperforming SOLHash.

Figure 6: Examples of images with and without a "shadow". We modified the intensities in the query
set of CIFAR-10 by multiplying 80% of each image by a factor of 0.3; such images largely remain
discriminable to human perception.

function and to train the network by backpropogation. Some other approaches (Yang et al., 2018),
use DCNNs as feature extractors or to compute a measure of similarity in it’s feature space, which
is then used as a training signal. While deep hashing methods are not the purpose of our work, we
include them here for completeness.

6 APPENDIX B: ROBUSTNESS OF BIOCONVHASH TO VARIATIONS IN
INTENSITY

Patch normalization is reminiscent of the canonical neural computation of divisive normalization
(Carandini & Heeger, 2011) and performs local intensity normalization. This makes BioConvHash
robust to variations in light intensity. To test this idea, we modified the intensities in the query set
of CIFAR-10 by multiplying 80% of each image by a factor of 0.3; such images largely remain
discriminable to human perception, see Figure 6. We evaluated the retrieval performance of this
query set with "shadows", while the database (and synapses) remain unmodified. We find that
BioConvHash performs best at small hash lengths, while the performance of other methods except
GreedyHash is almost at chance. These results suggest that it maybe beneficial to incorporate
divisive normalization into DCNNs architectures to increase robustness to intensity variations.

Hash Length (k)
Method 2 4 8 16 32 64
LSH 10.62 11.82 11.71 11.25 11.32 11.90

PCAHash 10.61 10.60 10.88 11.33 11.79 11.83
FlyHash 11.44 11.09 11.86 11.89 11.45 11.44

SH 10.64 10.45 10.45 11.70 11.26 11.30
ITQ 10.54 10.68 11.65 11.00 10.95 10.94

BioHash 11.05 11.50 11.57 11.33 11.59 -
BioConvHash 26.84 27.60 29.31 29.57 29.95 -
GreedyHash 10.56 21.47 25.21 30.74 30.16 37.63

Table 6: Robustness to shadows. mAP@1000 (%) on CIFAR-10 (higher is better), when query set
has "shadows". Performance of other hashing methods drops substantially, while the performance of
BioConvHash remains largely unchanged due to patch normalization. For small k, BioConvHash
substantially outperforms all the other methods, while still being competitive at higher hash lengths.
Best results (second best) for each hash length are in bold (underlined).
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7 APPENDIX C: EVALUATION USING VGG16BN AND ALEXNET

The strong empirical performance of BioHash using features extracted from VGG16 fc7 is not
specific to choice of VGG16. To demonstrate this, we evaluated the performance of BioHash using
VGG16 with batch normalization (BN) (Ioffe & Szegedy, 2015) as well as AlexNet (Krizhevsky
et al., 2012). Consistent with the evaluation using VGG16 reported in the main paper, BioHash
consistently demonstrates the best retrieval performance, especially at small k.

Hash Length (k)
Method 2 4 8 16 32 64
LSH 13.16 15.86 20.85 27.59 38.26 47.97

PCAHash 21.72 34.05 38.64 40.81 38.75 36.87
FlyHash 27.07 34.68 39.94 46.17 52.65 57.26

SH 21.76 34.19 38.85 41.80 42.44 39.69
ITQ 23.02 34.04 44.57 51.23 55.51 58.74

BioHash 60.56 62.76 65.08 66.75 67.53 -

Table 7: mAP@1000 (%) on CIFAR-10CNN, VGG16BN. Best results (second best) for each hash
length are in bold (underlined). BioHash demonstrates the best retrieval performance, especially at
small k.

Hash Length (k)
Method 2 4 8 16 32 64
LSH 13.25 12.94 18.06 23.28 25.79 32.99

PCAHash 17.19 22.89 27.76 29.21 28.22 26.73
FlyHash 18.52 23.48 27.70 30.58 35.54 38.41

SH 16.66 22.28 27.72 28.60 29.27 27.50
ITQ 17.56 23.94 31.30 36.25 39.34 42.56

BioHash 44.17 45.98 47.66 49.32 50.13 -

Table 8: mAP@1000 (%) on CIFAR-10CNN, AlexNet. Best results (second best) for each hash
length are in bold (underlined). BioHash demonstrates the best retrieval performance, especially at
small k.

8 APPENDIX D: IMPLEMENTATION DETAILS

• BioHash: The training /retrieval database was centered. Queries were also centered using
mean computed on the training set. Weights were initialized by sampling from the standard
normal distribution. For simplicity we used p = 2,∆ = 0. We set initial learning rate
ε0 = 2× 10−2, which was decayed as εt = ε0(1− t

Tmax
), where t is epoch number and Tmax

is maximum number of epochs. We used Tmax = 100 and a mini-batch size of 100. The
criterion for convergence was average norm of synapses was < 1.06. Convergence usually
took < 20 epochs.
In order to set the activity level, we performed cross-validation. In the case of MNIST, we
separated 1k random samples (100 from each class) from the training set, to create a training
set of size 68k and validation set of 1k images. Activity level with highest mAP@All on the
validation set was determined to be 5%, see Figure 4. We then retrained BioHash on the
whole training data of size 69k and reported the performance on the query set. Similarly
for CIFAR-10, we separated 1k samples (100 images per class) to create a training set of
size 49k and validation set of 1k. We set the activity level to be 0.5%, see Figure 4. We then
retrained BioHash on the whole training data of size 50k and reported the performance on
the query set.
• BioConvHash A convolutional filter of kernel size K is learned by dividing the training

set into patches of sizes K × K and applying the learning dynamics 1. In the case of
MNIST, we trained 500 filters of kernel sizes K = 3, 4. In the case of CIFAR-10, we used
K = 3, 4, 10. For both datasets, we used a stride of 1 in the convolutional layers. We set
kCI = 10 for MNIST and kCI = 1 for CIFAR-10 , by cross-validation in a procedure similar
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to how sparsity was set. The effect of channel inhibition is shown in Table 3. kCI = 1 means
that only the largest activation across channels per spatial location was kept, while the rest
are set to 0. This was followed by 2d max-pooling with a stride of 2 and kernel size of 7.
This was followed by a fully connected layer (the "hash" layer).
• FlyHash Following Dasgupta et al. (2017), we set m = 10d for all hash lengths k and

each neuron in the hashing layer ("Kenyon" cell) sampled from 0.1 dimensions of input data
(Projection neurons). Following Gong & Lazebnik (2011), ITQ employed 50 iterations.
• To extract representations from VGG16 fc7, CIFAR-10 images were resized to 224× 224

and normalized using default values: [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]. To make
a fair comparison we used the pre-trained VGG16 model (without BN), since this model is
frequently employed by deep hashing methods. We also evaluated the performance using
VGG16 with BN and also using AlexNet (Krizhevsky et al., 2012), see Tables 7, 8.
• GreedyHash replaces the softmax layer of VGG16 with a hash layer and is trained end-

to-end via backpropogation using a custom objective function, see Su et al. (2018) for more
details. We use the code 3 provided by the authors to measure performance at k = 2, 4, 8,
since these numbers were not reported in Su et al. (2018). We used the default parameters:
mini-batch size of 32, learning rate of 1× 10−4 and trained for 60 epochs.

9 APPENDIX E: TRAINING TIME

Here we report the training times for the best performing (having the highest corresponding mAP@R)
variant of our algorithm: BioHash, BioConvHash, or BioHash on top of VGG16 representations.
For the case of MNIST, the best performing variant is BioConvHash, and for CIFAR-10 it is
BioHash on top of VGG16 representations. We also report the training time of the next best
method for each dataset. This is GreedyHash in the case of CIFAR-10, and BioHash in the case
of MNIST. In the case of MNIST, the best method that is not a variant of BioHash is UH-BNN.
Training time for UH-BNN is unavailable, since it is not reported in literature. All experiments were
run on a single V100 GPU to make a fair comparison.

Hash Length (k)
Method 2 4 8 16 32
BioHash ∼1.7 s ∼1.7s ∼1.7 s ∼3.4 s ∼ 5 s

BioConvHash ∼3.5 m ∼3.5 m ∼3.5 m ∼5 m ∼5 m

Table 9: Training time for the best variant of BioHash, and the next best method for MNIST.

Hash Length (k)
CIFAR-10 2 4 8 16 32
BioHash ∼ 4.2 s ∼7.6 s ∼11.5 s ∼22 s ∼35 s

GreedyHash ∼1.2 hrs ∼1.2 hrs ∼1.3 hrs ∼1.4 hrs ∼1.45 hrs

Table 10: Training time for the best variant of BioHash and the next best method for CIFAR-10.
Both models are based on VGG16.

3 https://github.com/ssppp/GreedyHash
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