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Abstract

Recently used in various machine learning contexts, the Gromov-Wasserstein dis-
tance (GW ) allows for comparing distributions whose supports do not necessarily
lie in the same metric space. However, this Optimal Transport (OT) distance re-
quires solving a complex non convex quadratic program which is most of the time
very costly both in time and memory. Contrary to GW , the Wasserstein distance
(W ) enjoys several properties (e.g. duality) that permit large scale optimization.
Among those, the solution of W on the real line, that only requires sorting discrete
samples in 1D, allows defining the Sliced Wasserstein (SW ) distance. This paper
proposes a new divergence based on GW akin to SW . We first derive a closed
form for GW when dealing with 1D distributions, based on a new result for the
related quadratic assignment problem. We then define a novel OT discrepancy that
can deal with large scale distributions via a slicing approach and we show how
it relates to the GW distance while being O(n log(n)) to compute. We illustrate
the behavior of this so called Sliced Gromov-Wasserstein (SGW ) discrepancy in
experiments where we demonstrate its ability to tackle similar problems as GW
while being several order of magnitudes faster to compute.

1 Introduction

Optimal Transport (OT) aims at defining ways to compare probability distributions. One typical
example is the Wasserstein distance (W ) that has been used for varied tasks ranging from computer
graphics [1] to signal processing [2]. It has proved to be very useful for a wide range of machine
learning tasks including generative modelling (Wasserstein GANs [3]), domain adaptation [4] or
supervised embeddings for classification purposes [5]. However one limitation of this approach is that
it implicitly assumes aligned distributions, i.e. that lie in the same metric space or at least between
spaces where a meaningful distance across domains can be computed. From another perspective,
the Gromov-Wasserstein (GW ) distance benefits from more flexibility when it comes to the more
challenging scenario where heterogeneous distributions are involved, i.e. distributions whose supports
do not necessarily lie on the same metric space. It only requires modelling the topological or
relational aspects of the distributions within each domain in order to compare them. As such, it has
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recently received a high interest in the machine learning community, solving learning tasks such as
heterogenous domain adaptation [6], deep metric alignment [7], graph classification [8] or generative
modelling [9].

OT is known to be a computationally difficult problem: the Wasserstein distance involves a linear
program that most of the time prevents its use to settings with more than a few tens of thousands of
points. For medium to large scale problems, some methods relying e.g. on entropic regularization
[10] or dual formulation [11] have been investigated in the past years. Among them, one builds
upon the mono-dimensional case where computing the Wasserstein distance can be trivially solved
in O(n log n) by sorting points in order and pairing them from left to right. While this 1D case
has a limited interest per se, it is one of the main ingredients of the sliced Wasserstein distance
(SW ) [12]: high-dimensional data are linearly projected into sets of mono-dimensional distributions,
the sliced Wasserstein distance being the average of the Wasserstein distances between all projected
measures. This framework provides an efficient algorithm that can handle millions of points and
has similar properties to the Wasserstein distance [13]. As such, it has attracted attention and has
been successfully used in various tasks such as barycenter computation [14], classification [15] or
generative modeling [16–19].

Regarding GW , the optimization problem is a non-convex quadratic program, with a prohibitive
computational cost for problems with more than a few thousands of points: the number of terms grows
quadratically with the number of samples and one cannot rely on a dual formulation as for Wasserstein.
However several approaches have been proposed to tackle its computation. Initially approximated by
a linear lower bound [20], GW was thereafter estimated through an entropy regularized version that
can be efficiently computed by iterating Sinkhorn projections [21, 22]. More recently a conditional
gradient scheme relying on linear program OT solvers was proposed in [8]. However, as discussed
more in detail in Sec. 2, all these methods are still too costly for large scale scenarii.

In this paper, we propose a new formulation related to GW that lowers its computational cost. To
that extent, we derive a novel OT discrepancy called Sliced Gromov-Wasserstein (SGW ). It is
similar in spirit to the Sliced Wasserstein distance as it relies on the exact computation of 1D GW
distances of distributions projected onto random directions. We notably provide the first 1D closed
form solution of the GW problem by proving a new result about the Quadratic Assignment Problem
(QAP) for matrices that are squared euclidean distances of real numbers. Computation of SGW
for discrete distributions of n points is O(Ln log(n)), where L is the number of sampled directions.
This complexity is the same as the Sliced-Wasserstein distance and is even lower than computing the
value of GW which is O(n3) for a known coupling (once the optimization problem solved) in the
general case [22]. Experimental validation shows that SGW retains various properties of GW while
being much cheaper to compute, allowing its use in difficult large scale settings such as large mesh
matching or generative adversarial networks.

Notations The simplex histogram with n bins will be denoted as Σn = {a ∈ (R+)n,
∑
i ai = 1}.

For two histograms a ∈ Σn and b ∈ Σm we note Π(a, b) the set of all couplings of a and b, i.e.
the set Π(a, b) = {π ∈ Rn×m+ ‖

∑
i πi,j = bj ;

∑
j πi,j = ai}. Sn is the set of all permutations of

{1, ..., n}.
We note ‖.‖k,p the `k norm on Rp. For any norm ‖.‖ we note d‖.‖ the distance induced by this norm.

δx is the dirac measure in x s.t. a discrete measure µ ∈ P(Rp) can be written µ =
∑n
i=1 aiδxi with

xi ∈ Rp. For a continuous map f : Rp → Rq we note f# its push-forward operator. f# moves
the positions of all the points in the support of the measure to define a new measure f#µ ∈ P(Rq)
s.t. f#µ

def.
=
∑
i aiδf(xi). We note O(p) the subset of Rp×p of all orthogonal matrices. Finally

Vp(Rq) is the Stiefel manifold, i.e. the set of all orthonormal p-frames in Rq or equivalently
Vp(Rq) = {∆ ∈ Rq×p|∆T∆ = Ip}.

2 Gromov-Wasserstein distance

OT provides a way of inferring correspondences between two distributions by leveraging their intrinsic
geometries. If one has measures µ and ν on two spacesX and Y , OT aims at finding a correspondence
(or transport) map π ∈ P(X × Y ) such that the marginals of π are respectively µ and ν. When a
meaningful distance or cost c : X × Y 7→ R+ across the two domains can be computed, classical OT
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relies on minimizing the total transportation cost between the two distributions
´
X×Y c(x, y)dπ(x, y)

w.r.t. π. The minimum total cost is often called the Wasserstein distance between µ and ν [23].

However, this approach fails when a meaningful cost across the distributions cannot be defined,
which is the case when µ and ν live for instance in Euclidean spaces of different dimensions or
more generally when X and Y are unaligned, i.e. when their features are not in correspondence.
This is particularly the case for features learned with deep learning as they can usually be arbitrarily
rotated or permuted. In this context, the W distance with the naive cost c(x, y) = ‖x− y‖ fails at
capturing the similarity between the distributions. Some works address this issue by realigning spaces
X and Y using a global transformation before using the classical W distance [24]. From another
perspective, the so-called GW distance [25] has been investigated in the past few years and rather
relies on comparing intra-domain distances cX and cY .

Definition and basic properties Let µ ∈ P(Rp) and ν ∈ P(Rq) with p ≤ q be discrete measures
on Euclidean spaces with µ =

∑n
i=1 aiδxi

and ν =
∑m
i=1 bjδyj of supports X and Y , where a ∈ Σn

and b ∈ Σm are histograms.

Let cX : Rp × Rp → R+ (resp. cY : Rq × Rq → R+) measures the similarity between the samples
in µ (resp. ν). The Gromov-Wasserstein (GW ) distance is defined as:

GW 2
2 (cX , cY , µ, ν) = min

π∈Π(a,b)
J(cX , cY , π) (1)

where
J(cX , cY , π) =

∑
i,j,k,l

∣∣cX(xi, xk)− cY (yj , yl)
∣∣2πi,jπk,l.

The resulting coupling π is a fuzzy correspondance map between the points of the distributions
which tends to associate pairs of points with similar distances within each pair: the more similar
cX(xi, xk) is to cY (yj , yl), the stronger the transport coefficients πi,j and πk,l are. The GW distance
enjoys many desirable properties when cX and cY are distances so that (X, cX , µ) and (Y, cY , ν)
are called measurable metric spaces (mm-spaces) [25]. In this case, GW is a metric w.r.t. the
measure preserving isometries. More precisely, it is symmetric, satisfies the triangle inequality
when considering three mm-spaces, and vanishes iff the mm-spaces are isomorphic, i.e. when
there exists a surjective function f : X → Y such that f#µ = ν (f preserves the measures) and
∀x, x′ ∈ X2, cY (f(x), f(x′)) = cX(x, x′) (f is an isometry). With a slight abuse of notations we
will say that µ and ν are isomorphic when this occurs. The GW distance has several interesting
properties, especially in terms of invariances. It is clear from its formulation in eq. (1) that it is
invariant to translations, permutations or rotations on both distributions when Euclidean distances are
used. This last property allows finding correspondences between complex word embeddings between
different languages [26]. Interestingly enough, when spaces have the same dimension, it has been
proven that computing GW is equivalent to realigning both spaces using some linear transformation
and then computing the W distance on the realigned measures (Lemma 4.3 in [24]).

GW can also be used with other similarity functions for cX and cY (e.g. kernels [22] or squared
integrable functions [27]). In this work, we focus on squared euclidean distances, i.e. cX(x, x′) =
‖x−x′‖22,p, cY (y, y′) = ‖y− y′‖22,q . This particular case is tackled by the theory of gauged measure
spaces [20, 27] where authors generalize mm-spaces with weaker assumptions on cX , cY than the
distance assumptions. More importantly in our context, invariants are the same as for distances since
GW still vanishes iff there exists a measure preserving isometry (cf. supplementary material) and the
symmetry and triangle inequality are also preserved (see [20]).

Computational aspects The optimization problem (1) is a non-convex Quadratic Program (QP).
Those problems are notoriously hard to solve since one cannot rely on convexity and only descent
methods converging to local minima are available. The problem can be tackled by solving iterative
linearizations of the quadratic function with a conditional gradient as done in [8]. In this case, each
iteration requires the optimization of a classical OT problem, that is O(n3). Another approach
consists in solving an approximation of problem (1) by adding an entropic regularization as pro-
posed in [22]. This leads to an efficient projected gradient algorithm where each iteration requires
solving a regularized OT with the Sinkhorn algorithm that has be shown to be nearly O(n2) and
implemented efficiently on GPU. Still note that even though iterations for regularized GW are faster,
the computation of the final cost is O(n3) [22, Remark 1].
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3 From 1D GW to Sliced Gromov-Wasserstein

In this section, we first provide and prove a solution for an 1D Quadratic Assignement Problem
(QAP) with a quasilinear time complexity of O(n log(n)). This new special case of the QAP is
shown to be equivalent to the hard assignment version of GW , called the Gromov-Monge (GM )
problem, with squared Euclidean cost for distributions lying on the real line. We also show that, in
this context, solving GM is equivalent to solving GW . We derive a new discrepancy named Sliced
Gromov-Wasserstein (SGW ) that relies on these findings for efficient computation.

Solving a Quadratic Assignement Problem in 1D In Koopmans-Beckmann form [28] a QAP
takes as input two n× n matrices A = (aij), B = (bij). The goal is to find a permutation σ ∈ Sn,
the set of all permutations of {1, · · · , n}, which minimizes the objective function

∑n
i,j=1 ai,jbσ(i),σ(j).

In full generality this problem is NP-hard. However when matrices A and B have simple known
structures, solutions can still be found (e.g. diagonal structure such as Toeplitz matrix or separability
properties such as ai,j = αiαj [29–31]). We refer the reader to [32, 33] for comprehensive surveys
on the QAP. The following theorem is a new result about QAP and states that it can be solved when
A and B are squared Euclidean distance matrices of sorted real numbers:
Theorem 3.1. A new special case for the Quadratic Assignment Problem

For real numbers x1 ≤ ... ≤ xn and y1 ≤ ... ≤ yn,

min
σ∈Sn

∑
i,j

−(xi − xj)2(yσ(i) − yσ(j))
2 (2)

is achieved either by the identity permutation σ(i) = i or the anti-identity permutation σ(i) =
n+ 1− i.

To the best of our knowledge, this result is new. It states that if one wants to find the best one-to-one
correspondence of real numbers such that their pairwise distances are best conserved, it suffices to
sort the points and check whether the identity has a better cost than the anti-identity. Proof of this
theorem can be found in the supplementary material. We postulate that this result also holds for
aij = |xi − xj |k and bij = −|yi − yj |k with any k ≥ 1 but leave this study for future works.

Gromov-Wasserstein distance on the real line When n = m and ai = bj = 1
n , one can look

for the hard assignment version of the GW distance resulting in the Gromov-Monge problem [34]
associated with the following GM distance:

GM2(cX , cY , µ, ν) = min
σ∈Sn

1

n2

∑
i,j

∣∣cX(xi, xj)− cY (yσ(i), yσ(j))
∣∣2 (3)

where σ ∈ Sn is a one-to-one mapping {1, · · · , n} → {1, · · · , n}. Interestingly when the permuta-
tion σ is known, the computation of the cost is O(n2) which is far better than O(n3) for the general
GW case. It is easy to see that this problem is equivalent to minimizing

∑n
i,j=1 ai,jbσ(i),σ(j) with

aij = cX(xi, xj) and bij = −cY (yσ(i), yσ(j)). Thus, when a squared Euclidean cost is used for dis-
tributions lying on the real line, we exactly recover the solution of the GM problem defined in eq. (2).
As matter of consequence, theorem 3.1 provides an efficient way of solving the Gromov-Monge
problem.

Moreover, this theorem also allows finding a closed form for the GW distance. Indeed, some recent
advances in graph matching state that, under some conditions on A and B, the assignment problem is
equivalent to its soft-assignment counterpart [35]. This way, using both Theorem 3.1 and [35], one
can find a solvable case for the GW distance when p, q = 1 as stated in the following theorem:
Theorem 3.2. Closed form for GW and GM in 1D for n = m and uniform weights

Let µ = 1
n

∑n
i=1 δxi ∈ P(R) and ν = 1

n

∑n
i=1 δyj ∈ P(R) with R equipped with the Euclidean

distance d(x, x′) = |x− x′|. Then GW2(d2, µ, ν) = GM2(d2, µ, ν).

Moreover, if x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn this result is achieved either by the identity or the
anti-identity permutation.

Sketch of the proof. Since d2 is conditionally negative definite of order 1 (see e.g. Prop 3 and 4
in [36]), one can use the theory developed in [35] to prove that the assignment problem of GM
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is equivalent to GW . Note that this result is true also for cX(x, x′) = ‖x − x′‖22,p , cY (y, y′) =

‖y − y′‖22,q for any p and q. Using Theorem 3.1 for the GM distance concludes the proof.

A more detailed proof is provided as supplementary material. In the following, we only consider
the case where µ and ν are discrete measures with the same number of atoms n = m, uniform
weights and p ≤ q. Note also that, while both possible solutions for problem (3) can be computed in
O(n log(n)), finding the best one requires the computation of the cost which seems, at first sight, to
have a O(n2) complexity. However, under the hypotheses of theorem 3.2, the cost can be computed
in O(n). Indeed, in this case, one can develop the sum in eq (3) to compute it in O(n) operations
using binomial expansion (see details in the supplementary materials) so that the overall complexity
of finding the best assignment and computing the cost is O(n log(n)) which is the same complexity
as the Sliced Wasserstein distance.

Sliced Gromov-Wasserstein discrepancy Theorem 3.2 can be put in perspective with the Wasser-
stein distance for 1D distributions which is achieved by the identity permutation when points are
sorted [37]. As explained in the introduction, this result was used to approximate the Wasserstein
distance between measures of Rp using the so called Sliced Wasserstein (SW) distance [14]. The
main idea is to project the points of the measures on lines of Rp where computing a Wasserstein
distance is easy since it only involves a simple sort and to average these distances. It has been proven
that SW and W are equivalent in terms of metric on compact domains [13]. In the same philosophy
we build upon Theorem 3.2 to define a ”sliced” version of the GW distance.

Let Sq−1 = {θ ∈ Rq : ‖θ‖2,q = 1} be the q-dimensional hypersphere and λq−1 the uniform measure
on Sq−1 . For θ we note Pθ the projection on θ, i.e. Pθ(x) = 〈x, θ〉. For a linear map ∆ ∈ Rq×p
(identified with slight abuses of notation by its corresponding matrix), we define the Sliced Gromov-
Wasserstein (SGW) as follows:

SGW∆(µ, ν) = E
θ∼λq−1

[GW 2
2 (d2, Pθ#µ∆, Pθ#ν)] =

 
Sq−1

GW 2
2 (d2, Pθ#µ∆, Pθ#ν)dθ (4)

where µ∆ = ∆#µ ∈ P(Rq) and
ffl
Sq−1 = 1

vol(Sq−1)

´
Sq−1 is the normalized integral and can be

seen as the expectation for θ following a uniform distribution of support Sq−1. The function ∆
acts as a mapping for a point in Rp of the measure µ onto Rq. When p = q and when we consider
∆ as the identity map we simply write SGW (µ, ν) instead of SGWIp(µ, ν). When p < q, one
straightforward choice is ∆ = ∆pad the ”uplifting” operator which pads each point of the measure
with zeros: ∆pad(x) = (x1, . . . , xp, 0, . . . , 0︸ ︷︷ ︸

q−p

). The procedure is illustrated in Fig 1.

In general fixing ∆ implies that some properties of GW , such as the rotational invariance, are lost.
Consequently, we also propose a variant of SGW that does not depends on the choice of ∆ called
Rotation Invariant SGW (RISGW ) and expressed as the following:

RISGW (µ, ν) = min
∆∈Vp(Rq)

SGW∆(µ, ν). (5)

We propose to minimize SGW∆ with respect to ∆ in the Stiefel manifold [38] which can be seen
as finding an optimal projector of the measure µ [39, 40]. This formulation comes at the cost
of an additional optimization step but allows recovering one key property of GW. When p = q
this encompasses for e.g. all rotations of the space, making RISGW invariant by rotation (see
theorem 3.3).

Interestingly enough, SGW holds various properties of the GW distance as summarized in the
following theorem:
Theorem 3.3. Properties of SGW

• For all ∆, SGW∆ and RISGW are translation invariant. RISGW is also rota-
tional invariant when p = q, more precisely if Q ∈ O(p) is an orthogonal matrix,
RISGW (Q#µ, ν) = RISGW (µ, ν) (same for any Q′ ∈ O(q) applied on ν).

• SGW and RISGW are pseudo-distances on P(Rp), i.e. they are symmetric, satisfy the
triangle inequality and SGW (µ, µ) = RISGW (µ, µ) = 0 .
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y1

y2

y3

y4

x1x4

x2
x3

Pθ#ν

Pθ#(∆#µ)

for θ ∈ Sq−1

yθ1 yθ2 yθ3 yθ4

xθ1 xθ2x
θ
3 xθ4

Figure 1: Example in dimension p = 2 and q = 3 (left) that are projected on the line (right). The
solution for this projection is the anti-diagonal coupling.

• For µ, ν ∈ P(Rp) × P(Rp) as defined previously, if SGW (µ, ν) = 0 then µ and ν are
isomorphic for the distance induced by the `1 norm on Rp. In particular this implies
GW2(d‖.‖1,p , µ, ν) = 0.

(with a slight abuse of notation we identify the matrix Q by its linear application). A proof of this
theorem can be found in the supplementary material. This theorem states that if SGW vanishes then
measures must be isometric, as it is the case for GW . It states also that RISGW holds most of the
properties of GW in term of invariances.

Remark The ∆ map can also be used in the context of the Sliced Wasserstein distance so as to
define SW∆(µ, ν), RISW (µ, ν) for µ, ν ∈ P(Rp) × P(Rq) with p 6= q. Please note that from a
purely computational point of view, complexities of these discrepancies are the same as SGW and
RISGW . Also, unlike SGW and RISGW , these discrepancies are not translation invariant. More
details are given in the supplementary material.

Computational aspects Similarly to Sliced Wasserstein, SGW can be approximated by replacing
the integral by a finite sum over randomly drawn directions. In practice we compute SGW as the
average of GW 2

2 projected on L directions θ. While the sum in (4) can be implemented with libraries
such as Pykeops [41], Theorem 3.2 shows that computing (4) is achieved by an O(n log(n)) sorting
of the projected samples and by finding the optimal permutation which is either the identity or the anti
identity. Moreover computing the cost is O(n) for each projection as explained previously. Thus the
overall complexity of computing SGW with L projections is O(Ln(p+ q) + Ln log(n) + Ln) =
O(Ln(p+q+log(n))) when taking into account the cost of projections. Note that these computations
can be efficiently implemented in parallel on GPUs with modern toolkits such as Pytorch [42].

The complexity of solving RISGW is higher but one can rely on efficient algorithms for optimizing
on the Stiefel manifold [38] that have been implemented in several toolboxes [43, 44]. Note that
each iteration in a manifold gradient decent requires the solution of SGW , that can be computed and
differentiated efficiently with the frameworks described above. Moreover, the optimization over the
Stiefel manifold does not depend on the number of points but only on the dimension d of the problem
so that overall complexity is niter(Ln(d+ log(n)) + d3), which is affordable for small d. In practice,
we observed in the numerical experiments that RISGW converges in few iterations (the order of 10).

4 Experimental results

The goal of this section is to validate SGW and its rotational invariant on both quantitative (execution
time) and qualitative sides. All the experiments were conducted on a standard computer equipped
with a NVIDIA Titan X GPU.

SGW and RISGW on spiral dataset As a first example, we use the spiral dataset from sklearn
toolbox and compute GW , SGW and RISGW on n = 100 samples with L = 20 sampled lines
for different rotations of the target distribution. The optimization of ∆ on the Stiefel manifold is
performed using Pymanopt [43] with automatic differentiation with autograd [45]. Some examples of
empirical distributions are available in Figure 2 (left). The mean value of GW , SGW and RISGW
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Figure 2: Illustration of SGW , RISGW and GW on spiral dataset for varying rotations on discrete
2D spiral dataset. (Left) Examples of spiral distributions for source and target with different rotations.
(Right) Average value of SGW , GW and RISGW with L = 20 as a function of rotation angle of
the target. Colored areas correspond to the 20% and 80% percentiles.

are reported on Figure 2 (right) where we can see that RISGW is invariant to rotation as GW
whereas SGW with ∆ = Id is clearly not.

Runtimes comparison We perform a comparison between runtimes of SGW , GW and its
entropic counterpart [21]. We calculate these distances between two 2D random measures of
n ∈ {1e2, ..., 1e6} points. For SGW , the number of projections L is taken from {50, 200}. We
use the Python Optimal Transport (POT) toolbox [46] to compute GW distance on CPU. For
entropic-GW we use the Pytorch GPU implementation from [9] that uses the log-stabilized Sinkhorn
algorithm [47] with a regularization parameter ε = 100. For SGW , we implemented both a Numpy
implementation and a Pytorch implementation running on GPU. Fig. 3 illustrates the results.

Figure 3: Runtimes comparison between SGW , GW ,
entropic-GW between two 2D random distributions with
varying number of points from 0 to 106 in log-log scale. The
time includes the calculation of the pair-to-pair distances.

SGW is the only method which
scales w.r.t. the number of samples
and allows computation for n > 104.
While entropic-GW uses GPU, it is
still slow because the gradient step
size in the algorithm is inversely pro-
portional to the regularization parame-
ter [22] which highly curtails the con-
vergence of the method. On CPU,
SGW is two orders of magnitude
faster than GW . On GPU, SGW is
five orders of magnitude better than
GW and four orders of magnitude bet-
ter than entropic GW . Still the slope
of both GW implementations are sur-
prisingly good, probably due to their
maximum iteration stopping criteria.
In this experiment we were able to
compute SGW between 106 points in
1s. Finally note that we recover exactly a quasi-linear slope, corresponding to the O(n log(n))
complexity for SGW .

Meshes comparison In the context of computer graphics, GW can be used to quantify the corre-
spondances between two meshes. A direct interest is found in shape retrieval, search, exploration or
organization of databases. In order to recover experimentally some of the desired properties of the
GW distance, we reproduce an experiment originally conducted in [48] and presented in [21] with
the use of entropic-GW .

From a given time series of 45 meshes representing a galloping horse, the goal is to conduct a multi-
dimensional scaling (MDS) of the pairwise distances, computed with SGW between the meshes,
that allows ploting each mesh as a 2D point. As one can observe in Fig. 4, the cyclical nature of this
motion is recovered in this 2D plot, as already illustrated in [21] with the GW distance. Each horse
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Figure 4: Each sample in this Figure corresponds to a mesh and is colored by the corresponding time
iteration. One can see that the cyclical nature of the motion is recovered.

mesh is composed of approximately 9, 000 vertices. The average time for computing one distance is
around 30 minutes using the POT implementation, which makes the computation of the full pairwise
distance matrix impractical (as already mentioned in [21]). In contrast, our method only requires 25
minutes to compute the full distance matrix, with an average of 1.5s per mesh pair, using our CPU
implementation. This clearly highlights the benefits of our method in this case.

SGW as a generative adversarial network (GAN) loss In a recent paper [9], Bunne and col-
leagues propose a new variant of GAN between incomparable spaces, i.e. of different dimensions. In
contrast with classical divergences such as Wasserstein, they suggest to capture the intrinsic relations
between the samples of the target probability distribution by using GW as a loss for learning. More
formally, this translates into the following optimization problem over a desired generator G:

G∗ = arg minGW 2
2 (cX , cG(Z), µ, νG), (6)

where Z is a random noise following a prescribed low-dimensional distribution (typically Gaussian),
G(Z) performs the uplifting of Z in the desired dimensional space, and cG(Z) is the corresponding
metric. µ and νG correspond respectively to the target and generated distributions, that we might
want to align in the sense of GW . Following the same idea, and the fact that sliced variants of the
Wasserstein distance have been successfully used in the context of GAN [17], we propose to use
SGW instead of GW as a loss for learning G. As a proof of concept, we reproduce the simple toy
example of [9]. Those examples consist in generating 2D or 3D distributions from target distributions
either in 2D or 3D spaces (Fig. 5 and supplementary material). These distributions are formed by
3, 000 samples. We do not use their adversarial metric learning as it might confuse the objectives
of this experiment and as it is not required for these low dimensional problems [9]. The generator
G is designed as a simple multilayer perceptron with 2 hidden layers of respectively 256 and 128
units with ReLu activation functions, and one final layer with 2 or 3 output neurons (with linear
activation) as output, depending on the experiment. The Adam optimizer is used, with a learning
rate of 2.10−4 and β1 = 0.5, β2 = 0.99. The convergence to a visually acceptable solution takes a
few hundred epochs. Contrary to [9], we directly back-propagate through our loss, without having
to explicit a coupling matrix and resorting to the envelope Theorem. Compared to [9] and the use
of entropic-GW , the time per epoch is more than one order of magnitude faster, as expected from
previous experiment.
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Figure 5: Using SGW in a GAN loss. First image shows the loss value along epochs. The next 4
images are produced by sampling the generated distribution (3, 000 samples, plotted as a continuous
density map). Last image shows the target 3D distribution.

5 Discussion and conclusion

In this work, we establish a new result about Quadratic Assignment Problem when matrices are
squared euclidean distances on the real line, and use it to state a closed form expression for GW
between monodimensional measures. Building upon this result we define a new similarity measure,
called the Sliced Gromov-Wasserstein and a variant Rotation-invariant SGW and prove that both
conserve various properties of the GW distance while being cheaper to compute and applicable in
a large-scale setting. Notably SGW can be computed in 1 second for distributions with 1 million
samples each. This paves the way for novel promising machine learning applications of optimal
transport between metric spaces.

Yet, several questions are raised in this work. Notably, our method perfectly fits the case when the
two distributions are given empirically through samples embedded in an Hilbertian space, that allows
for projection on the real line. This is the case in most of the machine learning applications that use
the Gromov-Wasserstein distance. However, when only distances between samples are available,
the projection operation can not be carried anymore, while the computation of GW is still possible.
One can argue that it is possible to embed either isometrically those distances into a Hilbertian space,
or at least with a low distortion, and then apply the presented technique. Our future line of work
considers this option, as well as a possible direct reasoning on the distance matrix. For example,
one should be able to consider geodesic paths (in a graph for instance) as the equivalent appropriate
geometric object related to the line. This constitutes the direct follow-up of this work, as well as
a better understanding of the accuracy of the estimated discrepancy with respect to the ambiant
dimension and the projections number.
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for Signal Analysis”. In: Journal of Mathematical Imaging and Vision 59.2 (2017), pp. 187–
210.

[3] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein Generative Adversarial Networks”. In:
International Conference on Machine Learning. Vol. 70. 2017, pp. 214–223.

[4] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. “Optimal transport for domain
adaptation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 39.9 (2017),
pp. 1853–1865.

[5] G. Huang, C. Guo, M. Kusner, Y. Sun, F. Sha, and K. Weinberger. “Supervised Word Mover’s
Distance”. In: Advances in Neural Information Processing Systems. 2016, pp. 4862–4870.

9



[6] Y. Yan, W. Li, H. Wu, H. Min, M. Tan, and Q. Wu. “Semi-Supervised Optimal Transport
for Heterogeneous Domain Adaptation”. In: International Joint Conference on Artificial
Intelligence. 2018, pp. 2969–2975.

[7] D. Ezuz, J. Solomon, V. G. Kim, and M. Ben-Chen. “GWCNN: A Metric Alignment Layer for
Deep Shape Analysis”. In: Computer Graphics Forum 36.5 (2017), pp. 49–57.

[8] T. Vayer, L. Chapel, R. Flamary, R. Tavenard, and N. Courty. “Optimal Transport for structured
data with application on graphs”. In: International Conference on Machine Learning. Vol. 97.
2019.

[9] C. Bunne, D. Alvarez-Melis, A. Krause, and S. Jegelka. “Learning Generative Models across
Incomparable Spaces”. In: International Conference on Machine Learning. Vol. 97. 2019.

[10] M. Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport”. In: Advances
in Neural Information Processing Systems. 2013, pp. 2292–2300.
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[22] G. Peyré, M. Cuturi, and J. Solomon. “Gromov-Wasserstein Averaging of Kernel and Distance
Matrices”. In: International Conference on Machine Learning. 2016, pp. 2664–2672.

[23] C. Villani. Optimal Transport: Old and New. Springer, 2008.
[24] D. Alvarez-Melis, S. Jegelka, and T. S. Jaakkola. “Towards Optimal Transport with Global

Invariances”. In: International Conference on Artificial Intelligence and Statistics. Vol. 89.
2019, pp. 1870–1879.

[25] F. Memoli. “Gromov Wasserstein Distances and the Metric Approach to Object Matching”. In:
Foundations of Computational Mathematics (2011), pp. 1–71.

[26] D. Alvarez-Melis and T. S. Jaakkola. “Gromov-wasserstein alignment of word embedding
spaces”. In: Conference on Empirical Methods in Natural Language Processing. 2018.

[27] K.-T. Sturm. “The space of spaces: curvature bounds and gradient flows on the space of metric
measure spaces”. In: arXiv e-prints (2012), arXiv:1208.0434.

[28] T. Koopmans and M. J. Beckmann. “Assignment Problems and the Location of Economic
Activities”. In: Econometrica: journal of the Econometric Society 53–76 (1957).

10
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[32] E. Çela. The Quadratic Assignment Problem: Theory and Algorithms. Vol. 1. Springer Science
& Business Media, 2013.

[33] E. Loiola, N. Abreu, P. Boaventura-Netto, P. Hahn, and T. Querido. “A survey of the quadratic
assignment problem”. In: European Journal of Operational Research 176 (2007), pp. 657–690.

[34] F. Mémoli and T. Needham. “Gromov-Monge quasi-metrics and distance distributions”. In:
arXiv:1810.09646 (2018).

[35] H. Maron and Y. Lipman. “(Probably) Concave Graph Matching”. In: Advances in Neural
Information Processing Systems. 2018, pp. 408–418.

[36] B. Schölkopf. “The Kernel Trick for Distances”. In: Advances in Neural Information Processing
Systems. 2001, pp. 301–307.
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