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Abstract

Manipulating data, such as weighting data examples or augmenting with new
instances, has been increasingly used to improve model training. Previous work
has studied various rule- or learning-based approaches designed for specific types
of data manipulation. In this work, we propose a new method that supports learning
different manipulation schemes with the same gradient-based algorithm. Our
approach builds upon a recent connection of supervised learning and reinforcement
learning (RL), and adapts an off-the-shelf reward learning algorithm from RL for
joint data manipulation learning and model training. Different parameterization
of the “data reward” function instantiates different manipulation schemes. We
showcase data augmentation that learns a text transformation network, and data
weighting that dynamically adapts the data sample importance. Experiments show
the resulting algorithms significantly improve the image and text classification
performance in low data regime and class-imbalance problems.

1 Introduction

The performance of machines often crucially depend on the amount and quality of the data used for
training. It has become increasingly ubiquitous to manipulate data to improve learning, especially in
low data regime or in presence of low-quality datasets (e.g., imbalanced labels). For example, data
augmentation applies label-preserving transformations on original data points to expand the data size;
data weighting assigns an importance weight to each instance to adapt its effect on learning; and data
synthesis generates entire artificial examples. Different types of manipulation can be suitable for
different application settings.

Common data manipulation methods are usually designed manually, e.g., augmenting by flipping
an image or replacing a word with synonyms, and weighting with inverse class frequency or loss
values [10, 32]. Recent work has studied automated approaches, such as learning the composition of
augmentation operators with reinforcement learning [38, 5], deriving sample weights adaptively from
a validation set via meta learning [39], or learning a weighting network by inducing a curriculum [21].
These learning-based approaches have alleviated the engineering burden and produced impressive
results. However, the algorithms are usually designed specifically for certain types of manipulation
(e.g., either augmentation or weighting) and thus have limited application scope in practice.

In this work, we propose a new approach that enables learning for different manipulation schemes
with the same single algorithm. Our approach draws inspiration from the recent work [46] that
shows equivalence between the data in supervised learning and the reward function in reinforcement
learning. We thus adapt an off-the-shelf reward learning algorithm [52] to the supervised setting
for automated data manipulation. The marriage of the two paradigms results in a simple yet general
algorithm, where various manipulation schemes are reduced to different parameterization of the
∗equal contribution
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data reward. Free parameters of manipulation are learned jointly with the target model through
efficient gradient descent on validation examples. We demonstrate instantiations of the approach for
automatically fine-tuning an augmentation network and learning data weights, respectively.

We conduct extensive experiments on text and image classification in challenging situations of very
limited data and imbalanced labels. Both augmentation and weighting by our approach significantly
improve over strong base models, even though the models are initialized with large-scale pretrained
networks such as BERT [7] for text and ResNet [14] for images. Our approach, besides its generality,
also outperforms a variety of dedicated rule- and learning-based methods for either augmentation
or weighting, respectively. Lastly, we observe that the two types of manipulation tend to excel in
different contexts: augmentation shows superiority over weighting with a small amount of data
available, while weighting is better at addressing class imbalance problems.

The way we derive the manipulation algorithm represents a general means of problem solving through
algorithm extrapolation between learning paradigms, which we discuss more in section 6.

2 Related Work

Rich types of data manipulation have been increasingly used in modern machine learning pipelines.
Previous work each has typically focused on a particular manipulation type. Data augmentation
that perturbs examples without changing the labels is widely used especially in vision [44, 26] and
speech [24, 36] domains. Common heuristic-based methods on images include cropping, mirroring,
rotation [26], and so forth. Recent work has developed automated augmentation approaches [5, 38,
28, 37, 47]. Xie et al. [50] additionally use large-scale unlabeled data. Cubuk et al. [5], Ratner
et al. [38] learn to induce the composition of data transformation operators. Instead of treating
data augmentation as a policy in reinforcement learning [5], we formulate manipulation as a reward
function and use efficient stochastic gradient descent to learn the manipulation parameters. Text
data augmentation has also achieved impressive success, such as contextual augmentation [25, 49],
back-translation [42], and manual approaches [48, 2]. In addition to perturbing the input text as in
classification tasks, text generation problems expose opportunities to adding noise also in the output
text, such as [35, 51]. Recent work [46] shows output nosing in sequence generation can be treated as
an intermediate approach in between supervised learning and reinforcement learning, and developed
a new sequence learning algorithm that interpolates between the spectrum of existing algorithms. We
instantiate our approach for text contextual augmentation as in [25, 49], but enhance the previous
work by additionally fine-tuning the augmentation network jointly with the target model.

Data weighting has been used in various algorithms, such as AdaBoost [10], self-paced learning [27],
hard-example mining [43], and others [4, 22]. These algorithms largely define sample weights based
on training loss. Recent work [21, 8] learns a separate network to predict sample weights. Of
particular relevance to our work is [39] which induces sample weights using a validation set. The data
weighting mechanism instantiated by our framework has a key difference in that samples weights are
treated as parameters that are updated iteratively, instead of re-estimated from scratch at each step.
We show improved performance of our approach. Besides, our data manipulation approach is derived
based on a different perspective of reward learning, instead of meta-learning as in [39].

Another popular type of data manipulation involves data synthesis, which creates entire artificial
samples from scratch. GAN-based approaches have achieved impressive results for synthesizing
conditional image data [3, 34]. In the text domain, controllable text generation [17] presents a
way of co-training the data generator and classifier in a cyclic manner within a joint VAE [23] and
wake-sleep [15] framework. It is interesting to explore the instantiation of the present approach for
adaptive data synthesis in the future.

3 Background

We first present the relevant work upon which our automated data manipulation is built. This section
also establishes the notations used throughout the paper.

Let x denote the input and y the output. For example, in text classification, x can be a sentence and y
is the sentence label. Denote the model of interest as pθ(y|x), where θ is the model parameters to be
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learned. In supervised setting, given a set of training examples D = {(x∗, y∗)}, we learn the model
by maximizing the data log-likelihood.

Equivalence between Data and Reward The recent work [46] introduced a unifying perspective
of reformulating maximum likelihood supervised learning as a special instance of a policy optimiza-
tion framework. In this perspective, data examples providing supervision signals are equivalent to a
specialized reward function. Since the original framework [46] was derived for sequence generation
problems, here we present a slightly adapted formulation for our context of data manipulation.

To connect the maximum likelihood supervised learning with policy optimization, consider the
model pθ(y|x) as a policy that takes “action” y given the “state” x. Let R(x, y|D) ∈ R denote
a reward function, and p(x) be the empirical data distribution which is known given D. Further
assume a variational distribution q(x, y) that factorizes as q(x, y) = p(x)q(y|x). A variational
policy optimization objective is then written as:

L(q,θ) = Eq(x,y) [R(x, y|D)]− αKL
(
q(x, y)‖p(x)pθ(y|x)

)
+ βH(q), (1)

where KL(·‖·) is the Kullback–Leibler divergence; H(·) is the Shannon entropy; and α, β > 0 are
balancing weights. The objective is in the same form with the RL-as-inference formalism of policy
optimization [e.g., 6, 29, 1]. Intuitively, the objective maximizes the expected reward under q, and
enforces the model pθ to stay close to q, with a maximum entropy regularization over q. The problem
is solved with an EM procedure that optimizes q and θ alternatingly:

E-step: q′(x, y) = exp

{
α log p(x)pθ(y|x) +R(x, y|D)

α+ β

}
/ Z,

M-step: θ′ = argmaxθ Eq′(x,y)
[
log pθ(y|x)

]
,

(2)

where Z is the normalization term. With the established framework, it is easy to show that the above
optimization procedure reduces to maximum likelihood learning by taking α→ 0, β = 1, and the
reward function:

Rδ(x, y|D) =
{

1 if (x, y) ∈ D
−∞ otherwise. (3)

That is, a sample (x, y) receives a unit reward only when it matches a training example in the
dataset, while the reward is negative infinite in all other cases. To make the equivalence to maximum
likelihood learning clearer, note that the above M-step now reduces to

θ′ = argmaxθ Ep(x) exp{Rδ}/Z
[
log pθ(y|x)

]
, (4)

where the joint distribution p(x) exp{Rδ}/Z equals the empirical data distribution, which means the
M-step is in fact maximizing the data log-likelihood of the model pθ.

Gradient-based Reward Learning There is a rich line of research on learning the reward in
reinforcement learning. Of particular interest to this work is [52] which learns a parametric intrinsic
reward that additively transforms the original task reward (a.k.a extrinsic reward) to improve the
policy optimization. For consistency of notations with above, formally, let pθ(y|x) be a policy where
y is an action and x is a state. Let Rinφ be the intrinsic reward with parameters φ. In each iteration,
the policy parameter θ is updated to maximize the joint rewards, through:

θ′ = θ + γ∇θLex+in(θ,φ), (5)

where Lex+in is the expectation of the sum of extrinsic and intrinsic rewards; and γ is the step size.
The equation shows θ′ depends on φ, thus we can write as θ′ = θ′(φ).

The next step is to optimize the intrinsic reward parameters φ. Recall that the ultimate measure of
the performance of a policy is the value of extrinsic reward it achieves. Therefore, a good intrinsic
reward is supposed to, when the policy is trained with it, increase the eventual extrinsic reward. The
update to φ is then written as:

φ′ = φ+ γ∇φLex(θ′(φ)). (6)

That is, we want the expected extrinsic reward Lex(θ′) of the new policy θ′ to be maximized. Since
θ′ is a function of φ, we can directly backpropagate the gradient through θ′ to φ.
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Algorithm 1 Joint Learning of Model and Data Manipulation

Input: The target model pθ(y|x)
The data manipulation function Rφ(x, y|D)
Training set D, validation set Dv

1: Initialize model parameter θ and manipulation parameter φ
2: repeat
3: Optimize θ on D enriched with data manipulation

through Eq.(7)
4: Optimize φ by maximizing data log-likelihood on Dv

through Eq.(8)
5: until convergence

Output: Learned model pθ∗(y|x) and manipulation Rφ∗(y,x|D)

Train Data ! Val Data !"

ℒ(%,')

%′(')
Model

%

ℒ(%′('))

' '′
Manipulation

Figure 1: Algorithm Computation.
Blue arrows denote learning model θ.
Red arrows denote learning manipula-
tion φ. Solid arrows denote forward
pass. Dashed arrows denote backward
pass and parameter updates.

4 Learning Data Manipulation

4.1 Method

Parameterizing Data Manipulation We now develop our approach of learning data manipulation,
through a novel marriage of supervised learning and the above reward learning. Specifically, from
the policy optimization perspective, due to the δ-function reward (Eq.3), the standard maximum
likelihood learning is restricted to use only the exact training examples D in a uniform way. A natural
idea of enabling data manipulation is to relax the strong restrictions of the δ-function reward and
instead use a relaxed rewardRφ(x, y|D) with parametersφ. The relaxed reward can be parameterized
in various ways, resulting in different types of manipulation. For example, when a sample (x, y)
matches a data instance, instead of returning constant 1 by Rδ , the new Rφ can return varying reward
values depending on the matched instance, resulting in a data weighting scheme. Alternatively, Rφ
can return a valid reward even when x matches a data example only in part, or (x, y) is an entire new
sample not in D, which in effect makes data augmentation and data synthesis, respectively, in which
cases φ is either a data transformer or a generator. In the next section, we demonstrate two particular
parameterizations for data augmentation and weighting, respectively.

We thus have shown that the diverse types of manipulation all boil down to a parameterized data
reward Rφ. Such an concise, uniform formulation of data manipulation has the advantage that, once
we devise a method of learning the manipulation parameters φ, the resulting algorithm can directly
be applied to automate any manipulation type. We present a learning algorithm next.

Learning Manipulation Parameters To learn the parameters φ in the manipulation reward
Rφ(x, y|D), we could in principle adopt any off-the-shelf reward learning algorithm in the lit-
erature. In this work, we draw inspiration from the above gradient-based reward learning (section 3)
due to its simplicity and efficiency. Briefly, the objective of φ is to maximize the ultimate measure
of the performance of model pθ(y|x), which, in the context of supervised learning, is the model
performance on a held-out validation set.

The algorithm optimizes θ and φ alternatingly, corresponding to Eq.(5) and Eq.(6), respectively.
More concretely, in each iteration, we first update the model parameters θ in analogue to Eq.(5)
which optimizes intrinsic reward-enriched objective. Here, we optimize the log-likelihood of the
training set enriched with data manipulation. That is, we replace Rδ with Rφ in Eq.(4), and obtain
the augmented M-step:

θ′ = argmaxθ Ep(x) exp{Rφ(x,y|D)}/Z
[
log pθ(y|x)

]
. (7)

By noticing that the new θ′ depends onφ, we can write θ′ as a function ofφ, namely, θ′ = θ′(φ). The
practical implementation of the above update depends on the actual parameterization of manipulation
Rφ, which we discuss in more details in the next section.
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The next step is to optimize φ in terms of the model validation performance, in analogue to Eq.(6).
Formally, let Dv be the validation set of data examples. The update is then:

φ′ = argmaxφ Ep(x) exp{Rδ(x,y|Dv)}/Z
[
log pθ′(y|x)

]
= argmaxφ E(x,y)∼Dv

[
log pθ′(y|x)

]
,

(8)

where, since θ′ is a function of φ, the gradient is backpropagated to φ through θ′(φ). Taking data
weighting for example where φ is the training sample weights (more details in section 4.2), the update
is to optimize the weights of training samples so that the model performs best on the validation set.

The resulting algorithm is summarized in Algorithm 1. Figure 1 illustrates the computation flow.
Learning the manipulation parameters effectively uses a held-out validation set. We show in our
experiments that a very small set of validation examples (e.g., 2 labels per class) is enough to
significantly improve the model performance in low data regime.

It is worth noting that some previous work has also leveraged validation examples, such as learning
data augmentation with policy gradient [5] or inducing data weights with meta-learning [39]. Our
approach is inspired from a distinct paradigm of (intrinsic) reward learning. In contrast to [5] that
treats data augmentation as a policy, we instead formulate manipulation as a reward function and
enable efficient stochastic gradient updates. Our approach is also more broadly applicable to diverse
data manipulation types than [39, 5].

4.2 Instantiations: Augmentation & Weighting

As a case study, we show two parameterizations of Rφ which instantiate distinct data manipulation
schemes. The first example learns augmentation for text data, a domain that has been less studied in
the literature compared to vision and speech [25, 12]. The second instance focuses on automated data
weighting, which is applicable to any data domains.

Fine-tuning Text Augmentation
The recent work [25, 49] developed a novel contextual augmentation approach for text data, in which
a powerful pretrained language model (LM), such as BERT [7], is used to generate substitutions
of words in a sentence. Specifically, given an observed sentence x∗, the method first randomly
masks out a few words. The masked sentence is then fed to BERT which fills the masked positions
with new words. To preserve the original sentence class, the BERT LM is retrofitted as a label-
conditional model, and trained on the task training examples. The resulting model is then fixed and
used to augment data during the training of target model. We denote the augmentation distribution as
gφ0

(x|x∗,y∗), where φ0 is the fixed BERT LM parameters.

The above process has two drawbacks. First, the LM is fixed after fitting to the task data. In the
subsequent phase of training the target model, the LM augments data without knowing the state of
the target model, which can lead to sub-optimal results. Second, in the cases where the task dataset
is small, the LM can be insufficiently trained for preserving the labels faithfully, resulting in noisy
augmented samples.

To address the difficulties, it is beneficial to apply the proposed learning data manipulation algorithm
to additionally fine-tune the LM jointly with target model training. As discussed in section 4, this
reduces to properly parameterizing the data reward function:

Raugφ (x, y|D) =
{

1 if x ∼ gφ(x|x∗, y), (x∗, y) ∈ D
−∞ otherwise. (9)

That is, a sample (x, y) receives a unit reward when y is the true label and x is the augmented sample
by the LM (instead of the exact original data x∗). Plugging the reward into Eq.(7), we obtain the
data-augmented update for the model parameters:

θ′ = argmaxθ Ex∼gφ(x|x∗,y), (x∗,y)∼D
[
log pθ(y|x)

]
. (10)

That is, we pick an example from the training set, and use the LM to create augmented samples,
which are then used to update the target model. Regarding the update of augmentation parameters φ
(Eq.8), since text samples are discrete, to enable efficient gradient propagation through θ′ to φ, we
use a gumbel-softmax approximation [20] to x when sampling substitution words from the LM.
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Learning Data Weights
We now demonstrate the instantiation of data weighting. We aim to assign an importance weight to
each training example to adapt its effect on model training. We automate the process by learning the
data weights. This is achieved by parameterizing Rφ as:

Rwφ (x, y|D) =
{
φi if (x, y) = (x∗i , y

∗
i ), (x∗i , y

∗
i ) ∈ D

−∞ otherwise, (11)

where φi ∈ R is the weight associated with the ith example. Plugging Rwφ into Eq.(7), we obtain the
weighted update for the model θ:

θ′ = argmaxθ E(x∗i ,y
∗
i )∈D, i∼softmax(φi)

[
log pθ(y

∗
i |x∗i )

]
= argmaxθ E(x∗i ,y

∗
i )∼D

[
softmax(φi) log pθ(y∗i |x∗i )

] (12)

In practice, when minibatch stochastic optimization is used, we approximate the weighted sampling
by taking the softmax over the weights of only the minibatch examples. The data weights φ are
updated with Eq.(8). It is worth noting that the previous work [39] similarly derives data weights
based on their gradient directions on a validation set. Our algorithm differs in that the data weights are
parameters maintained and updated throughout the training, instead of re-estimated from scratch in
each iteration. Experiments show the parametric treatment achieves superior performance in various
settings. There are alternative parameterizations of Rφ other than Eq.(11). For example, replacing φi
in Eq.(11) with log φi in effect changes the softmax normalization in Eq.(12) to linear normalization,
which is used in [39].

5 Experiments

We empirically validate the proposed data manipulation approach through extensive experiments on
learning augmentation and weighting. We study both text and image classification, in two difficult
settings of low data regime and imbalanced labels1.

5.1 Experimental Setup

Base Models. We choose strong pretrained networks as our base models for both text and image
classification. Specifically, on text data, we use the BERT (base, uncased) model [7]; while on
image data, we use ResNet-34 [14] pretrained on ImageNet. We show that, even with the large-
scale pretraining, data manipulation can still be very helpful to boost the model performance on
downstream tasks. Since our approach uses validation sets for manipulation parameter learning, for a
fair comparison with the base model, we train the base model in two ways. The first is to train the
model on the training sets as usual and select the best step using the validation sets; the second is to
train on the merged training and validation sets for a fixed number of steps. The step number is set to
the average number of steps selected in the first method. We report the results of both methods.

Comparison Methods. We compare our approach with a variety of previous methods that were
designed for specific manipulation schemes: (1) For text data augmentation, we compare with the
latest model-based augmentation [49] which uses a fixed conditional BERT language model for
word substitution (section 4.2). As with base models, we also tried fitting the augmentatin model to
both the training data and the joint training-validation data, and did not observe significant difference.
Following [49], we also study a conventional approach that replaces words with their synonyms
using WordNet [33]. (2) For data weighting, we compare with the state-of-the-art approach [39]
that dynamically re-estimates sample weights in each iteration based on the validation set gradient
directions. We follow [39] and also evaluate the commonly-used proportion method that weights
data by inverse class frequency.

Training. For both the BERT classifier and the augmentation model (which is also based on
BERT), we use Adam optimization with an initial learning rate of 4e-5. For ResNets, we use SGD
optimization with a learning rate of 1e-3. For text data augmentation, we augment each minibatch
by generating two or three samples for each data points (each with 1, 2 or 3 substitutions), and use
both the samples and the original data to train the model. For data weighting, to avoid exploding
value, we update the weight of each data point in a minibatch by decaying the previous weight value

1Code available at https://github.com/tanyuqian/learning-data-manipulation
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Model SST-5 (40+2) IMDB (40+5) TREC (40+5)

Base model: BERT [7] 33.32± 4.04 63.55± 5.35 88.25± 2.81
Base model + val-data 35.86± 3.03 63.65± 3.32 88.42± 4.90

Augment
Synonym 32.45± 4.59 62.68± 3.94 88.26± 2.76

Fixed augmentation [49] 34.84± 2.76 63.65± 3.21 88.28± 4.50
Ours: Fine-tuned augmentation 37.03± 2.05 65.62± 3.32 89.15± 2.41

Weight Ren et al. [39] 36.09± 2.26 63.01± 3.33 88.60± 2.85
Ours 36.51± 2.54 64.78± 2.72 89.01± 2.39

Table 1: Accuracy of Data Manipulation on Text Classification. All results are averaged over 15 runs
± one standard deviation. The numbers in parentheses next to the dataset names indicate the size of
the datasets. For example, (40+2) denotes 40 training instances and 2 validation instances per class.

������ Although visually striking and slickly s 
s staged, it’s also cold, grey, antiseptic a 
a   and emotionally desiccated.
�������negative 
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Figure 2: Words predicted with the high-
est probabilities by the augmentation LM.
Two tokens “striking” and “grey” are
masked for substitution. The boxes in re-
spective colors list the predicted words af-
ter training epoch 1 and 3, respectively.
E.g., “stunning” is the most probable sub-
stitution for “striking” in epoch 1.

Model Pretrained Not-Pretrained

Base model: ResNet-34 37.69± 3.03 22.98± 2.81
Base model + val-data 38.09± 1.87 23.42± 1.47

Ren et al. [39] 38.02± 2.14 23.44± 1.63
Ours 38.95± 2.03 24.92± 1.57

Table 2: Accuracy of Data Weighting on Image Clas-
sification. The small subset of CIFAR10 used here has
40 training instances and 2 validation instances for each
class. The “pretrained” column is the results by initial-
izing the ResNet-34 [14] base model with ImageNet-
pretrained weights. In contrast, “Not-Pretrained” de-
notes the base model is randomly initialized. Since
every class has the same number of examples, the
proportion-based weighting degenerates to base model
training and thus is omitted here.

with a factor of 0.1 and then adding the gradient. All experiments were implemented with PyTorch
(pytorch.org) and were performed on a Linux machine with 4 GTX 1080Ti GPUs and 64GB RAM.
All reported results are averaged over 15 runs ± one standard deviation.

5.2 Low Data Regime

We study the problem where only very few labeled examples for each class are available. Both
of our augmentation and weighting boost base model performance, and are superior to respective
comparison methods. We also observe that augmentation performs better than weighting in the
low-data setting.

Setup For text classification, we use the popular benchmark datasets, including SST-5 for 5-class
sentence sentiment [45], IMDB for binary movie review sentiment [31], and TREC for 6-class
question types [30]. We subsample a small training set on each task by randomly picking 40 instances
for each class. We further create small validation sets, i.e., 2 instances per class for SST-5, and 5
instances per class for IMDB and TREC, respectively. The reason we use slightly more validation
examples on IMDB and TREC is that the model can easily achieve 100% validation accuracy if the
validation sets are too small. Thus, the SST-5 task has 210 labeled examples in total, while IMDB has
90 labels and TREC has 270. Such extremely small datasets pose significant challenges for learning
deep neural networks. Since the manipulation parameters are trained using the small validation sets,
to avoid possible overfitting we restrict the training to small number (e.g., 5 or 10) of epochs. For
image classification, we similarly create a small subset of the CIFAR10 data, which includes 40
instances per class for training, and 2 instances per class for validation.
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Model 20 : 1000 50 : 1000 100 : 1000

Base model: BERT [7] 54.91± 5.98 67.73± 9.20 75.04± 4.51
Base model + val-data 52.58± 4.58 55.90± 4.18 68.21± 5.28

Proportion 57.42± 7.91 71.14± 6.71 76.14± 5.8
Ren et al. [39] 74.61± 3.54 76.89± 5.07 80.73± 2.19

Ours 75.08± 4.98 79.35± 2.59 81.82± 1.88

Table 3: Accuracy of Data Weighting on Imbalanced SST-2. The first row shows the number of
training examples in each of the two classes.

Model 20 : 1000 50 : 1000 100 : 1000

Base model: ResNet [14] 72.20± 4.70 81.65± 2.93 86.42± 3.15
Base model + val-data 64.66± 4.81 69.51± 2.90 79.38± 2.92

Proportion 72.29± 5.67 81.49± 3.83 84.26± 4.58
Ren et al. [39] 74.35± 6.37 82.25± 2.08 86.54± 2.69

Ours 75.32± 6.36 83.11± 2.08 86.99± 3.47

Table 4: Accuracy of Data Weighting on Imbalanced CIFAR10. The first row shows the number of
training examples in each of the two classes.

Results Table 1 shows the manipulation results on text classification. For data augmentation, our
approach significantly improves over the base model on all the three datasets. Besides, compared to
both the conventional synonym substitution and the approach that keeps the augmentation network
fixed, our adaptive method that fine-tunes the augmentation network jointly with model training
achieves superior results. Indeed, the heuristic-based synonym approach can sometimes harm the
model performance (e.g., SST-5 and IMDB), as also observed in previous work [49, 25]. This
can be because the heuristic rules do not fit the task or datasets well. In contrast, learning-based
augmentation has the advantage of adaptively generating useful samples to improve model training.

Table 1 also shows the data weighting results. Our weight learning consistently improves over the base
model and the latest weighting method [39]. In particular, instead of re-estimating sample weights
from scratch in each iteration [39], our approach treats the weights as manipulation parameters
maintained throughout the training. We speculate that the parametric treatment can adapt weights
more smoothly and provide historical information, which is beneficial in the small-data context.

It is interesting to see from Table 1 that our augmentation method consistently outperforms the
weighting method, showing that data augmentation can be a more suitable technique than data
weighting for manipulating small-size data. Our approach provides the generality to instantiate
diverse manipulation types and learn with the same single procedure.

To investigate the augmentation model and how the fine-tuning affects the augmentation results, we
show in Figure 2 the top-5 most probable word substitutions predicted by the augmentation model
for two masked tokens, respectively. Comparing the results of epoch 1 and epoch 3, we can see
the augmentation model evolves and dynamically adjusts the augmentation behavior as the training
proceeds. Through fine-tuning, the model seems to make substitutions that are more coherent with
the conditioning label and relevant to the original words (e.g., replacing the word “striking” with
“bland” in epoch 1 v.s. “charming” in epoch 3).

Table 2 shows the data weighting results on image classification. We evaluate two settings with the
ResNet-34 base model being initialized randomly or with pretrained weights, respectively. Our data
weighting consistently improves over the base model and [39] regardless of the initialization.

5.3 Imbalanced Labels

We next study a different problem setting where the training data of different classes are imbalanced.
We show the data weighting approach greatly improves the classification performance. It is also
observed that, the LM data augmentation approach, which performs well in the low-data setting, fails
on the class-imbalance problems.
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Setup Though the methods are broadly applicable to multi-way classification problems, here
we only study binary classification tasks for simplicity. For text classification, we use the SST-2
sentiment analysis benchmark [45]; while for image, we select class 1 and 2 from CIFAR10 for binary
classification. We use the same processing on both datasets to build the class-imbalance setting.
Specifically, we randomly select 1,000 training instances of class 2, and vary the number of class-1
instances in {20, 50, 100}. For each dataset, we use 10 validation examples in each class. Trained
models are evaluated on the full binary-class test set.

Results Table 3 shows the classification results on SST-2 with varying imbalance ratios. We can
see our data weighting performs best across all settings. In particular, the improvement over the
base model increases as the data gets more imbalanced, ranging from around 6 accuracy points on
100:1000 to over 20 accuracy points on 20:1000. Our method is again consistently better than [39],
validating that the parametric treatment is beneficial. The proportion-based data weighting provides
only limited improvement, showing the advantage of adaptive data weighting. The base model trained
on the joint training-validation data for fixed steps fails to perform well, partly due to the lack of a
proper mechanism for selecting steps.

Table 4 shows the results on imbalanced CIFAR10 classification. Similarly, our method outperforms
other comparison approaches. In contrast, the fixed proportion-based method sometimes harms the
performance as in the 50:1000 and 100:1000 settings.

We also tested the text augmentation LM on the SST-2 imbalanced data. Interestingly, the augmen-
tation tends to hinder model training and yields accuracy of around 50% (random guess). This is
because the augmentation LM is first fit to the imbalanced data, which makes label preservation
inaccurate and introduces lots of noise during augmentation. Though a more carefully designed
augmentation mechanism can potentially help with imbalanced classification (e.g., augmenting only
the rare classes), the above observation further shows that the varying data manipulation schemes
have different applicable scopes. Our approach is thus favorable as the single algorithm can be
instantiated to learn different schemes.

6 Discussions: Algorithm Extrapolation between Learning Paradigms

Conclusions. We have developed a new method of learning different data manipulation schemes with
the same single algorithm. Different manipulation schemes reduce to just different parameterization
of the data reward function. The manipulation parameters are trained jointly with the target model
parameters. We instantiate the algorithm for data augmentation and weighting, and show improved
performance over strong base models and previous manipulation methods. We are excited to explore
more types of manipulations such as data synthesis, and in particular study the combination of
different manipulation schemes.

The proposed method builds upon the connections between supervised learning and reinforcement
learning (RL) [46] through which we extrapolate an off-the-shelf reward learning algorithm in the RL
literature to the supervised setting. The way we obtained the manipulation algorithm represents a
general means of innovating problem solutions based on unifying formalisms of different learning
paradigms. Specifically, a unifying formalism not only offers new understandings of the seemingly
distinct paradigms, but also allows us to systematically apply solutions to problems in one paradigm
to similar problems in another. Previous work along this line has made fruitful results in other
domains. For example, an extended formulation of [46] that connects RL and posterior regularization
(PR) [11, 16] has enabled to similarly export a reward learning algorithm to the context of PR
for learning structured knowledge [18]. By establishing a uniform abstration of GANs [13] and
VAEs [23], Hu et al. [19] exchange techniques between the two families and get improved generative
modeling. Other work in the similar spirit includes [40, 41, 9, etc].

By extrapolating algorithms between paradigms, one can go beyond crafting new algorithms from
scratch as in most existing studies, which often requires deep expertise and yields unique solutions in
a dedicated context. Instead, innovation becomes easier by importing rich ideas from other paradigms,
and is repeatable as a new algorithm can be methodically extrapolated to multiple different contexts.
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