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Abstract

Recordings of neural circuits in the brain reveal extraordinary dynamical rich-
ness and high variability. At the same time, dimensionality reduction techniques
generally uncover low-dimensional structures underlying these dynamics. What
determines the dimensionality of activity in neural circuits? What is the functional
role of dimensionality in behavior and task learning? In this work we address these
questions using recurrent neural network (RNN) models . We find that, depend-
ing on the dynamics of the initial network, RNNs learn to increase and reduce
dimensionality in a way that matches task demands. These findings shed light on
fundamental dynamical mechanisms by which neural networks solve tasks with
robust representations that generalize to new cases.

Recordings of neural circuits in the brain reveal extraordinary dynamical richness and high variability.
At the same time, dimensionality reduction techniques generally uncover low-dimensional structures
underlying these dynamics. What determines the dimensionality of activity in neural circuits? What
is the functional role of dimensionality in behavior and task learning? In this work we address these
questions using recurrent neural network (RNN) models. We find that, depending on the dynamics
of the initial network, RNNs learn to increase and reduce dimensionality in a way that matches
task demands. These findings shed light on fundamental dynamical mechanisms by which neural
networks solve tasks with robust representations that generalize to new cases.

1 Introduction

Dynamics shape computation in brain circuits. Due to the limitations in our ability to record every
neuron in a circuit, it can be difficult to characterize these dynamics through direct observation alone.
Bridging between machine learning and neuroscience, artificial recurrent neural networks (RNNs) are
powerful tools for investigating dynamical representations in controlled settings, and enable tests of
theoretical hypotheses that can be leveraged to formulate experimental predictions (reviewed in [2]).
Thinking of artificial networks as dynamical brain circuits is likewise a useful way of understanding
their power and flexibility. Since RNNs give rise to well-defined dynamical systems, the neural
representation of the recurrent units is governed by the system’s dynamical response to inputs. In this
work we task a network with classifying inputs into one of two classes (binary classification). We
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Figure 1: Task and model schematic.

treat each input as an impulse delivered at an initial time ¢(, and allow the RNN a delay period to
process this input before querying the network to output the class label (Fig. [I).

To reveal the essential dynamical elements at play in high-dimensional systems such as RNNs,
dimensionality reduction is routinely employed [4]. These approaches reveal a surprising fact: rather
than scaling with the number of neurons in the circuit, dynamics are often effectively constrained
to regions whose dimensionality seems to be intimately linked to the complexity of the function, or
behavior, that the neural circuit fulfills or produces [L1] . This link between task and representation
dimension is especially intriguing in light of fundamental ideas in learning theory. On one hand,
high-dimensional representations can subserve complex and general computations that nonlinearly
combine many features of inputs [6}[12]]. On the other, low-dimensional representations that preserve
only essential features needed for specific tasks can allow learning based on fewer parameters and
examples, and hence with better generalization [6, [15].

Here we ask how an RNN balances reducing and increasing dimensionality of input data, and
link this behavior to network dynamics. We find that the answer can depend on initialization; in
particular, networks that are initially more chaotic have a tendency to expand the dimensionality of
low-dimensional inputs. Frequently encountered in network models of brain function, dynamical
chaos (whereby tiny changes in internal states are amplified by unstable, but deterministic, dynamics)
provides a parsimonious explanation for both repeatable structure as well as internally generated
variability seen in highly recurrent brain networks such as cortical circuits [14}[7]. While chaos-driven
dimensionality expansion with fixed recurrent weights has previously been explored [8]], the attributes
of this phenomenon as recurrent weights evolve through training are less understood.

2 Results

We consider a standard RNN architecture with hidden unit dynamics h, and outputs o, given by
ht = tanh(Rht—l + oy + bl)
O = Wht + bg

where tanh is applied element-wise. Here R and W are the recurrent and output weights, respectively,
b; and b, are biases, and x; is the input. Simulations are run with n = 200 hidden units. The
weights R are initialized as a random perturbation of the identity to ensure smooth trajectories:
R’ = (1 — &)I + &J where ¢ = .01 and I is the identity matrix. The matrix J has normally
distributed entries that scale in magnitude with a coupling strength parameter g: .J;; ~ N(0, g*/n).
The coupling strength g governs the degree to which the network is chaotic, with higher values
leading to more chaotic dynamics. The outputs are initialized at random: W;; ~ N(0,.32/n).

Inputs are drawn from Gaussian distributed clusters lying within a d-dimensional random subspace
of the n-dimensional neural activity space. The means of these clusters are distributed uniformly at
random within a bounded region of this subspace. Each cluster is assigned one of two class labels,
as illustrated in Fig.[I] While this schematic shows six clusters for clarity, in our simulations we
use 60 clusters with half being assigned label 1 and half label 2. Recurrent and output weights, as
well as biases, are adjusted via stochastic gradient descent with momentum (RMSProp) to minimize
a cross-entropy loss function, and classification performance is evaluated on held-out inputs. The
learning rate is initially taken to be large enough to cause significant changes in the loss, and is
modified by a reduce on plateau strategy through training.
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Figure 2: Comparison of edge-of-chaos (blue-green) and strongly chaotic (red) networks classifying
high-dimensional inputs. Input color (yellow-orange or purple) denotes true class label. Shaded re-
gions indicate 75% probability mass of gamma distribution fits over 30 network and input realizations,
with lines indicating medians. (a) Visual schematic of inputs. (b) Effective dimensionality (ED) of
the network representation through time ¢. Dashed and solid lines denote before and after training the
network, respectively. (c) Mean testing accuracy of an LR classifier on network response to held-out
input clusters. Dashed lines and legend as in (b). (d) Activations of recurrent units responding to
inputs, plotted as “snapshots” in time in PC space, for the edge-of-chaos network. (e) Same as (d) but

for the strongly chaotic network.
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Figure 3: Comparison of edge-of-chaos (blue-green) and strongly chaotic (red) networks classifying
low-dimensional inputs. (a) Inputs lie on a two-dimensional plane. (b) Testing accuracy. (c) Top: as
in Fig.2d] Bottom: as in Fig.[2¢|(d) As in Fig.[2b|(e) Mean training accuracy of a logistic regression
(LR) linear classifier trained on the recurrent unit activations at each timepoint ¢. (f) As in Fig.

RNNs learn to compress high-dimensional inputs

We start by considering the classification of high-dimensional inputs d = n that allow a linear
class separation boundary (Fig. 2a). We compare a network initialized near the edge of chaos
(EOC) to one that is initially strongly chaotic (SC), corresponding to coupling strength parameters
g = 20 and g = 250, respectively. Both networks achieve perfect testing accuracy after training
(not shown). Fig.[2d|shows the top two principal components (PCs) of the network responses to 600
input samples at snapshots in time. The EOC network forms two stable fixed point attractors, one for
each class. The SC network separates the classes into two chaotic attractors that begin to mix back



together after the evaluation time ey, = 10. This compression phenomenon is partly captured by the
effective dimensionality (ED) of the representation [9]. The equation for the ED of a set of points is

ED=1/ (Z i 5\3) where \; = \;/ > ; Aj are the normalized eigenvalues of the covariance matrix

of the points. ED can be roughly thought of as the number of PCs needed to capture most of the
variance of the points. In Fig. 2b]the ED of the representation at times ¢ is plotted over ¢. The EDs of
the trained networks are approximately equal to that of the input at time ¢ = 0, since the initial states
only differ from the inputs by one application of the nonlinearity. The dimensionality drops with
increasing ¢ and is highly compressed at the evaluation time t.,, = 10. This drop results both from
increasing distances between different classes as well as decreasing distances within classes. Similar
phenomena have recently been reported in deep neural networks [3]]. These phenomena appear to
be fairly general, occuring in networks trained via a mean squared error loss as well as networks
where the hyperbolic tangent nonlinearity is replaced with a linear activation function (not shown).
While we find these results robust to moderate changes in hyperparameters, it should be noted that
the degree of dimensionality reduction as well as the chaoticity of the networks after training depends
somewhat on the chosen learning rate. In particular, higher learning rates tends to dampen chaos
more and increase dimensionality compression (not shown).

We next study the coding properties of these representations. To capture how close the represen-
tations are to being linearly separable, we train a logistic regression (LR) linear classifier on the
representations at each timepoint. In this case, the LR classifier achieves perfect training accuracy
on the representations of the SC and EOC networks for all time up to at least ¢ = 15 (not shown),
both before and after the networks are trained. This confirms that linear separability is preserved by
the network dynamics. The interesting properties of the compressed representation can be seen in
Fig. which measures generalization by first training an LR classifier on the network response
to inputs drawn from a fixed 80% of the input clusters, and then measuring the accuracy of this
classifier on the network response to samples drawn from the remaining 20% of the clusters. The
dashed lines indicate that the representations of the untrained networks do not generalize well to
held-out clusters, even while they allow for linear separation boundaries. In contrast, after training,
the network representations become increasingly generalizable through time ¢, eventually allowing
for perfect classification accuracy on held-out clusters.

Strongly chaotic RNNs learn to expand and then compress low-dimensional inputs

We next consider inputs embedded in a two-dimensional space, d = 2 (Fig.[3a). In this case,
boundaries must be highly curved and nonlinear to separate the classes. Fig.[3b]illustrates a surprising
fact: the SC network learns to classify near-perfectly, while the EOC network is not as successful.
PC plots (Fig. indicate that the SC network is better at separating the classes. This seems to result
from the increasing dimensionality through time ¢ exhibited by the SC network in Fig. [3d] much
more so than for the EOC network. After training, the SC network first increases dimensionality up
to time ¢ = 7, and then decreases up to time ¢ = 11. This allows it to achieve linear separability of
the two classes (Fig. as well as good generalization (Fig. 31). The non-monotonic behavior of
the ED depends on the learning rate, since too high (say, doubling) of a learning rate can quench
chaos while too low (say, halving) won’t cause a dimensionality reduction after the expansion (not
shown). These phenomena also appear in networks trained via a mean squared error loss, although
we find that the EOC network can learn to expand dimensionality and solve the task unless the task
is made more challenging (the SC network solves the task as before). When the task is made more
challenging by adding more clusters, there is a regime where the EOC network does not learn to
expand dimensionality and fails to solve the task with high accuracy while the SC network does solve
the task with high accuracy (not shown).

3 Conclusions and Future Directions

We find that in tasks where inputs are linearly separable by class label, RNNs generically reduce the
dimension of their inputs over the delay period, in the process forming a representation that lends itself
to good generalization. Next, we find that in harder tasks where inputs are low-dimensional and class
separation boundaries are highly nonlinear, only networks with sufficiently chaotic initializations
are successful. We explain this by showing that chaos-driven dimensionality expansion results in
representations with linear separation boundaries. Taken together, we find evidence that RNNs



learn representations that have the minimal dimensionality needed to support relatively simple class
separation boundaries, provided that the initialization is sufficiently chaotic. These findings invite
further exploration of learning strategies through the lens of modulating dimensionality and suggest
functional roles for variability found in brain circuits.

While effective dimensionality was chosen in this study because it is able to capture the distribution
of disjoint manifolds and related coding properties, in general it is of interest to study nonlinear
measures of dimensionality (i.e. intrinsic dimension). Recent work has explored this direction in the
context of deep feedforward neural networks [[10, [1]], but connection between nonlinear dimension
and RNN dynamics have still not been explored as far as we are aware. In addition, it is of interest to
track the dimension of individual input or class manifolds, as is done in [3]] for deep feedforward
networks. It is also of interest to see if the phenomena of dimension compression and expansion
can be captured by mathematical analysis. See [13}|5] for work in the direction of demonstrating
how compression can be driven by stochastic gradient descent. While this study suggests roles
for dimensionality modulation and (chaotic) variability in biological neural circuits, it would be
interesting to look for this explicitly in experiments. Finally, it is of interest to see if these phenomena
extend to (recurrent) network models that achieve state-of-the-art performance, and to see if the
principles explored here can be used to improve the functioning of such networks.
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