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Abstract

Layer normalization (LayerNorm) has been successfully applied to various deep
neural networks to help stabilize training and boost model convergence because
of its capability in handling re-centering and re-scaling of both inputs and weight
matrix. However, the computational overhead introduced by LayerNorm makes
these improvements expensive and significantly slows the underlying network, e.g.
RNN in particular. In this paper, we hypothesize that re-centering invariance in
LayerNorm is dispensable and propose root mean square layer normalization, or
RMSNorm. RMSNorm regularizes the summed inputs to a neuron in one layer ac-
cording to root mean square (RMS), giving the model re-scaling invariance property
and implicit learning rate adaptation ability. RMSNorm is computationally simpler
and thus more efficient than LayerNorm. We also present partial RMSNorm, or
pRMSNorm where the RMS is estimated from p% of the summed inputs without
breaking the above properties. Extensive experiments on several tasks using di-
verse network architectures show that RMSNorm achieves comparable performance
against LayerNorm but reduces the running time by 7%∼64% on different models.
Source code is available at https://github.com/bzhangGo/rmsnorm.

1 Introduction

How to train deep neural networks efficiently is a long-standing challenge. To accelerate model
convergence, Ba et al. [3] propose the layer normalization (LayerNorm) which stabilizes the training
of deep neural networks by regularizing neuron dynamics within one layer via mean and variance
statistics. Due to its simplicity and requiring no dependencies among training cases, LayerNorm
has been widely applied to different neural architectures, which enables remarkable success on
various tasks ranging from computer vision [19, 26], speech recognition [37] to natural language
processing [31, 35]. In some cases, LayerNorm was found to be essential for successfully training a
model [6]. Besides, the decoupling from batch-based samples endows LayerNorm with the superiority
over batch normalization (BatchNorm) [12] in handling variable-length sequences using RNNs.

Unfortunately, the incorporation of LayerNorm raises computational overhead. Although this is
negligible to small and shallow neural models with few normalization layers, this problem becomes
severe when underlying networks grow larger and deeper. As a result, the efficiency gain from
faster and more stable training (in terms of number of training steps) is counter-balanced by an
increased computational cost per training step, which diminishes the net efficiency, as show in Figure
1. One major feature of LayerNorm that is widely regarded as contributions to the stabilization is its
re-centering invariance property: the summed inputs after LayerNorm remain intact when the inputs
or weight matrix is shifted by some amount of noise. We argue that this mean normalization does not
reduce the variance of hidden states or model gradients, and hypothesize that it has little impact on
the success of LayerNorm.

In this paper, we propose root mean square layer normalization (RMSNorm), which regularizes
the summed inputs to a neuron in one layer with the root mean square (RMS) statistic alone.
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(a) Training loss vs. training steps.
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(b) Training loss vs. training time.

Figure 1: Training procedure of a GRU-based RNNSearch [4] for the first 10k training steps. Baseline means the
original model without any normalization. When the Baseline training loss arrives at 7.0, the loss of LayerNorm
reaches 5.4 after the same number of training steps 1(a), but only 5.9 after the same training time 1(b).

RMSNorm reduces the amount of computation and increases efficiency over LayerNorm. Despite the
simpler formulation, the RMS normalizer helps stabilize the magnitude of layer activations, ensuring
invariance to the re-scaling of both weights and datasets. We also show the possibility of estimating
RMS on a subset of the summed inputs, maintaining this invariance property. Assuming that the
summed inputs have an independent identically distributed structure, we propose partial RMSNorm,
where only the first p% summed inputs are utilized for RMS estimation.

We thoroughly examine our model on various tasks, including machine translation, image classifica-
tion, image-caption retrieval and question answering. Experimental results show that across different
models, RMSNorm yields comparable performance against LayerNorm but shows superiority in
terms of running speed with a speed-up of 7%∼64%. When estimating the RMS with partial (6.25%)
summed inputs, pRMSNorm achieves competitive performance compared to RMSNorm.

2 Related Work

One bottleneck deep neural networks have been hypothesized to suffer from is the internal covariate
shift issue [27], where a layer’s input distribution changes as previous layers are updated, which
significantly slows the training.1 One promising direction to solve this problem is normalization.
Ioffe and Szegedy [12] introduce batch normalization (BatchNorm) to stabilize activations based on
mean and variance statistics estimated from each training mini-batch. Unfortunately, the reliance
across training cases deprives BatchNorm of the capability in handling variable-length sequences,
though several researchers develop different strategies to enable it in RNNs [16, 8]. Instead, Salimans
and Kingma [22] propose weight normalization (WeightNorm) to reparameterize weight matrix
so as to decouple the length of weight vectors from their directions. Ba et al. [3] propose layer
normalization which differs from BatchNorm in that statistics are directly estimated from the same
layer without accessing other training cases. Due to its simplicity and effectiveness, LayerNorm has
been successfully applied to various deep neural models, and achieves state-of-the-art performance
on different tasks [19, 37, 31, 6].

These studies pioneer the research direction that integrates normalization as a part of the model
architecture. This paradigm ensures encouraging performance by shortening model convergence
but at the cost of consuming more time for each running step. To improve efficiency, Arpit et al.
[2] employ a data-independent method to approximately estimate mean and variance statistics, thus
avoiding calculating batch statistics. Ioffe [11] propose batch renormalization so as to reduce the
dependence of mini-batches in BatchNorm. Ulyanov et al. [30] replace batch normalization with
instance normalization for image generation. Hoffer et al. [10] and Wu et al. [33] observe that l1-norm
can act as an alternative of variance in BatchNorm with the benefit of fewer nonlinear operations and
higher computational efficiency. Nevertheless, all these work still follow the original normalization
structure and utilize mean statistic estimated from the whole summed inputs to handle re-centering
invariance.

1Note that the internal covariate shift is given as motivation by [12, 3]. Recent studies have proposed
alternative explanations for the success of normalization, such as the uncontrollable growth of layer activations
in unnormalized deep networks [5].
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Different from these related work, the proposed RMSNorm modifies the normalization structure by
removing the re-centering operation and regularizing the summed inputs with RMS alone. Our model
only maintains the re-scaling invariance property which we find can be inherited when the RMS is
estimated from only subset of the summed inputs, partially inspired by the group normalization [34].
As a side effect, our model reduces the computational overhead and increases efficiency. Recently,
Zhang et al. [36] show that with careful initialization, residual networks can be trained as stable as
those with normalization. However, the approach mainly aims at improving residual networks and
can not be freely switched without modifying all initialization layers. Besides, it is not trivial to
be adapted to other general neural networks, such as RNNs where model depth expands along the
variable sequence length. By contrast, our model is simple, effective and can be used as a drop-in
replacement of LayerNorm.

3 Background

We briefly review LayerNorm in this section based on a standard feed-forward neural network. Given
an input vector x ∈ Rm, a feed-forward network projects it into an output vector y ∈ Rn through a
linear transformation followed by a non-linear activation as follows:

ai =

m∑
j=1

wijxj , yi = f (ai + bi) , (1)

where wi is weight vector to the i-th output neuron, bi is bias scalar which is usually initialized by
0, and f(·) is an element-wise non-linear function. a ∈ Rn denotes the weight-summed inputs to
neurons, which is also the target of normalization.

This vanilla network might suffer from internal covariate shift issue [12], where a layer’s input
distribution changes as previous layers are updated. This could negatively affect the stability of
parameters’ gradients, delaying model convergence. To reduce this shift, LayerNorm normalizes the
summed inputs so as to fix their mean and variance as follows:

āi =
ai − µ
σ

gi, yi = f (āi + bi) , (2)

where āi is the i-th value of vector ā ∈ Rn, which acts as the normalized alternative of ai for layer
activation. g ∈ Rn is the gain parameter used to re-scale the standardized summed inputs, and is set
to 1 at the beginning. µ and σ2 are the mean and variance statistic respectively estimated from raw
summed inputs a:

µ =
1

n

n∑
i=1

ai, σ =

√√√√ 1

n

n∑
i=1

(ai − µ)2. (3)

Thus, LayerNorm forces the norm of neurons to be decoupled from the inputs and weight matrix.

4 RMSNorm

A well-known explanation of the success of LayerNorm is its re-centering and re-scaling invariance
property. The former enables the model to be insensitive to shift noises on both inputs and weights,
and the latter keeps the output representations intact when both inputs and weights are randomly
scaled. In this paper, we hypothesize that the re-scaling invariance is the reason for success of
LayerNorm, rather than re-centering invariance.

We propose RMSNorm which only focuses on re-scaling invariance and regularizes the summed
inputs simply according to the root mean square (RMS) statistic:

āi =
ai

RMS(a)
gi, where RMS(a) =

√√√√ 1

n

n∑
i=1

a2i . (4)

Intuitively, RMSNorm simplifies LayerNorm by totally removing the mean statistic in Eq. (3) at
the cost of sacrificing the invariance that mean normalization affords. When the mean of summed
inputs is zero, RMSNorm is exactly equal to LayerNorm. Although RMSNorm does not re-center
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Weight matrix Weight matrix Weight vector Dataset Dataset Single training case
re-scaling re-centering re-scaling re-scaling re-centering re-scaling

BatchNorm 3 7 3 3 3 7
WeightNorm 3 7 3 7 7 7
LayerNorm 3 3 7 3 7 3

RMSNorm 3 7 7 3 7 3
pRMSNorm 3 7 7 3 7 3

Table 1: Invariance properties of different normalization methods. “3” indicates invariant, while “7” denotes
the opposite.

the summed inputs as in LayerNorm, we demonstrate through experiments that this property is not
fundamental to the success of LayerNorm, and that RMSNorm is similarly or more effective.

RMS measures the quadratic mean of inputs, which in RMSNorm forces the summed inputs into a√
n-scaled unit sphere. By doing so, the output distribution remains regardless of the scaling of input

and weight distributions, benefiting the stability of layer activations. Although Euclidean norm which
only differs from RMS by a factor of

√
n has been successfully explored [22], we empirically find

that it does not work for layer normalization. We hypothesize that scaling the sphere with the size
of the input vector is important because it makes the normalization more robust across vectors of
different size. As far as we know, the idea of employing RMS for neural network normalization has
not been investigated before.

4.1 Invariance Analysis

Invariance measures whether model output after normalization changes highly in accordance with
its input and weight matrix. Ba et al. [3] show that different normalization methods reveal different
invariance properties, which contributes considerably to the model’s robustness. In this section, we
theoretically examine the invariance properties of RMSNorm.

We consider the following general form of RMSNorm:

y = f

(
Wx

RMS(a)
� g + b

)
, (5)

where � denotes element-wise multiplication. Our main results are summarized in Table 1. RMS-
Norm is invariant to both weight matrix and input re-scaling, because of the following linearity
property of RMS:

RMS(αx) = αRMS(x), (6)

where α is a scale value. Suppose the weight matrix is scaled by a factor of δ, i.e. W′ = δW, then
this change does not affect the final layer output:

y′ = f

(
W′x

RMS(a′)
� g + b

)
= f

(
δWx

δRMS(a)
� g + b

)
= y. (7)

By contrast, if the scaling is only performed on individual weight vectors, this property does not hold
anymore as different scaling factors break the linearity property of RMS. Similarly, if we enforce
a scale on the input with a factor of δ, i.e. x′ = δx, the output of RMSNorm remains through an
analysis analogous to that in Eq. 7. We can easily extend the equality to batch-based inputs as well as
the whole dataset. Therefore, RMSNorm is invariant to the scaling of its inputs.

The main difference to LayerNorm is that RMSNorm is not re-centered and thus does not show
similar linearity property for variable shifting. It is not invariant to all re-centering operations.

4.2 Gradient Analysis

The above analysis only considers the effect of scaling inputs and the weight matrix on the layer
output. In a general setting, however, a RMSNorm-enhanced neural network is trained via standard
stochastic gradient descent approach, where the robustness of model gradient is very crucial to
parameters’ update and model convergence (see also Santurkar et al. [23] who argue that the success
of normalization methods does not come from the added stability to layer inputs, but due to increased
smoothness of the optimization landscape). In this section, we investigate the properties of model
gradients in RMSNorm.
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Given a loss function L, we perform back-propagation through Eq. (4) to obtain the gradient with
respect to parameters g,b as follows:

∂L
∂b

=
∂L
∂v

,
∂L
∂g

=
∂L
∂v
� Wx

RMS(a)
, (8)

where v is short for the whole expression inside f(·) in Eq. (4), and ∂L/∂v is the gradient back-
propagated from L to v. Both gradients ∂L/∂b and ∂L/∂g are invariant to the scaling of inputs x and
the weight matrix W (in the case of ∂L/∂g because of the linearity property in Eq. (6)). Besides, the
gradient of g is proportional to the normalized summed inputs, rather than raw inputs. This powers
the stability of the magnitude of g.

Unlike these vector parameters, the gradient of the weight matrix W is more complicated due to the
quadratic computation in RMS. Formally,

∂L
∂W

=

n∑
i=1

[
xT ⊗

(
diag

(
g � ∂L

∂v

)
×R

)]
i

,where R =
1

RMS(a)

(
I− (Wx) (Wx)T

nRMS(a)2

)
, (9)

diag(·) denotes the diagonal matrix of input, ⊗ denotes the Kronecker product, and “I” indicates
identity matrix. For clarity, we explicitly use “×” to represent matrix multiplication. The matrix term
R associates the gradient of W with both inputs x and weight matrix W. With a thorough analysis,
we can demonstrate that this term is negatively correlated with both input and weight matrix scaling.
After assigning a scale of δ to either input x (x′ = δx) or weight matrix (W′ = δW), we have

R′ =
1

δRMS(a)

(
I− (δWx) (δWx)T

nδ2RMS(a)2

)
=

1

δ
R. (10)

If we put the scaled term R′ back into Eq. (9), we can easily prove that the gradient ∂L/∂W is
invariant to input scaling, but keeps the negative correlation with weight matrix scaling. Reducing
the sensitivity of gradient ∂L/∂W to the scaling of inputs ensures its smoothness and improves the
stability of learning. On the other hand, the negative correlation acts as an implicit learning rate
adaptor and dynamically controls the norm of gradients which avoids large-norm weight matrix and
improves model convergence.

5 pRMSNorm

The re-scaling invariance property of RMSNorm ascribes to the linearity property of RMS. Consider-
ing that neurons in one layer often have independent identically distributed structure, we argue that
the RMS can be estimated on a subset of these neurons rather than all of them. We propose partial
RMSNorm (pRMSNorm). Given the unnormalized input a, pRMSNorm infers the RMS statistic

from first-p% elements of a: RMS(a) =
√

1
k

∑k
i=1 a

2
i , where k = dn · pe denotes the number of

elements used for RMS estimation. The linearity property still holds for RMS as in Eq. (6), which
indicates pRMSNorm shares the same invariance properties as RMSNorm as shown in Table 1.

RMS is a biased estimation of the RMS which is often inaccurate. Though theoretically pRMSNorm
approximates to RMSNorm, we observe gradient instability where the gradient tends to explode with
small m. In practice, however, models with pRMSNorm can succeed in satisfactory convergence
with a partial ratio of 6.25%.

6 Experiments

To test the efficiency of layer normalization across different implementations, we perform experi-
ments with Tensorflow [1], PyTorch [20] and Theano [29]. We add RMSNorm to different models,
comparing against an unnormalized baseline and LayerNorm. These models are based on diverse
architectures, covering different RNN variants, convolutional and self-attentional models, and various
activations (such as sigmoid, tanh, and softmax), with initialization ranging from uniform, normal,
orthogonal with different initialization ranges or variances. Unless otherwise noted, all speed-related
statistics are measured on one TITAN X (Pascal). Reported time is averaged over 3 runs. We also list
the standard deviation of these three runs.
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Figure 2: SacreBLEU score on newstest2013 for
the RNNSearch. Models are implemented accord-
ing to Nematus [25] in Tensorflow.

Model Test14 Test17 Time
Baseline 21.7 23.4 399±3.40s
LayerNorm 22.6 23.6 665±32.5s
L2-Norm 20.7 22.0 482±19.7s
RMSNorm 22.4 23.7 501±11.8s (24.7%)
pRMSNorm 22.6 23.1 493±10.7s (25.9%)

Table 2: SacreBLEU score on newstest2014 (Test14) and
newstest2017 (Test17) for RNNSearch using Tensorflow-
version Nematus. “Time”: the time in second per 1k training
steps. We set p to 6.25%. We highlight the best results in
bold, and show the speedup of RMSNorm against Layer-
Norm in bracket.

6.1 Machine Translation

Machine translation aims at transforming a sentence from one (source) language to another (target)
language. We focus on neural machine translation based on an attention-enhanced encoder-decoder
framework. We train two different models, a GRU-based RNNSearch [4] and a self-attention
based neural Transformer [31] on WMT14 English-German translation task. More details about the
experimental settings as well as comparison with WeightNorm are listed in Appendix A.1

We first experiment with RNNSearch. Normalization is added to the recurrent connections and
feedforward layers. Apart from RNNSearch without any normalization (Baseline) and with Layer-
Norm, we also compare against the same model equipped with L2-Norm (i.e. replacing RMS with
L2-Norm), which has been observed to improve lexical selection [18].

Figure 2 illustrates the evolution of BLEU score on our development set after every 30k training
steps, and Table 2 summarizes the test results. In short, both LayerNorm and RMSNorm outperform
the Baseline by accelerating model convergence: they reduce the number of training steps until con-
vergence by about 50%, and improve test accuracy, with RMSNorm being comparable to LayerNorm.
This supports our hypothesis that re-scaling invariance is the core property of LayerNorm, and that
RMSNorm is an effective substitute. Our results with L2-Norm show that it fails to improve the
model.2 Results in Table 2 highlight the challenge that RNN with LayerNorm in Tensorflow suffers
from serious computational inefficiency, where LayerNorm is slower than the Baseline by about 67%.
In this respect, RMSNorm performs significantly better, improving upon LayerNorm by ∼25%.

Table 3 further lists translation results of different models implemented in Theano and Pytorch.
Overall, RMSNorm yields comparable translation quality compared with LayerNorm but incurs less
computational overhead, outperforming LayerNorm with speedups ranging from 11%∼34%. In
addition, we observe that though in theory the amount of computation in pRMSNorm is less than
that in RMSNorm, pRMSNorm (p = 6.25%) sometimes tends to be slower. We ascribe this to the
non-optimal implementation of tensor slicing operation in these computational frameworks, which
can be improved with specific low-level coding.

In pRMSNorm, the partial ratio p directly controls the accuracy of estimated RMS, thereby affecting
the stability of model training. Figure 3 shows the effect of p on model performance. Surprisingly, we
find that the scale of p has little influence on the final translation quality in RNNSearch: using a small
ratio does not significantly degenerate BLEU score. We set p to 6.25% for all following experiments.

We also experiment with Transformer, which is based on self-attention, avoiding recurrent connec-
tions and allowing a higher degree of parallelization. Still, layer normalization is an important part of
the architecture. We use an in-house Tensorflow implementation of the Transformer, and employ the
base setting as in [31] with all models trained for 300K steps. We treat Transformer with no normal-
ization as our Baseline, and compare RMSNorm-enhanced Transformer with LayerNorm-equipped
Transformer. Table 4 shows the results, from which we observe the importance of normalization
for Transformer, without which training fails. RMSNorm achieves BLEU scores comparable to
LayerNorm, and yields a speedup of 7%∼9%. Compared with RNNSearch, the relative cost of

2We note that Nguyen and Chiang [18] only applied L2-Norm to the last layer, and treat the scaling factor as
a hyperparameter. While not a replication of their experiment, we still found it worth testing L2-Norm as an
alternative to LayerNorm.
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Figure 3: SacreBLEU score on new-
stest2013 (devset) for the RNNSearch with
pRMSNorm. We use Tensorflow-version Ne-
matus, and change p by a step size of 10%.

Model Test14 Test17 Time

Th

Baseline 21.8 22.9 596±20.8s
LayerNorm 22.3 23.8 988±1.10s
RMSNorm 22.5 23.2 652±24.1s (34.0%)
pRMSNorm 22.7 24.0 658±17.9s (33.4%)

Py

Baseline 22.7 24.7 427±6.50s
LayerNorm 23.2 24.3 857±17.2s
RMSNorm 22.9 24.5 763±16.2s (11.0%)
pRMSNorm 23.2 24.6 754±36.1s (12.0%)

Table 3: SacreBLEU score on newstest2014 (Test14) and new-
stest2017 (Test17) for RNNSearch. “Th”: Theano-version Nema-
tus, “Py”: an in-house PyTorch-based RNNSearch.

Model Test14 Test17 Time
Baseline - - 210±0.23s
LayerNorm 26.6 27.7 248±1.31s
RMSNorm 26.8 27.7 231±0.04s (6.9%)
pRMSNorm 26.5 27.8 225±1.63s (9.3%)

Table 4: SacreBLEU score on newstest2014
(Test14) and newstest2017 (Test17) for the
Transformer. “Time”: the time in second per
1k training steps, which is measured using Tesla
V100. “-” indicates that we fail to train this
model and BLEU score is 0.

Model 1 2 3 4 ALL

Baseline M -2.60 -1.19 -1.43 -1.53 -1.60
S 7.35 2.33 2.61 2.73 3.04

LayerNorm M -0.43 -0.48 -0.50 -0.50 -0.51
S 1.19 1.51 1.51 1.51 1.51

RMSNorm M -0.40 -0.60 -0.69 -0.74 -0.73
S 1.27 1.51 1.50 1.49 1.50

Table 5: Mean (M) and standard deviation (S) statistics esti-
mated on the hidden-to-hidden mapping of decoder-part GRU
cell in RNNSearch model. We use the newstest2013 dataset.
ALL: the statistics averaged across all token positions. Num-
bers 1,2,3,4 indicate the statistic estimated for specific token
positions.

normalization is lower because there are significantly fewer sequential normalization operations in
Transformer.

Effect of Normalization on Mean and Standard Deviation Table 5 shows the distribution of mean
and standard deviation of hidden representations across token positions for an RNNSearch model.
Mean and standard deviation are unstable in the baseline, as observed by Ba et al. [3]. Due to their
normalization properties, both RMSNorm and LayerNorm stabilize standard deviation. Although the
mean in RMSNorm is not normalized, in practice it is more stable than the mean of the baseline. This
supports our hypothesis that RMSNorm stabilizes recurrent activations without the need to explicitly
normalize the mean.

0 5 10 15 20 25 30

Training steps (x30k)

0

5

10

15

20

25

V
al

id
B

L
E

U
sc

or
e LayerNorm

RMSNorm

Figure 4: SacreBLEU score curve of Layer-
Norm and RMSNorm on newstest2013 (de-
vset) when the initialization center is 0.2.

On the Robustness of RMSNorm One remaining ques-
tion is whether the re-centering operation in LayerNorm
(which RMSNorm abandons) makes models more robust
towards arbitrary weight/bias initializations. We perform
an experiment on RNNSearch with Nematus in Tensor-
flow, and change the center of weight initialization to 0.2.
Results in Figure 4 show that LayerNorm becomes very
unstable with abnormal initialization, but RMSNorm is
more robust (both underperform the original initialization).
Our empirical evidence so far suggests that RMSNorm is
similarly robust as LayerNorm, or more.

6.2 CNN/Daily Mail Reading Comprehension

This reading comprehension task is a cloze-style question
answering task, where models are required to answer a question regarding to a passage, and the
answer is an anonymized entity from the passage [9]. We train a bidirectional attentive reader model
proposed by Hermann et al. [9] on the CNN corpus. More details about the experimental settings are
given in Appendix A.2. We compare RMSNorm with both LayerNorm and BatchNorm.

Figure 5 and Table 6 show the results. After normalizing RNN by BatchNorm with separate statistics
for each time step in a sequence, both BatchNorm-LSTM and BatchNorm-Everywhere help speed up
the convergence of training process. By contrast, LayerNorm and RMSNorm not only converge faster
than BatchNorm, but also reach lower validation error rate, though pRMSNorm performs slightly
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Figure 5: Error rate on validation set for the
attentive reader model.

Model Time
Baseline 315±6.30s
BatchNorm-Everywhere 348±10.5s
BatchNorm-LSTM 345±11.2s
LayerNorm 392±5.70s
RMSNorm 333±5.20s (15.1%)
pRMSNorm 330±5.50s (15.8%)

Table 6: Time in seconds per 0.1k training steps for the
attentive reader model.
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Figure 6: Recall@K values on validation set for the order-embedding models.

worse than RMSNorm. Although in Figure 5 the performance of RMSNorm and LayerNorm is
comparable, RMSNorm is around 15% faster than LayerNorm as shown in Table 6.3

6.3 Image-Caption Retrieval

Image-caption retrieval is a cross-modal task aiming at learning a joint embedding space of images
and sentences, which consists of two sub-tasks: image retrieval and caption retrieval. The former
ranks a set of images according to a query caption, and the latter ranks a set of captions based
on a query image. We train an order-embedding model (OE) proposed by Vendrov et al. [32] on
the Microsoft COCO dataset [17] using their public source code in Theano. Model details about
experimental settings are provides in Appendix A.3. We compare RMSNorm with two models: one
without any normalization (Baseline) and one with LayerNorm.

Model Time
Baseline 2.11±0.047s
LayerNorm 12.02±0.191s
RMSNorm 7.12±0.207s (40.8%)
pRMSNorm 4.34±0.168s (63.9%)

Table 8: Time in seconds per 0.1k training
steps for the order-embedding model.

Figure 6 shows the R@K curve on validation set after
every 300 training steps, and Table 7 lists the final test re-
sults. Across all these metrics, RMSNorm and LayerNorm
consistently outperform the Baseline in terms of model
convergence as shown in Figure 6. We observe that on
the validation set, RMSNorm slightly exceeds LayerNorm
with respect to recall value. For the final test results as
shown in Table 7, both RMSNorm and LayerNorm improve the model performance, reaching higher
recall values (except LayerNorm on R@5) and lower mean rank, though RMSNorm reveals better
generalization than LayerNorm. Besides, results in Table 8 show that RMSNorm accelerates training
speed by 40%∼64% compared with LayerNorm, highlighting better efficiency of pRMSNorm.

6.4 CIFAR-10 Classification

CIFAR-10 is a supervised image classification task, with 10 different classes. We train a modified
version of the ConvPool-CNN-C architecture [15], and follow the same experimental protocol as Sal-
imans and Kingma [22]. BatchNorm, LayerNorm, and WeightNorm are included for comparison.
Training details are given in Appendix A.4.

Figure 9 and Table 10 show the results. Models enhanced with a normalization technique converge
faster than Baseline, among which BatchNorm performs the best. Similar to previous observation [3],

3Notice that the implementation of BatchNorm is cuDNN-based, so time cost of BatchNorm in Table 6 can
not be directly compared with others.
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Model Caption Retrieval Image Retrieval
R@1 R@5 R@10 Mean r R@1 R@5 R@10 Mean r

Sym [32] 45.4 88.7 5.8 36.3 85.8 9.0
Existing OE + Baseline [32]† 46.7 88.9 5.7 37.9 85.9 8.1

Work OE + Baseline [3]‡ 46.6 79.3 89.1 5.2 37.8 73.6 85.7 7.9
OE + LayerNorm [3] 48.5 80.6 89.8 5.1 38.9 74.3 86.3 7.6
OE + Baseline 45.8 79.7 88.8 5.4 37.6 73.6 85.8 7.7

This OE + LayerNorm 47.9 79.5 89.2 5.3 38.4 74.6 86.7 7.5
Work OE + RMSNorm 48.7 79.7 89.5 5.3 39.0 74.8 86.3 7.5

OE + pRMSNorm 46.8 79.8 90.3 5.2 39.0 74.5 86.3 7.4
Table 7: Average R@K values across 5 test sets from Microsoft COCO. R@K: Recall @ K, higher is better.
Mean r: mean rank, lower is better. The number in bold highlights the best result. ‡ denotes the reproduced
results of †.
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Table 9: Training error rate for the ConvPool-
CNN-C model.

Model Test Error Time
Baseline 8.96% 21±0.0s
BatchNorm 8.25% 38±0.0s
WeightNorm 8.28% 23±0.0s
LayerNorm 10.49% 39±0.4s
RMSNorm 8.83% 31±0.5s (20.5%)
pRMSNorm 10.37% 30±0.4s (23.1%)

Table 10: Test error rate and time in seconds per training
epoch for the ConvPool-CNN-C model. Time is measured
with GeForce RTX 2080 Ti.

we also find that layer normalization works worse than BatchNorm and WeightNorm for image
processing. Though LayerNorm outperforms Baseline by shorting model convergence, it fails to
generalize to the test set, degenerating the test error by 1.53%. In contrast, RMSNorm shows better
generalization, surpassing the Baseline by 0.013% and saving about 20.5% training time compared to
LayerNorm. pRMSNorm gains further speedup of 2.6%, albeit at the cost of sacrificing test accuracy
of 1.54%.

7 Conclusion and Future Work

This paper presents RMSNorm, a novel normalization approach that normalizes the summed inputs
according to the RMS. RMSNorm preserves the re-scaling invariance property of LayerNorm but
eschews the re-centering invariance property which contributes less to the model training. Compared
with LayerNorm, models with RMSNorm suffers from less computational overhead. RMSNorm can
be easily applied to different model architectures as a drop-in replacement of LayerNorm. Experiments
on several NLP tasks show that RMSNorm is comparable to LayerNorm in quality, but accelerates
the running speed. Actual speed improvements depend on the framework, hardware, neural network
architecture and relative computational cost of other components, and we empirically observed
speedups of 7%∼64% across different models and implementations. Our efficiency improvement
come from simplifying the computation, and we thus expect them to be orthogonal to other means
of increasing training speed, such as low-precision arithmetic and GPU kernel fusion. We also
experimented with pRMSNorm which estimates the RMS on a subset of the summed inputs. While
theoretically faster, we did not consistently observe empirical speed improvements for pRMSNorm.
We leave it to future work to investigate if the performance can be improved via code optimization.

In the future, we would like to take more analysis about the success behind RMSNorm. Inspired
by recent success of l1-norm for BatchNorm, we will explore different norms for RMSNorm, and
simplify other normalization techniques such as BatchNorm.
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