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ABSTRACT

Deep learning models for graphs have advanced the state of the art on many tasks.
Despite their recent success, little is known about their robustness. We investigate
training time attacks on graph neural networks for node classification that perturb
the discrete graph structure. Our core principle is to use meta-gradients to solve
the bilevel problem underlying training-time attacks, essentially treating the graph
as a hyperparameter to optimize. Our experiments show that small graph perturba-
tions consistently lead to a strong decrease in performance for graph convolutional
networks, and even transfer to unsupervised embeddings. Remarkably, the pertur-
bations created by our algorithm can misguide the graph neural networks such that
they perform worse than a simple baseline that ignores all relational information.
Our attacks do not assume any knowledge about or access to the target classifiers.

1 INTRODUCTION

Graphs are a powerful representation that can model diverse data from virtually any domain, such as
biology (protein interaction networks), chemistry (molecules), or social networks (Facebook). Not
surprisingly, machine learning on graph data has a longstanding history, with tasks ranging from
node classification, over community detection, to generative modeling.

In this paper, we study node classification, which is an instance of semi-supervised classification:
given a single (attributed) network and a subset of nodes whose class labels are known (e.g., the
topic of a paper in a citation graph), the goal is to infer the classes of the unlabeled nodes. While
there exist many classical approaches to node classification (London & Getoor, 2014; Chapelle et al.,
2006), recently deep learning on graphs has gained much attention (Monti et al., 2017; Bojchevski
& Günnemann, 2018a; Battaglia et al., 2018; Perozzi et al., 2014; Bojchevski et al., 2018; Klicpera
et al., 2019). Specifically, graph convolutional approaches (Kipf & Welling, 2017; Pham et al., 2017)
have improved the state of the art in node classification.

However, recent works have also shown that such approaches are vulnerable to adversarial attacks
both at test time (evasion) as well as training time (poisoning attacks) (Zügner et al., 2018; Dai et al.,
2018). A core strength of models using graph convolution – exploiting the information in a node’s
neighborhood to improve classification – is also a major vulnerability: because of these propagation
effects, an attacker can change a single node’s prediction without even changing any of its attributes
or edges. This is because the foundational assumption that all samples are independent of each other
does not hold for node classification. Network effects such as homophily (London & Getoor, 2014)
support the classification, while on the other hand they enable indirect adversarial attacks.

So far, all existing attacks on node classification models are targeted, that is, aim to provoke mis-
classification of a specific single node, e.g. a person in a social network. In this work, we propose
the first algorithm for poisoning attacks that is able to compromise the global node classification
performance of a model. We show that even under restrictive attack settings and without access to
the target classifier, our attacks can render it near-useless for use in production (i.e., on test data).

Our approach is based on the principle of meta learning, which has traditionally been used for
hyperparameter optimization (Bengio, 2000), or, more recently, few-shot learning (Finn et al., 2017).
In essence, we turn the gradient-based optimization procedure of deep learning models upside down
and treat the input data – the graph at hand – as a hyperparameter to learn.
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2 RELATED WORK

Adversarial attacks on machine learning models have been studied both in the machine learning and
security community and for many different model types (Mei & Zhu, 2015). It is important to dis-
tinguish attacks from outliers; while the latter naturally occur in graphs (Bojchevski & Günnemann,
2018), adversarial examples are deliberately created with the goal to mislead machine learning mod-
els and often designed to be unnoticeable. Deep neural networks are highly sensitive to these small
adversarial perturbations to the data (Szegedy et al., 2014; Goodfellow et al., 2015). The vast ma-
jority of attacks and defenses assume the data instances to be independent and continuous. This
assumption clearly does not hold for node classification and many other tasks on graphs.

Works on adversarial attacks for graph learning tasks are generally sparse. Chen et al. (2017) have
measured the changes in the resulting graph clustering when injecting noise to a bi-partite graph that
represent DNS queries. However, their focus is not on generating attacks in a principled way. Torka-
mani & Lowd (2013) consider adversarial noise in the node features in order to improve robustness
of collective classification via associative Markov networks.

Only recently researchers have started to study adversarial attacks on deep learning for graphs. Dai
et al. (2018) consider test-time (i.e., evasion) attacks on graph classification (i.e., classification of
graphs themselves) and node classification. However, they do not consider poisoning (i.e., training-
time) attacks or evaluate transferability of their attacks, and restrict the attacks to edge deletions only.
Moreover, they focus on targeted attacks, i.e. attacks designed to change the prediction of a single
node. Zügner et al. (2018) consider both test-time and training-time attacks on node classification
models. They circumvent explicitly tackling the bilevel optimization problem underlying poisoning
attacks by performing their attacks based on a (static) surrogate model and evaluating their impact
by training a classifier on the data modified by their algorithm. In contrast to Dai et al. (2018), their
attacks can both insert and remove edges, as well as modify node attributes in the form of binary
vectors. Again, their algorithm is suited only to targeted attacks on single nodes; the problem of
training-time attacks on the overall performance of node classification models remains unexplored.
Bojchevski & Günnemann (2018b) propose poisoning attacks on a different task: unsupervised node
representation learning (or node embeddings). They exploit perturbation theory to maximize the loss
obtained after training DeepWalk. In this work, we focus on semi-supervised learning.

Meta-learning (Thrun & Pratt, 1998; Naik & Mammone, 1992), or learning to learn, is the task
of optimizing the learning algorithm itself; e.g., by optimizing the hyperparameters Bengio (2000),
learning to update the parameters of a neural network (Schmidhuber, 1992; Bengio et al., 1992),
or the activation function of a model (Agostinelli et al., 2014). Gradient-based hyperparameter
optimization works by differentiating the training phase of a model to obtain the gradients w.r.t. the
hyperparameters to optimize.

The key idea of this work is to use meta-learning for the opposite: modifying the training data to
worsen the performance after training (i.e., training-time or poisoning attacks). Muñoz-González
et al. (2017) demonstrate that meta learning can indeed be used to create training-time attacks on
simple, linear classification models. On continuous data, they report little success when attacking
deep neural networks, and on discrete datasets, they do not consider deep learning models or prob-
lems with more than two classes. Like most works on adversarial attacks, they assume the data
instances to be independent. In this work, for the first time, we propose an algorithm for global
attacks on (deep) node classification models at training time. In contrast to Zügner et al. (2018), we
explicitly tackle the bilevel optimization problem of poisoning attacks using meta learning.

3 PROBLEM FORMULATION

We consider the task of (semi-supervised) node classification. Given a single (attributed) graph
and a set of labeled nodes, the goal is to infer the class labels of the unlabeled nodes. Formally,
let G = (A,X) be an attributed graph with adjacency matrix A ∈ {0, 1}N×N and node attribute
matrix X ∈ RN×D, where N is the number of nodes and D the dimension of the node feature
vectors. W.l.o.g., we assume the node IDs to be V = {1, . . . , N}.
Given the set of labeled nodes VL ⊆ V , where nodes are assigned exactly one class in C =
{c1, c2, ..., cK}, the goal is to learn a function fθ, which maps each node v ∈ V to exactly one
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of the K classes in C (or in a probabilistic formulation: to the K-simplex). Note that this is an
instance of transductive learning, since all test samples (i.e., the unlabeled nodes) as well as their
attributes and edges (but not their class labels!) are known and used during training (Chapelle et al.,
2006). The parameters θ of the function fθ are generally learned by minimizing a loss function Ltrain
(e.g. cross-entropy) on the labeled training nodes:

θ∗ = arg min
θ

Ltrain(fθ(G)), (1)

where we overload the notation of fθ to indicate that we feed in the whole graph G.

3.1 ATTACK MODEL

Adversarial attacks are small deliberate perturbations of data samples in order to achieve the out-
come desired by the attacker when applied to the machine learning model at hand. The attacker
is constrained in the knowledge they have about the data and the model they attack, as well as the
adversarial perturbations they can perform.

Attacker’s goal. In our work, the attacker’s goal is to increase the misclassification rate (i.e., one
minus the accuracy) of a node classification algorithm achieved after training on the data (i.e., graph)
modified by our algorithm. In contrast to Zügner et al. (2018) and Dai et al. (2018), our algorithm is
designed for global attacks reducing the overall classification performance of a model. That is, the
goal is to have the test samples classified as any class different from the true class.

Attacker’s knowledge. The attacker can have different levels of knowledge about the training data,
i.e. the graph G, the target machine learning model M, and the trained model parameters θ. In
our work, we focus on limited-knowledge attacks where the attacker has no knowledge about the
classification model and its trained weights, but the same knowledge about the data as the classifier.
In other words, the attacker can observe all nodes’ attributes, the graph structure, as well as the labels
of the subset VL and uses a surrogate model to modify the data. Besides assuming knowledge about
the full data, we also perform experiments where only a subset of the data is given. Afterwards, this
modified data is used to train deep neural networks to degrade their performance.

Attacker’s capability. In order to be effective and remain undiscovered, adversarial attacks should
be unnoticeable. To account for this, we largely follow Zügner et al. (2018)’s attacker capabilities.
First, we impose a budget constraint ∆ on the attacks, i.e. limit the number of changes ‖A− Â‖0 ≤
∆ (here we have 2∆ since we assume the graph to be symmetric). Furthermore, we make sure that
no node becomes disconnected (i.e. a singleton) during the attack. One of the most fundamental
properties of a graph is its degree distribution. Any significant changes to it are very likely to be
noticed; to prevent such large changes to the degree distribution, we employ Zügner et al. (2018)’s
unnoticeability constraint on the degree distribution. Essentially, it ensures that the graph’s degree
distribution can only marginally be modified by the attacker. The authors also derive an efficient
way to check for violations of the constraint so that it adds only minimal computational overhead
to the attacks. While in this work we focus on changing the graph structure only, our algorithm
can easily be modified to change the node features as well. We summarize all these constraints and
denote the set of admissible perturbations on the data as Φ(G), where G is the graph at hand.

3.2 OVERALL GOAL

Poisoning attacks can be mathematically formulated as a bilevel optimization problem:

min
Ĝ∈Φ(G)

Latk(fθ∗(Ĝ)) s.t. θ∗ = arg min
θ

Ltrain(fθ(Ĝ)). (2)

Latk is the loss function the attacker aims to optimize. In our case of global and unspecific (regarding
the type of misclassification) attacks, the attacker tries to decrease the generalization performance
of the model on the unlabeled nodes. Since the test data’s labels are not available, we cannot directly
optimize this loss. One way to approach this is to maximize the loss on the labeled (training) nodes
Ltrain, arguing that if a model has a high training error, it is very likely to also generalize poorly (the
opposite is not true; when overfitting on the training data, a high generalization loss can correspond
to a low training loss). Thus, our first attack option is to choose Latk = −Ltrain.

Recall that semi-supervised node classification is an instance of transductive learning: all data sam-
ples (i.e., nodes) and their attributes are known at training time (but not all labels!). We can use
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this insight to obtain a second variant of Latk. The attacker can learn a model on the labeled data
to estimate the labels ĈU of the unlabeled nodes VU = V\VL. The attacker can now perform self-
learning, i.e. use these predicted labels and compute the loss of a model on the unlabeled nodes,
yielding our second option Latk = −Lself where Lself = L(VU , ĈU ). Note that, at all times, only the
labels of the labeled nodes are used for training; Lself is only used to estimate the generalization loss
after training. In our experimental evaluation, we compare both versions of Latk outlined above.

Importantly, notice the bilevel nature of the problem formulation in Eq. (2): the attacker aims to
maximize the classification loss achieved after optimizing the model parameters on the modified
(poisoned) graph Ĝ. Optimizing such a bilevel problem is highly challenging by itself. Even worse,
in our graph setting the data and the action space of the attacker are discrete: the graph structure is
A = {0, 1}N×N , and the possible actions are edge insertions and deletions. This makes the problem
even more difficult in two ways. First, the action space is vast; given a budget of ∆ perturbations, the
number of possible attacks is, ignoring symmetry,

(
N2

∆

)
and thus in O(N2∆); exhaustive search is

clearly infeasible. Second, a discrete data domain means that we cannot use gradient-based methods
such as gradient descent to make small (real-valued) updates on the data to optimize a loss.

4 GRAPH STRUCTURE POISONING VIA META-LEARNING

4.1 POISONING VIA META-GRADIENTS

In this work, we tackle the bilevel problem described in Eq. (2) using meta-gradients, which have
traditionally been used in meta-learning. The field of meta-learning (or learning to learn) tries to
make the process of learning machine learning models more time and/or data efficient, e.g. by
finding suitable hyperparameter configurations (Bengio, 2000) or initial weights that enable rapid
adaptation to new tasks or domains in few-shot learning (Finn et al., 2017).

Meta-gradients (e.g., gradients w.r.t. hyperparameters) are obtained by backpropagating through the
learning phase of a differentiable model (typically a neural network). The core idea behind our
adversarial attack algorithm is to treat the graph structure matrix as a hyperparameter and
compute the gradient of the attacker’s loss after training with respect to it:

∇meta
G := ∇G Latk(fθ∗(G)) s.t. θ∗ = optθ(Ltrain(fθ(G))), (3)

where opt(·) is a differentiable optimization procedure (e.g. gradient descent and its stochastic vari-
ants) andLtrain the training loss. Notice the similarity of the meta-gradient to the bi-level formulation
in Eq. (2); the meta-gradient indicates how the attacker loss Latk after training will change for small
perturbations on the data, which is exactly what a poisoning attacker needs to know.

As an illustration, consider an example where we instantiate opt with vanilla gradient descent with
learning rate α starting from some intial parameters θ0

θt+1 = θt − α∇θtLtrain(fθt(G)) (4)
The attacker’s loss after training for T steps is Latk(fθT (G)). The meta-gradient can be expressed
by unrolling the training procedure:
∇meta
G = ∇GLatk(fθT (G)) = ∇fLatk(fθT (G)) · [∇GfθT (G) +∇θT fθT (G) · ∇GθT ] ,where (5)

∇Gθt+1 = ∇Gθt − α∇G∇θtLtrain(fθt(G))

Note that the parameters θt itself depend on the graph G (see Eq. 4); they are not fixed. Thus,
the derivative w.r.t. the graph has to be taken into account, chaining back until θ0. Given this, the
attacker can use the meta-gradient to perform a meta update M on the data to minimize Latk:

G(k+1) ←M(G(k)) (6)

The final poisoned dataG(∆) is obtained after performing ∆ meta updates. A straightforward way to
instantiate M is (meta) gradient descent with some step size β: M(G) = G− β∇GLatk(fθT (G))).

It has to be noted that such a gradient-based update rule is neither possible nor well-suited for prob-
lems with discrete data (such as graphs). Due to the discreteness, the gradients are not defined.
Thus, in our approach we simply relax the data’s discreteness condition. However, we still perform
discrete updates (actions) since the above simple gradient update would lead to dense (and continu-
ous) adjacency matrices; not desired and not efficient to handle. Thus, in the following section, we
propose a greedy approach to preserve the data’s sparsity and discreteness.
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4.2 GREEDY POISONING ATTACKS VIA META GRADIENTS

We assume that the attacker does not have access to the target classifier’s parameters, outputs, or even
knowledge about its architecture; the attacker thus uses a surrogate model to perform the poisoning
attacks. Afterwards the poisoned data is used to train deep learning models for node classification
(e.g. a GCN) to evaluate the performance degradation due to the attack. We use the same surrogate
model as Zügner et al. (2018), which is a linearized two-layer graph convolutional network:

fθ(A,X) = softmax(Â2XW ), (7)

where Â = D−1/2ÃD−1/2, Ã = A+ I , A is the adjacency matrix, X are the node features, D the
diagonal matrix of the node degrees, and θ = {W} the set of learnable parameters. In contrast to
Zügner et al. (2018) we do not linearize the output (softmax) layer.

Note that we only perform changes to the graph structure A, hence we treat the node attributes X as
a constant during our attacks. For clarity, we replace G with A in the meta gradient formulation.

We define a score function S : V × V → R that assigns each possible action a numerical value
indicating its (estimated) impact on the attacker objective Latk. Given the meta-gradient for a node
pair (u, v), we define S(u, v) = ∇meta

auv
· (−2 · auv + 1) where auv is the entry at position (u, v) in

the adjacency matrix A. We essentially flip the sign of the meta-gradients for connected node pairs
as this yields the gradient for a change in the negative direction (i.e., removing the edge).

We greedily pick the perturbation e′ = (u′, v′) with the highest score one at a time
e′ = arg max

e=(u,v):M(A,e)∈Φ(G)

S(u, v), (8)

whereM(A, e) ∈ Φ(G) ensures that we only perform changes compliant with our attack constraints
(e.g., unnoticeability). The meta update function M(A, e) inserts the edge e = (i, j) by setting
aij = 1 if nodes (i, j) are currently not connected and otherwise deletes the edge by setting aij = 0.

4.3 APPROXIMATING META-GRADIENTS

Computing the meta gradients is expensive both from a computational and a memory point-of-view.
To alleviate this issue, Finn et al. (2017) propose a first-order approximation, leading to

∇meta
A = ∇ALatk(fθT (A)) ≈ ∇ALatk(fθ̃T (A)) = ∇fLatk(fθ̃T (A)) · ∇Afθ̃T (A). (9)

We denote by θ̃t the parameters at time t independent of the data A (and θ̃t−1), i.e. ∇Aθ̃t = 0;
the gradient is thus not propagated through θ̃t. This corresponds to taking the gradient of the attack
loss Latk w.r.t. the data, after training the model for T steps. We compare against this baseline
in our experiments; as also done in Zügner et al. (2018). However, unlike the meta-gradient, this
approximation completely disregards the training dynamics.

Nichol & Schulman (2018) propose a heuristic of the meta gradient in which they update the initial
weights θ0 on a line towards the local optimum θT to achieve faster convergence in a multi-task
learning setting: ∇meta

θ0
≈
∑T
t=1∇θ̃tLtrain(fθ̃t(A;X)). Again, they assume θ̃t to be independent of

θ̃t−1. While there is no direct connection to the formulation of the meta gradient in Eq. (5), there
is an intuition behind it: the heuristic meta gradient is the direction, in which, on average, we have
observed the strongest increase in the training loss during the training procedure. The authors’ ex-
perimental evaluation further indicates that this heuristic achieves similar results as the meta gradient
while being much more efficient to compute (see Appendix C for a discussion on complexity).

Adapted to our adversarial attack setting on graphs, we get ∇meta
A ≈

∑T
t=1∇ALtrain(fθ̃t(A;X)).

We can view this as a heuristic of the meta gradient when Latk = −Ltrain. Likewise, again taking
the transductive learning setting into account, we can use self-learning to estimate the loss on the
unlabeled nodes, replacing Ltrain by Lself. Indeed, we combine these two views

∇meta
A ≈ ΣTt=1λ∇ALtrain(fθ̃t(A;X)) + (1− λ)∇ALself(fθ̃t(A;X)), (10)

where λ can be used to weight the two objectives. This approximation has a much smaller memory
footprint than the exact meta gradient since we don’t have to store the whole training trajectory
θ̃1, . . . , θ̃T in memory; additionally, there there are no second-order derivatives to be computed. A
summary of our algorithm can be found in Appendix A.
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Table 1: Misclassification rate (in %) for different meta-gradient heuristics with 5% perturbed edges.

CORA-ML CITESEER
GCN CLN GCN CLN

Clean 16.6± 0.3 17.3± 0.3 28.5± 1.0 28.3± 0.8
A-Meta-Train 21.2± 0.9 20.3± 0.3 31.8± 0.8 29.8± 0.5
A-Meta-Self 21.8± 0.7 18.9± 0.3 28.6± 0.4 28.5± 0.4
A-Meta-Both 22.5± 0.6 19.2± 0.3 28.9± 0.4 28.8± 0.4

Table 2: Misclassification rate (in %) with 5% perturbed edges.

CORA CITESEER POLBLOGS Avg.
Attack GCN CLN DeepWalk GCN CLN DeepWalk GCN CLN DeepWalk rank
Clean 16.6± 0.3 17.3± 0.3 20.3± 1.0 28.5± 0.9 28.3± 0.9 34.8± 1.4 6.4± 0.6 7.6± 0.5 5.3± 0.5 7.4

DICE 18.0± 0.4 18.0± 0.2 22.8± 0.3 28.9± 0.3 29.1± 0.3 39.1± 0.4 11.2± 1.1 11.2± 0.8 10.2± 0.6 5.0
First-order 17.2± 0.3 17.6± 0.2 20.7± 0.2 28.3± 0.3 28.4± 0.3 34.0± 0.3 7.8± 0.9 7.6± 0.5 7.9± 0.6 7.1
Nettack∗ - - - 31.9± 0.3 30.2± 0.4 41.2± 0.4 - - - -

A-Meta-Train 21.8± 0.9 20.5± 0.3 25.0± 0.6 31.9± 0.7 30.1± 0.5 32.7± 0.5 11.9± 2.8 12.9± 2.5 5.8± 0.2 4.7
A-Meta-Both 20.7± 0.4 19.0± 0.3 28.5± 0.5 28.6± 0.4 28.7± 0.4 34.4± 0.4 19.8± 0.8 16.5± 1.3 21.5± 1.9 4.3

Meta-Train 22.0± 1.2 21.7± 0.4 26.1± 0.6 30.3± 1.0 29.0± 0.6 36.0± 0.2 16.3± 2.9 18.7± 2.3 14.5± 4.2 3.2
Meta-Self 24.5± 1.0 20.3± 0.4 28.1± 0.6 34.6± 0.7 32.2± 0.6 34.6± 0.7 22.5± 0.8 17.9± 1.7 59.0± 3.0 2.3

Meta w/ Oracle 21.0± 0.5 21.6± 0.3 27.8± 0.7 34.2± 0.9 32.9± 0.6 36.1± 0.7 25.6± 1.9 19.1± 1.4 52.3± 2.8 2.0
∗ Did not finish within three days on CORA-ML and POLBLOGS

5 EXPERIMENTS

Setup. We evaluate our approach on the well-known CITESEER (Sen et al., 2008), CORA-ML
(McCallum et al., 2000), and POLBLOGS (Adamic & Glance, 2005) datasets; an overview is given
in Table 6. We split the datasets into labeled (10%) and unlabeled (90%) nodes. The labels of
the unlabeled nodes are never visible to the attacker or the classifiers and are only used to evaluate
the generalization performance of the models. Our code is available at https://www.kdd.in.
tum.de/gnn-meta-attack.

We evaluate the transferability of adversarial attacks by training deep node classification models on
the modified (poisoned) data. For this purpose, we use Graph Convolutional Networks (GCN) (Kipf
& Welling, 2017) and Column Networks (CLN) (Pham et al., 2017). Both are models utilizing
the message passing framework (a.k.a. graph convolution) and trained in a semi-supervised way.
We further evaluate the node classification performance achieved by training a standard logistic
regression model on the node embeddings learned by DeepWalk (Perozzi et al., 2014). DeepWalk
itself is trained in an unsupervised way and without node attributes or graph convolutions; thus, this
is arguably an even more difficult transfer task.

We repeat all of our attacks on five different splits of labeled/unlabeled nodes and train all target
classifiers ten times per attack (using the split that was used to create the attack). In our tables,
the uncertainty indicates 95 % confidence intervals of the mean obtained via bootstrapping. For our
meta-gradient approaches, we compute the meta-gradient ∇meta

A Latk(fθT (A;X)) by using gradient
descent with momentum for 100 iterations. We refer to our meta-gradient approach with self-training
as Meta-Self and to the variant without self-training as Meta-Train. Similarly, we refer to our ap-
proximations as A-Meta-Self (with λ=0), A-Meta-Train (λ=1), and A-Meta-Both (λ=0.5).

Comparing meta-gradient heuristics. First, we analyze the different meta gradient heuristics de-
scribed in Section 4.3. The results can be seen in Table 1. All principles successfully increase the
misclassification rate (i.e., 1 − accuracy on unlabeled nodes) obtained on the test data, compared
to the results obtained with the unperturbed graph. Since A-Meta-Self consistently shows a weaker
performance than A-Meta-Both, we do not further consider A-Meta-Self in the following.

Comparison with competing methods. We compare our meta-gradient approach as well as its
approximations with various baselines and Nettack (Zügner et al., 2018). DICE (‘delete internally,
connect externally’) is a baseline where, for each perturbation, we randomly choose whether to insert
or remove an edge. Edges are only removed between nodes from the same class, and only inserted
between nodes from different classes. This baseline has all true class labels (train and test) avail-
able and thus more knowledge than all competing methods. First-order refers to the approximation
proposed by Finn et al. (2017), i.e. ignoring all second-order derivatives. Note that Nettack is not
designed for global attacks. In order to be able to compare to them, for each perturbation we ran-
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Figure 1: Change in accuracy of GCN on CORA-
ML for increasing number of perturbations.
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Figure 2: Comparison with logistic
regression baseline on CITESEER.

Table 3: Accuracy of clean/
corrupted graph and weights.

W Ŵ

A 0.85 0.52
Â 0.83 0.49

Table 4: Poisoning results with limited knowledge about the graph
(i.e. on a subgraph) after 10% changes.

CORA-ML CITESEER
GCN CLN GCN CLN

Clean 16.6± 0.3 17.3± 0.3 28.5± 0.8 28.3± 0.8
A-Meta-Sub 21.4± 0.7 22.4± 0.4 30.9± 0.7 31.4± 0.7
Meta-Sub 21.2± 0.6 20.8± 0.3 28.7± 0.3 31.4± 0.5

domly select one target node from the unlabeled nodes and attack it using Nettack while considering
all nodes in the network. In this case, its time and memory complexity is O(N3) and thus it was not
feasible to run it on any but the sparsest dataset. Meta w/ Oracle corresponds to our meta-gradient
approach when supplied with all true class labels on the test data – this only serves as a reference
point since it cannot be carried out in real scenarios where the test nodes’ labels are unknown. For
all methods, we enforce the unnoticeability constraint introduced by Zügner et al. (2018), which
ensures that the graph’s degree distribution changes only slightly. In Appendix D we show that the
unnoticeability constraint does not significantly limit the impact of our attacks.

In Table 2 we see the misclassification rates (i.e., 1 - accuracy on unlabeled nodes) achieved by
changing 5% ofELCC edges according to the different methods (larger is better, except for the aver-
age rank). That is, each method is allowed to modify 5% of ELCC , i.e. the number of edges present
in the graph before the attack. We present similar tables for 1% and 10% changes in Appendix F.
Our meta-gradient with self-training (Meta-Self) produces the strongest drop in performance across
all models and datasets as indicated by the average rank. Changing only 5% of the edges leads to a
relative increase of up to 48% in the misclassification rate of GCN on CORA-ML.

Remarkably, our memory efficient meta-gradient approximations lead to strong increases in mis-
classifications as well. They outperform both baselines and are in many cases even on par with the
more expensive meta-gradient. In Appendix F, Table 11 we also show that using only T = 10 train-
ing iterations of the surrogate models for computing the meta gradient (or its approximations) can
significantly hurt the performance across models and datasets. Moreover, in Table 8 in Appendix F
we show that our heuristic is successful at attacking a dataset with roughly 20K nodes.

While the focus of our work is poisoning attacks by modifying the graph structure, our method can
be applied to node feature attacks as well. In Appendix E we show a proof of concept that our
attacks are also effective when attacking by perturbing both node features and the graph structure.

In Fig. 1 we see the drop in classification performance of GCN on CORA-ML for increasing num-
bers of edge insertions/deletions (similar plots for the remaining datasets and models are provided
in Appendix F). Meta-Self is even able to reduce the classification accuracy below 50%. Fig. 2
shows the classification accuracy of GCN and CLN as well as a baseline operating on the node at-
tributes only, i.e. ignoring the graph. Not surprisingly, deep models achieve higher accuracy than the
baseline when trained on the clean CITESEER graph – exploiting the network information improves
classification. However, by only perturbing 5% of the edges, we obtain the opposite: GCN and CLN
perform worse than the baseline – the graph structure now hurts classification.

Impact of graph structure and trained weights. Another interesting property of our attacks can be
seen in Table 3, whereW and Ŵ correspond to the weights trained on the clean CORA-ML network
A and a version Â poisoned by our algorithm (here with even 25 % modified edges), respectively.
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Note that the classification accuracy barely changes when modifying the underlying network for a
given set of trained weights; even when applying the clean weightsW on the highly corrupted Â, the
performance drops only marginally. Likewise, even the clean graph A only leads to a low accuracy
when using it with the weights Ŵ . This result emphasizes the importance of the training procedure
for the performance of graph models and shows that our poisoning attack works by derailing the
training procedure from the start, i.e. leading to ‘bad’ weights.

Adversarial edges Original edges

0 5 10

Shortest path
(a)

D
en

si
ty

−15 −10 −5

log(CE)
(b)

1 4 16 64 256

Node degree
(c)

Figure 3: Analysis of adversarially inserted edges

Table 5: Share (in %) of edge
deletions (DEL) and inser-
tions (INS) by Meta-Self on
CORA-ML.

ci=cj ci 6=cj
DEL 15.3 3.9
INS 9.4 71.4

Analysis of attacks. An interesting question to ask is why the adversarial changes created by our
meta-gradient approach are so destructive, and what patterns they follow. If we can find out what
makes an edge insertion or deletion a strong adversarial change, we can circumvent expensive meta-
gradient computations or even use this knowledge to detect adversarial attacks.

In Fig. 3 we compare edges inserted by our meta-gradient approach to the edges originally present
in the CORA-ML network. Fig. 3 (a) shows the shortest path lengths between nodes pairs before
being connected by adversarially inserted edges vs. shortest path lengths between all nodes in the
original graph. In Fig. 3 (b) we compare the edge betweenness centrality (CE) of adversarially
inserted edges to the centrality of edges present in the original graph. In (c) we see the node degree
distributions of the original graph and the node degrees of the nodes that are picked for adversarial
edges. For all three measures no clear distinction can be made. There is a slight tendency for the
algorithm to connect nodes that have higher-than-average shortest paths and low degrees, though.

As we can see in Table 5, roughly 80% of our meta attack’s perturbations are edge insertions (INS).
As expected by the homophily assumption, in most cases edges inserted connect nodes from differ-
ent classes and edges deleted connect same-class nodes. However, as the comparison with the DICE
baseline shows, this by itself can also not explain the destructive performance of the meta-gradient.

Limited knowledge about the graph structure. In the experiments described above, the attacker
has full knowledge about the graph structure and all node attributes (as typical in a transductive
setting). We also tested our algorithm on a sub-graph of CORA-ML and CITESEER. That is, we
select the 10% labeled nodes and randomly select neighbors of these until we have a subgraph with
number of nodes n = 0.3N . We run our attacks on this small subgraph, and afterwards plug in
the perturbations into the original graphs to train GCN and CLN as before. Table 4 summarizes the
results: Even in this highly restricted setting, our attacks consistently increase misclassification rate
across datasets and models, highlighting the effectiveness of our method.

6 CONCLUSION

We propose an algorithm for training-time adversarial attacks on (attributed) graphs, focusing on the
task of node classification. We use meta-gradients to solve the bilevel optimization problem underly-
ing the challenging class of poisoning adversarial attacks. Our experiments show that attacks created
using our meta-gradient approach consistently lead to a strong decrease in classification performance
of graph convolutional models and even transfer to unsupervised models. Remarkably, even small
perturbations to a graph based on our approach can lead to graph neural networks performing worse
than a baseline ignoring all relational information. We further propose approximations of the meta-
gradients that are less expensive to compute and, in many cases, have a similarly destructive impact
on the training of node classification models. While we are able to show small statistical differences
of adversarial and ‘normal’ edges, it is still an open question what makes the edges inserted/removed
by our algorithm so destructive, which could then be used to detect or defend against attacks.
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A ALGORITHM

Algorithm 1: Poisoning attack on graph neural networks with meta gradients and self-training
Input: Graph G = (A,X), modification budget ∆, number of training iterations T , training class labels

CL
Output: Modified graph Ĝ = (Â,X)

θ̂ ← train surrogate model on the input graph using known labels CL;
ĈU ← predict labels of unlabeled nodes using θ̂;
Â← A;
while ‖Â−A‖0 < 2∆ do

randomly initialize θ0;

for t in 0 . . . T − 1 do
θt+1 ← step (θt,∇θtLtrain(fθt(Â,X));CL); // update e.g. via gradient
descent

// Compute meta gradient via backprop through the training
procedure

∇meta
Â
← ∇ÂLself(fθT (Â,X); ĈU );

S ← ∇meta
Â
� (−2Â+ 1) ; // Flip gradient sign of node pairs with edge

e′ ← maximum entry (u, v) in S that fulfills constraints Φ(G);
Â← insert or remove edge e′ to/from Â;

Ĝ← (Â,X);
return : Ĝ

Algorithm 2: Poisoning attack on GNNs with approximate meta gradients and self-training
Input: Graph G = (A,X), modification budget ∆, number of training iterations T , gradient weighting λ,

training class labels CL
Output: Modified graph Ĝ = (Â,X)

θ̂ ← train surrogate model on the input graph using known labels CL;
ĈU ← predict labels of unlabeled nodes using θ̂;
Â← A;
while ‖Â−A‖0 < 2∆ do

randomly initialize θ0;

∇meta
Â
← λ∇ÂLtrain(fθ0(Â;X);CL) + (1− λ)∇ÂLself(fθ0(Â;X); ĈU )

for t in 0 . . . T − 1 do
θt+1 ← step (θt,∇θtLtrain(fθt(Â,X));CL); // update e.g. via gradient
descent

θ̃t+1 ← stop gradient(θt+1) ; // no backprop through training

∇meta
Â
← ∇meta

Â
+ λ∇ÂLtrain(fθ̃t+1

(Â;X);CL) + (1− λ)∇ÂLself(fθ̃t+1
(Â;X); ĈU )

S ← ∇meta
Â
� (−2Â+ 1) ; // Flip gradient sign of node pairs with edge

e′ ← maximum entry (u, v) in S that fulfills constraints Φ(G);
Â← insert or remove edge e′ to/from Â;

Ĝ← (Â,X);
return : Ĝ
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B DATASET STATISTICS

Table 6: Dataset statistics.

Dataset NLCC ELCC D K

CORA-ML 2,810 7,981 2,879 7
CITESEER 2,110 3,757 3,703 6
POLBLOGS 1,222 16,714 - 2
PUBMED 19,717 44,324 500 3

In Table 6 we see the characteristics of the datasets used in this work. Results for PUBMED can be
found in Table 8 in Appendix F.

C COMPLEXITY ANALYSIS

In our attack we handle both edge insertions and deletions, i.e. each element in the adjacency matrix
A ∈ {0, 1}N×N can be changed. This means that without further optimization, the (approximate)
meta gradient for each node pair has to be computed, leading to a baseline memory and computa-
tional complexity of O(N2). For the meta gradient computation we additionally have to store the
entire weight trajectory during training, adding O(T · |θ|) to the memory cost, where T is the num-
ber of inner training steps and |θ| the number of weights. Thus, memory complexity of our meta
gradient attack is O(N2 + T · |θ|). The second-order derivatives at each step T in the meta gradient
formulation can be computed in O(N2) using Hessian-vector products, leading to a computational
complexity of O(T ·N2).

For the meta gradient heuristics, the computational complexity is similar since we have to evaluate
the gradient w.r.t. the adjacency matrix at every training step. However, the training trajectory of
the weights does not have to be kept in memory, yielding a memory complexity of O(N2). This is
highly beneficial, as memory (especially on GPUs) is limited.

The computational and memory complexity of our adversarial attacks implies that (as-is) it can be
executed for graphs with roughly 20K nodes using a commodity GPU. The complexity, however,
can be drastically reduced by pre-filtering the elements in the adjacency matrix for which the (meta)
gradient needs to be computed, since only a fraction of entries in the adjacency matrix are promising
candidate perturbations. We leave such performance optimization for future work.
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Figure 4: Change in accuracy of GCN on CITESEER with and without enforcing unnoticeability
constraints (singleton nodes are never admissible). Meta-Self-U corresponds to not enforcing the
unnoticeability constraint.

Table 7: Misclassification rate (in %) with 10% perturbations in edges / node features. For Meta-
Self with features, at each step the perturbation (edge or feature) is selected that has the highest meta
gradient score.

CITESEER
GCN CLN

Clean 28.5± 0.9 28.3± 0.8
Meta-Self with features 37.2± 1.1 34.2± 0.7
Meta-Self 38.6± 1.0 35.3± 0.7

D UNNOTICEABILITY CONSTRAINT

In all our experiments, we enforce the unnoticeability constraint on the degree distribution proposed
by (Zügner et al., 2018). In Fig. 4 we show that this constraint does not significantly limit the
destructive performance of our attacks. Thus we conclude that these constraints should always be
enforced, since they improve unnoticeability while at the same time our attacks remain effective.

E ATTACKS WITH CHANGES TO THE NODE FEATURES

While the focus of our work is poisoning attacks by modifying the graph structure, our method
can be applied to node feature attacks as well. The most straightforward case is when the node
features are binary, since then we can use the same greedy algorithm as for the graph structure
(ignoring the degree distribution constraints). Among the datasets we evaluated, CITESEER has
binary node features, hence in Table 7 we display the results when attacking both node features and
graph structure (while the total number of perturbations stays the same). We can observe that the
impact of the combined attacks is slightly lower than the structure-only attack. We attribute this
to the fact that we assign the same cost to structure and feature changes, but arguably we expect a
structure perturbation to have a stronger effect on performance than a feature perturbation. Future
work can provide a framework where structure and feature changes impose a different cost on the
attacker. When the node features are continuous, there also needs to be some tuning of the meta step
size and considerations whether multiple features per instance can be changed in a single step.

13



Published as a conference paper at ICLR 2019

F ADDITIONAL RESULTS

In this section we present additional results of our experiments. In Table 8 we see that our heuristic
is successful at attacking PUBMED, a dataset with roughly 20K nodes. Tables 9 and 10 show mis-
classification rates with 1% and 10% perturbed edges, respectively. Table 11 displays results when
training the surrogate model for T = 10 iterations to obtain the (meta) gradients. Finally, Figures
5 through 12 show how the respective models’ classification accuracies change for different attack
methods and datasets.

Table 8: Misclassification rate (in %) with 5% perturbed edges on PUBMED Sen et al. (2008) when
training the surrogate model for T = 30 iterations to compute the approximate meta gradients.

PUBMED
GCN CLN DeepWalk

Clean 13.8± 0.3 15.9± 0.5 21.8± 0.1
DICE 15.3± 0.1 16.6± 0.4 25.1± 0.1
A-Meta-Self 16.4± 0.2 16.4± 0.4 27.4± 0.2

Table 9: Misclassification rate (in %) with 1% perturbed edges.

CORA CITESEER POLBLOGS Avg.
Attack GCN CLN DeepWalk GCN CLN DeepWalk GCN CLN DeepWalk rank
Clean 16.6± 0.3 17.3± 0.3 20.3± 0.9 28.5± 0.8 28.3± 0.8 34.8± 1.3 6.4± 0.5 7.6± 0.5 5.3± 0.5 6.3
DICE 16.6± 0.3 17.6± 0.2 20.1± 0.2 28.4± 0.3 28.4± 0.3 35.9± 0.3 7.7± 0.9 8.5± 0.6 7.4± 1.0 4.8
First-order 16.6± 0.3 17.3± 0.1 20.2± 0.2 28.2± 0.3 28.3± 0.4 34.9± 0.4 7.0± 0.8 7.7± 0.5 8.5± 1.6 5.7
Nettack∗ - - - 29.0± 0.4 28.6± 0.4 36.4± 0.4 - - - -

A-Meta-Train 16.3± 0.4 18.2± 0.2 20.6± 0.3 29.1± 0.5 28.6± 0.5 34.7± 0.5 8.9± 2.9 10.2± 1.9 5.0± 0.2 4.7
A-Meta-Both 17.4± 0.4 17.6± 0.2 21.6± 0.3 28.5± 0.4 28.3± 0.5 34.6± 0.3 13.7± 1.6 10.4± 1.2 7.5± 0.6 3.6

Meta-Train 16.2± 0.3 18.0± 0.3 20.6± 0.4 28.3± 0.5 28.1± 0.6 35.3± 0.3 9.4± 1.1 10.3± 1.7 7.3± 2.5 4.8
Meta-Self 17.0± 0.4 17.9± 0.2 21.1± 0.3 29.2± 0.5 29.0± 0.4 35.2± 0.3 11.4± 0.4 10.7± 1.7 6.6± 1.4 2.7

Meta with Oracle 16.2± 0.3 18.2± 0.2 20.5± 0.3 30.1± 0.5 29.5± 0.5 34.8± 0.3 13.6± 1.1 10.5± 1.2 6.0± 0.7 3.5
∗ Did not finish within three days on CORA-ML and POLBLOGS

Table 10: Misclassification rate (in %) with 10% perturbed edges.

CORA CITESEER POLBLOGS Avg.
Attack GCN CLN DeepWalk GCN CLN DeepWalk GCN CLN DeepWalk rank
Clean 16.6± 0.3 17.3± 0.3 20.3± 1.0 28.5± 0.8 28.3± 0.8 34.8± 1.3 6.4± 0.5 7.6± 0.5 5.3± 0.5 7.5
DICE 19.5± 0.5 19.1± 0.2 26.2± 0.3 29.7± 0.3 29.9± 0.3 41.2± 0.3 14.4± 0.8 14.3± 0.6 12.9± 0.3 4.9
First-order 17.6± 0.5 17.9± 0.2 21.5± 0.2 28.2± 0.3 28.7± 0.4 32.4± 0.4 7.7± 0.6 7.6± 0.3 8.2± 0.6 7.1
Nettack∗ - - - - - - - - - -

A-Meta-Train 28.1± 1.1 23.6± 0.4 33.6± 0.7 34.3± 1.1 31.3± 0.6 32.1± 0.5 12.8± 1.6 18.2± 2.6 6.9± 0.2 4.9
A-Meta-Both 24.6± 1.0 20.0± 0.3 34.8± 0.6 29.1± 0.5 29.2± 0.4 33.6± 0.4 22.7± 0.7 22.3± 0.9 26.3± 1.0 4.8

Meta-Train 37.3± 1.4 24.9± 0.5 34.4± 1.6 31.8± 1.0 29.9± 0.7 36.0± 0.2 28.7± 3.6 32.9± 1.6 73.7± 3.9 2.6
Meta-Self 34.5± 0.9 22.9± 0.6 37.0± 1.0 38.6± 1.0 35.3± 0.7 36.0± 1.2 26.1± 0.6 23.5± 0.9 60.7± 2.7 2.8

Meta with Oracle 34.8± 1.5 25.2± 0.4 44.0± 0.9 40.1± 1.2 37.2± 0.9 37.2± 0.6 28.9± 0.4 25.8± 0.9 67.1± 2.4 1.4
∗ Did not finish within three days for any dataset.

Table 11: Misclassification rate (in %) with 5% perturbed edges and only training the surrogate
model for T = 10 iterations to obtain the (meta-) gradients.

CORA CITESEER POLBLOGS Avg.
Attack GCN CLN DeepWalk GCN CLN DeepWalk GCN CLN DeepWalk rank
Clean 16.6± 0.3 17.3± 0.3 20.3± 0.9 28.5± 0.8 28.3± 0.8 34.8± 1.3 6.4± 0.5 7.6± 0.5 5.3± 0.5 3.0
A-Meta-Both 21.6± 0.6 18.9± 0.3 27.8± 0.2 31.6± 0.4 30.3± 0.6 40.7± 0.4 17.8± 1.9 13.9± 1.4 11.0± 0.5 1.8
Meta-Self 29.7± 2.2 20.1± 0.4 31.5± 1.2 29.9± 0.7 32.7± 0.8 45.6± 0.7 17.4± 0.8 14.6± 1.2 16.8± 1.9 1.2
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Figure 5: Change in accuracy of CLN on
CORA-ML.
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Figure 6: Change in accuracy of Deepwalk
on CORA-ML.
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Figure 7: Change in accuracy of CLN on
CITESEER.
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Figure 8: Change in accuracy of GCN on
CITESEER.
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Figure 9: Change in accuracy of Deepwalk
on CITESEER.
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Figure 10: Change in accuracy of CLN on
POLBLOGS.
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Figure 11: Change in accuracy of GCN on
POLBLOGS.
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Figure 12: Change in accuracy of Deepwalk
on POLBLOGS.
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