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ABSTRACT

Due to the sharp increase in the severity of the threat imposed by software
vulnerabilities, the detection of vulnerabilities in binary code has become an
important concern in the software industry, such as the embedded systems
industry, and in the field of computer security. However, most of the works in
binary code vulnerability detection has relied on handcrafted features which are
manually chosen by a select few domain experts. In this paper, we attempt to
alleviate this severe binary vulnerability detection bottleneck by leveraging recent
advances in deep learning representations and propose the Maximal Divergence
Sequential Auto-Encoder. In particular, latent codes representing vulnerable
and non-vulnerable binaries are encouraged to be maximally divergent, while
still being able to maintain crucial information from the original binaries. We
conducted extensive experiments to compare and contrast our proposed methods
with the baselines, and the results indicate that our proposed methods outperform
the baselines in all performance measures of interest.

1 INTRODUCTION

Software vulnerabilities are specific flaws or oversights in a piece of software that allow attackers to
perform malicious acts including exposing or altering sensitive information, disrupting or destroying
a system, or taking control of a computer system or program (Dowd et al., 2006). Due to the ubiquity
of computer software, the growth and the diversity in its development process, a great amount of
computer software potentially includes software vulnerabilities. This fact makes the problem of
software security vulnerability identification an important concern in the software industry and in
the field of computer security. Although a great effort has been made by the security community, the
severity of the threat from software vulnerabilities has gradually increased over the years. Numerous
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exist of examples and incidents in the past two decades in which software vulnerabilities have
imposed significant damages to companies and individuals (Ghaffarian & Shahriari, 2017). For
example, vulnerabilities in popular browser plugins have threatened the security and privacy of
millions of Internet users (e.g., Adobe Flash Player (US-CERT 2015; Adobe Security Bulletin 2015)
and Oracle Java (US-CERT 2013)), vulnerabilities in popular and fundamental open-source software
have also threatened the security of thousands of companies and their customers around the globe
(e.g., Heartbleed (Codenomicon 2014) and ShellShock (Symantec Security Response 2014).

Software vulnerability detection (SVD) can be categorized into source code and binary code
vulnerability detection. Source code vulnerability detection has been widely studied in a variety
of works (Shin et al., 2011; Neuhaus et al., 2007; Yamaguchi et al., 2011; Li et al., 2016; Kim et al.,
2017; Li et al., 2018). Most of the previous work in source code vulnerability detection (Neuhaus
et al., 2007; Shin et al., 2011; Yamaguchi et al., 2011; Li et al., 2016; Kim et al., 2017) has been
based on handcrafted features which are manually chosen by a limited number of domain experts.
To mitigate the dependency on handcrafted features, the use of automatic features in SVD has been
studied recently in (Dam et al., 2017; Li et al., 2018; Lin et al., 2018). In particular, Dam et al.
(2017); Lin et al. (2018) employed a Recurrent Neural Network (RNN) to transform sequences of
code tokens to vectorial features, which are further fed to a separate classifier, while Li et al. (2018)
combined learning the vector representation and the training of the classifier in a deep network.

Compared with source code vulnerability detection, binary code vulnerability detection is
significantly more difficult because much of the syntactic and semantic information provided by
high-level programming languages is lost during the compilation process. The existence of such
syntactic and semantic information makes it easier to reason how data and inputs drive the paths
of execution. Unfortunately, a software binary, such as proprietary binary code (with no access
to source code) or embedded systems code, is generally all that is made available for code analysis
(together perhaps with the processor architecture such as x86 etc.). The ability to detect the presence
or absence of vulnerabilities in binary code, without getting access to source code, is therefore a
major importance in the context of computer security. Some work has been proposed to detect
vulnerabilities at the binary code level when source code is not available, notably work based on
fuzzing, symbolic execution (Cadar & Sen, 2013; Avancini & Ceccato, 2013; Meng et al., 2016), or
techniques using handcrafted features extracted from dynamic analysis (Grieco et al., 2016; Cozzie
et al., 2008; White & Lüttgen, 2013). To the best of our knowledge, there has been no work studying
the use of automatically extracted features for binary code vulnerability detection, though there has
been some work using automatic features in conjunction with deep learning methods for malware
detection, notably (Saxe & Berlin, 2015; Raff et al., 2017). It is worth noting that binary code
vulnerability detection and malware detection are two different tasks. In particular, binary code
vulnerability detection aims to detect specific flaws or oversights in binary code, while malware
detection aims to detect if a given binary is malicious or not. The former is arguably harder in the
sense that vulnerable and non-vulnerable binaries might be only slightly different, while there might
be a clearer difference in general between malware and benign binaries.

In addition, a significant constraint in research on binary code vulnerability detection is the lack
of suitable binaries labeled as either vulnerable or non-vulnerable. Although we have some source
code datasets for software vulnerability detection, to the best of our knowledge, there exists no large
public binary dataset for the purpose of binary code vulnerability detection. The reason is that most
source code in source code vulnerability detection datasets is not compilable due to incompleteness,
and they have important pieces missing (e.g., variables, data types) and relevant libraries – making
the code compilable take a large effort in fixing a vast volume of source code. This arises from the
nature of the process that involves collecting and labeling source code wherein we start from security
reports in CVE1 and navigate through relevant websites to obtain code snippets of vulnerable and
non-vulnerable source code.

In this work, we leverage recent advances in deep learning to derive the automatic features of
binary code for vulnerability detection. In particular, we view a given binary as a sequence of
machine instructions and then use the theory of Variational Auto-Encoders (VAE) (Kingma &
Welling, 2013) to develop the Maximal Divergence Sequential Auto-Encoder (MDSAE) that can
work out representations of binary code in such a way that representations of vulnerable and non-
vulnerable binaries are encouraged to be maximally different for vulnerability detection purposes,

1https://cve.mitre.org/
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while still preserving crucial information inherent in the original binaries. In contrast to the original
VAE wherein the data prior is kept fixed, we propose using two learnable Gaussian priors, one
for each class. Based on the VAE principle, latent codes (i.e., data representations) are absorbed
(or compressed) into the data prior distribution, we further propose maximizing a divergence
(e.g., Wasserstein (WS) distance or Kullback-Leibler (KL) divergence) between these two priors
to separate representations of vulnerable and non-vulnerable binaries. Our MDSAE can be used
to produce data representations for another independent classifier (e.g., Support Vector Machine
or Random Forest) or incorporated with a shallow feedforward neural network built on top of the
latent codes for simultaneously training both the mechanism to generate data representations and the
classifier. The former is named MDSAE-R and the latter is named MDSAE-C. We summarize our
contributions in this paper as follows:

• We propose a novel method named Maximal Divergence Sequential Auto-Encoder
(MDSAE) that leverages recent advances in deep learning representation (namely, VAE)
for binary code vulnerability detection.

• One of our most significant contributions is to create a labeled dataset for use in binary
code vulnerability detection. In particular, we used the source code in the published
NDSS18 dataset used in (Li et al., 2018) and then extracted vulnerable and non-vulnerable
functions. We developed a tool that can automatically detect the syntactical errors in a
given piece of source code, fix them, and finally compile the fixed source code into binaries
for various platforms (both Windows OS and Linux OS) and architectures (both x86 and
x86-64 processors). Specifically, after preprocessing and filtering out identical functions
from the NDSS18 source code dataset, we obtain 13, 000 functions of which 9, 000 are
able to be fixed and compiled to binaries. By compiling the source code of these functions
under the various platform and architecture options, we obtain 32, 281 binary functions
including 17, 977 binaries for Windows and 14, 304 binaries for Linux.

• We conducted extensive experiments on the NDSS18 binary dataset. The experimental
results show that the two variants MDSAE-R and MDSAE-C outperform the baselines in
all performance measures of interest. It is not surprising that MDSAE-C achieves higher
predictive performances compared with MDSAE-R, but the fact that MDSAE-R achieves
good predictive performances confirms our hypothesis of encouraging the separation in
representations of data in different classes so that a simple linear classifier subsequently
trained on these data representations can obtain good predictive results.

2 RELATED BACKGROUND

2.1 THE VARIATIONAL AUTO-ENCODER

The Variational Auto-Encoder (VAE) (Kingma & Welling, 2013) is a probabilistic auto-encoder that
takes into account both the reconstruction of true samples and generalization of samples generated
from a latent space. The underlying idea is to learn a probabilistic decoder pθ (x | z) , z ∼ N (0, I)
that can mimic the true data sample x1, . . . ,xN drawn from an existing but unknown data
distribution pd (x). VAE is developed based on the following lower bound:

log pθ (x) ≥ L (x; θ, φ) = Eqφ(z|x) [log pθ (x | z)]−DKL (qφ (z | x) ‖p (z))

where qφ (z | x) is the approximate posterior distribution.

We need to maximize the log likelihood at each training example x. Therefore the objective function
is of the following form:

max
θ,φ

Ex

[
Eqφ(z|x) [log pθ (x | z)]−DKL (qφ (z | x) ‖p (z))

]
(1)

where x is drawn from the empirical data distribution.

To reduce the variance when using Monte Carlo (MC) estimation for tackling the above optimization
problem, the reparameterization trick is employed. More specifically, assuming that qφ (z | x) =

N (z | µφ (x) , diag (σφ (x))), we can do reparameterization as: z = µφ (x) + diag (σφ (x))
1/2

ε
where the source of randomness ε ∼ N (0, I) and µφ (z) , σφ (z) are two neural networks
representing the mean and covariance matrix of the approximate Gaussian posterior.
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The optimization problem in Eq. (1) can be equivalently rewritten as:

max
θ,φ

Ex

[
Eε

[
log pθ

(
x | µφ (x) + diag (σφ (x))

1/2
ε
)]
−DKL (qφ (z | x) ‖p (z))

]
(2)

The first term in Eq. (2) is regarded as the reconstruction term and the second term in this equation is
regarded as the regularization term. In this term, we minimize Ex [DKL (qφ (z | x) ‖p (z))], hence
trying to compress and squash the latent codes z for each true example x into those sampled from
the prior distribution p (z). This observation is the key ingredient for us to develop our proposed
model.

2.2 THE KULLBACK-LEIBLER DIVERGENCE AND L2 WASSERSTEIN DISTANCE

Given two distributions with the probability density functions p (z) and q (z) where z ∈ Rd, the
Kullback-Leibler (KL) divergence between these two distributions is defined as:

DKL (q‖p) =

∫
q (z) log

q (z)

p (z)
dz

Another divergence of interest is L2 Wasserstein (WS) distance with the cost function c (z1, z2) =

‖z1 − z2‖22. The L2 Wasserstein divergence between two distributions is defined as:

DWS (q‖p) = min
π∈Π(q,p)

E(z1,z2)∼π

[
‖z1 − z2‖22

]
where Π (q, p) specifies the set of all joint distributions over p, q which admits p, q as marginals.

If p, q are two Gaussians, i.e., p (z) = N (z | µ1,Σ1) and q (z) = N (z | µ2,Σ2) then both KL
divergence and L2 WS distance can be computed in close forms as:

DKL (q‖p) =
1

2

[
log
|Σ1|
|Σ2|

− dtr
(
Σ−1

1 Σ2

)
+ (µ1 − µ2)

T
Σ−1

1 (µ1 − µ2)

]
DWS (q‖p) = ‖µ1 − µ2‖22 +

∥∥∥Σ
1/2
1 − Σ

1/2
2

∥∥∥2

F

where ‖·‖F is the Frobenius norm and Σ1Σ2 = Σ2Σ1.

3 THE MAXIMAL DIVERGENCE SEQUENTIAL AUTO-ENCODER (MDSAE)
FOR BINARY VULNERABILITY DETECTION

3.1 DATA PROCESSING AND EMBEDDING

Figure 1: Machine instruction embedding.

For each machine instruction, we employ the
Capstone2 binary disassembly framework to detect
entire machine instructions. We then eliminate
redundant prefixes to obtain the core parts that
contain the opcode and other significant information.
Each core part in a machine instruction consists of
two parts: the opcode and instruction information
(i.e., memory location, registers, etc.). We embed
both the opcode and instruction information into
vectors and then concatenate them. To embed the
opcode, we build a vocabulary of opcodes and then
multiply the one-hot vector of the opcode with the
corresponding embedding matrix. To embed the

instruction information, we build the vocabulary over 256 hex-bytes from 00 to FF , then view
the instruction information as a sequence of hex-bytes to construct the frequency vector of a
size 256, and finally multiply this frequency vector with the corresponding embedding matrix.
More specifically, the output embedding is e = eop ‖ eii where eop = one-hot(op) × W op

and eii = freq (ii) × W ii with the opcode op, the instruction information ii and its frequency
vector freq (ii), and the embedding matrices W op and W ii. The process of embedding machine
instructions is presented in Figure 1.

2www.capstone-engine.org

4



Published as a conference paper at ICLR 2019

3.2 PROPOSED MODEL

In this work, we view binary code x as a sequence of machine instructions, i.e., x = [xi]i=1,...,m

where each xi is a machine instruction. Our idea is to encode x to the latent code z in such a
way that the latent codes of data in different classes are encouraged to be maximally divergent.
Let us denote the distributions of vulnerable and non-vulnerable sequences by p1 (x) and p0 (x)
respectively. Inspired by the Variational Auto-Encoder (Kingma & Welling, 2013), we propose to
use a probabilistic decoder pθ (x | z) such that for z ∼ p0 (z), x drawn from pθ (x | z) can mimic
those drawn from p0 (x) and for z ∼ p1 (z), x drawn from pθ (x | z) can mimic those drawn from
p1 (x). In other words, we aim to learn the probabilistic decoder pθ (x | z) satisfying:

p0 (x) =

∫
pθ (x | z) p0 (z) dz and p1 (x) =

∫
pθ (x | z) p1 (z) dz

For any approximate posterior qφ (z | x), we have the following lower bounds:

log pk (x) ≥ Lk (x; θ, φ) = Eqφ(z|x) [log pθ (x | z)]−DKL

(
qφ (z | x) ‖pk (z)

)
, k = 0, 1

Figure 2: Maximal divergence sequential auto-encoder. The latent codes of vulnerable and non-
vulnerable are encouraged to be maximally divergent, while still maintaining crucial information
from the original binaries. Note that we use the same network for qφ (z | x, y = 0) and
qφ (z | x, y = 1) and they are discriminated by the source of data used to fit.

Using the architecture shown in Figure 2, we consider the probabilistic decoder pθ (x | z) of the
following parametric form

pθ (x | z) =
L∏
i=1

pθ (xi | x1:i−1, z) =

L∏
i=1

pθ (xi | hi−1, z)

and hence we can further derive the lower bounds as:

Lk (x; θ, φ) = Eqφ(z|x)

[
L∑
i=1

log pθ (xi | hi−1, z)

]
−DKL

(
qφ (z | hL) ‖pk (z)

)
, k = 0, 1

We arrive at the following optimization problem:
max
θ,φ

{
Ex:y=0

[
L0 (x; θ, φ)

]
+ Ex:y=1

[
L1 (x; θ, φ)

]}
It is worth noting that since we are minimizing:

Ex:y=0

[
DKL

(
qφ (z | hL) ‖p0 (z)

)]
+ Ex:y=1

[
DKL

(
qφ (z | hL) ‖p1 (z)

)]
the encoding z ∼ qφ (z | hL) with y = 0 are absorbed (compressed) into the prior p0 (z). Similarly,
the encoding z ∼ qφ (z | hL) with y = 1 are compressed into the prior p1 (z). Therefore, to
maximize the difference between the encodings of data in the two classes, we propose to maximize
the divergence between p0 (z) and p1 (z) and arrive the following optimization problem:

max
θ,φ

{
Ex:y=0

[
L0 (x; θ, φ)

]
+ Ex:y=1

[
L1 (x; θ, φ)

]
+ αD

(
p0 (z) ‖p1 (z)

)}
5
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where α > 0 is a non-negative trade-off parameter andD
(
p0 (z) ‖p1 (z)

)
is the divergence between

the two priors.

To facilitate the evaluation, we endow these two priors with Gaussian distributions as follows:
pk (z) = N (z | µk,Σk) , k = 0, 1. We also propose using the Gaussian approximate posterior
as: qφ (z | hL) = N (z | µφ (hL) , diag (σφ (hL))) which enables the reparameterization trick: z =

µφ (hL) + diag (σφ (hL))
1/2

ε , where the source of randomness ε ∼ N (0, I) and µφ (z) , σφ (z)
are two neural networks representing the mean and covariance matrix of the approximate Gaussian
posterior.

Hence we come to the following optimization problem:

max
θ,φ,µ0,Σ0,µ1,Σ1

{
Ex:y=0

[
L0 (x; θ, φ)

]
+ Ex:y=1

[
L1 (x; θ, φ)

]
+ αD

(
p0 (z) ‖p1 (z)

)}
(3)

where we note that D
(
p0 (z) ‖p1 (z)

)
is tractable for both the KL-divergence and L2

Wasserstein distance (See Section 2.2) and L0 (x; θ, φ), L1 (x; θ, φ) can be rewritten using the
reparameterization trick as:

Lk (x; θ, φ) = Eε∼N (0,I)

[
L∑
i=1

log pθ (xi | hi−1, z)

]
−DKL

(
qφ (z | hL) ‖pk (z)

)
, k = 0, 1

with z = µφ (hL) + diag (σφ (hL))
1/2

ε.

To classify data, we can train a classifier C over the latent space either independently or
simultaneously with the maximal divergence auto-encoder. If we train the classifier simultaneously,
the final optimization problem is as follows:

max
θ,φ,ψ,µ0,Σ0,µ1,Σ1

{f (θ, φ, ψ,µ0,Σ0,µ1,Σ1)}

where f (θ, φ, ψ,µ0,Σ0,µ1,Σ1) = Ex:y=0

[
L0 (x; θ, φ)

]
+ Ex:y=1

[
L1 (x; θ, φ)

]
+

αD
(
p0 (z) ‖p1 (z)

)
+ β (Ex:y=0 [log (1− Cψ (x))] + Ex:y=1 [log Cψ (x)]) where Cψ (x) stands

for the probability to classify x as a vulnerable binary code (y = 1), and α, β > 0 are two
non-negative trade-off parameters.

It is worth noting that to model the conditional distributions pθ (xi | hi−1, z), we only take into
account the opcode of the machine instruction xi. Since this opcode lies in a fixed vocabulary
of the opcodes, we can use the softmax distribution to define the corresponding distribution
pθ (xi | hi−1, z). By this means, the reconstruction phase aims to reconstruct the opcodes of the
machine instructions in a given binary rather than the whole machine instructions.

4 EXPERIMENTS

4.1 EXPERIMENTAL DATASETS

One of the most significant contributions of our work is to create a labeled binary dataset for binary
code vulnerability detection. We first extracted the functions from the NDSS18 source code dataset.
We then preprocessed and filtered out any identical functions to obtain 13, 000 functions, of which
9, 000 could be fixed to compile to binaries using our automatic tool. In addition, we developed a tool
based on Joern3 to parse the semantic and syntactical relationships in a given piece of source code.
In particular, our tool first used the compiler gcc/g++ (MinGW) to compile a given piece of source
code, then captured the error messages, parsed these error messages, relied on Joern to be aware
of the semantic and syntactical relationships of the error messages with respect to the source code,
and finally fixed the corresponding error message. This process was repeated until the given source
is error-free and ready to compile to a binary. By compiling the compilable function source code
under various platforms and architectures, we obtained 32, 281 binary functions including 17, 977
binaries for Windows and 14, 304 binaries for Linux. The statistics of our binary dataset is given in
Table 1. Additionally, in order to obtain this binary dataset our tool fixed tens of thousands of errors
of which many are strongly associated with specific source code.

4.2 BASELINES

3http://mlsec.org/joern/
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#Non-vulnerable #Vulnerable #Binaries
Windows 8, 999 8, 978 17, 977

Linux 6, 955 7, 349 14, 304
Whole 15, 954 16, 327 32, 281

Table 1: The statistics of our binary funtions dataset.

We compared our proposed methods MDSAE-R (for learning maximally divergent representations
in conjunction with an independent linear classifier to classify vulnerable and non-vulnerable
functions) and MDSAE-C (for learning maximally divergent representations incorporating a linear
classifier) with the following baselines:

• RNN-R: A Recurrent Neural Network (RNN) for learning representations and linear
classifier independently trained on the resulting representations for classifying vulnerable
and non-vulnerable functions. In addition, to learn representations in an unsupervised
manner, we applied the method of language modeling whereby we trained the model to
predict the opcode of the next machine instruction given the previous machine instructions.

• RNN-C: A RNN with a linear classifier built on the top of the last hidden unit.
• Para2Vec: The paragraph-to-vector distributional similarity model proposed in (Le &

Mikolov, 2014). This work proposed to embed paragraphs including many words in a
fixed vocabulary into a vector space. To apply this work in our context, we view a binary
as a sequence of opcodes residing in the fixed vocabulary of the opcodes.

• SeqVAE-C: Sequential VAE as in Section 3.2, but we set two priors to N (0, I) and kept
fixed during training as in the original VAE. A linear classifier was built up on the top of
the latent codes and trained simultaneously. With this setting, we aim to show that learning
the priors produces more separable representations, hence boosts the performance.

• VulDeePecker: proposed in (Li et al., 2018) for source code vulnerability detection.
This model employed a Bidirectional RNN (BRNN) to take sequential inputs and then
concatenated hidden units to input to a feedforward neural net classifier. This method can
inherently be applied to binaries wherein sequences of machine instructions are inputted to
the BRNN.

In addition, we also inspected two variants of divergence (i.e., KL divergence and L2 WS distance
(See Section 2.2)) for formulating the divergence D

(
p0 (z) ‖p1 (z)

)
in the optimization problem

in Eq. (3). Consequently, we have four variants of our proposed method, namely MDSAE-RKL,
MDSAE-RWS, MDSAE-CKL, and MDSAE-CWS.

4.3 PARAMETER SETTING

We split the data into 80% for training, 10% for validation, and the remaining 10% for testing.
We employed a dynamic RNN to tackle the variation in the number of machine instructions of the
functions. For the RNN baselines and our models, the size of hidden unit was set to 256. For our
model, the size of the latent space was set to 4,096, the trade-off parameters α, β were set to 2×10−2

and 10−4 respectively. We used the Adam optimizer (Kingma & Ba, 2014) with an initial learning
rate equal to 0.0001. The minibatch size was set to 64 and the number of epochs was set to 100. We
implemented our proposed method in Python using Tensorflow (Abadi et al., 2016), an open-source
software library for Machine Intelligence developed by the Google Brain Team. The source code,
as well as the dataset, is available in our GitHub repository4. We ran our experiments on a computer
with an Intel Xeon Processor E5-1660 which had 8 cores at 3.0 GHz and 128 GB of RAM.

4.4 EXPERIMENTAL RESULTS

4.4.1 EXPERIMENTAL RESULTS ON THE NDSS18 BINARY DATASET

We conducted the experiments on the subset of Windows binaries, the subset of Linux binaries,
and the whole set of binaries to compare our methods with the baselines. The experimental results
are shown in Table 2. It can be seen that our proposed method outperforms the baselines in all
performance measures of interest. Specifically, in the field of computer security, the recall is a very
important measure of completeness since a higher recall value leads to fewer vulnerable functions
being incorrectly classified as non-vulnerable, which can otherwise present an issue for code auditors
when there can be a large imbalance in the number of non-vulnerable and vulnerable functions in

4https://github.com/dascimal-org/MDSeqVAE
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real-world use. In addition, the fact that the resulting data representations of MDSAE-RKL and
MDSAE-RWS work well with a linear classifier confirms our intuition and motivation of that the
encouragement of data separation effectively supports the classifiers.

Datasets Windows Linux Whole
Methods Acc Rec Pre F1 AUC Acc Rec Pre F1 AUC Acc Rec Pre F1 AUC
RNN-R 54.1 92.6 52.6 67.0 53.8 55.3 93.5 53.3 67.9 54.9 56.3 93.9 53.9 68.5 55.8

Para2Vec 55.5 93.5 53.4 68.0 55.0 55.8 92.1 53.6 67.8 55.5 54.9 94.3 53.1 67.7 54.4
MD-RKL 80.8 86.9 77.6 82.0 80.7 82.7 81.3 83.9 82.6 82.7 75.3 87.8 70.5 78.2 75.1
MD-RWS 80.6 91.3 75.5 82.6 80.6 84.7 90.7 81.2 85.7 84.6 83.7 94.3 78.0 85.4 83.5

RNN-C 81.5 94.6 75.1 83.7 81.4 84.4 96.9 77.7 86.3 84.2 83.4 94.1 77.8 85.2 83.3
VulDeePeck 82.5 94.4 76.5 84.5 82.4 85.5 94.2 80.5 86.8 85.4 83.5 91.0 79.5 84.8 83.4
SeqVAE-C 80.8 91.4 75.7 82.8 80.7 83.0 93.7 77.5 84.8 82.9 78.5 89.4 73.6 80.7 78.4
MD-CKL 83.2 97.7 75.8 85.4 83.0 85.9 97.2 79.5 87.4 85.7 82.3 98.0 74.8 84.8 82.1
MD-CWS 84.5 97.2 77.7 86.4 84.4 86.9 97.8 80.6 88.3 86.8 85.3 98.1 78.4 87.1 85.2

Table 2: The experimental results in percent (%) of the proposed methods compared with the
baselines on the NDSS18 binary dataset. Acc, Rec, and Pre are shorthand for the performance
measures accuracy, recall, and precision, respectively.

4.4.2 INSPECTIONS OF MODEL BEHAVIORS

Distances between Two Priors, Distributions of Vulnerable, Non-vulnerable Classes During
Training In this experiment, we study i) the L2 WS distance between the two priors, ii)
the Euclidean distance of two means of priors (i.e., ‖µ0 − µ1‖), iii) the KL divergence of
qφ (z | hL, y = 0) and p0 (z) (i.e., DKL

(
qφ (z | hL, y = 0) ‖p0 (z)

)
), iv) the KL divergence of

qφ (z | hL, y = 1) and p1 (z) (i.e., DKL

(
qφ (z | hL, y = 1) ‖p1 (z)

)
), v) the Maximum Mean

Discrepancy (MMD) distance (Gretton et al., 2012) of qφ (z | hL, y = 0) and qφ (z | hL, y = 1),
and vi) the reconstruction loss across epochs of MDSAE-RWS– the variant of our proposed method
for learning separable representations. As shown in Figure 3, during the training process, two
distributions p (z | y = 0) and p (z | y = 1) become consistently and gradually more distant with
the increase in their MMD distance (Figure 3, second row, middle), hence implying the gradually
increasing separation of the corresponding latent codes. In addition, as we expect, the two priors
become consistently and gradually more distant (Figure 3, first row, left-hand side and Figure 3,
first row, middle) and the latent codes of vulnerable (y = 1) and non-vulnerable (y = 0) classes
become more compressed into its priors respectively (Figure 3, first row, right-hand side and Figure
3, second row, left-hand side). Furthermore, the reconstruction error consistently decreases which
implies that the latent codes maintain crucial information of the original binaries (Figure 3, second
row, right-hand side).

Figure 3: The L2 WS distance between two priors (first row, left-hand side), ii) the Euclidean
distance of two means of priors (i.e., ‖µ0 − µ1‖) (first row, middle), the KL divergence between
qφ (z | hL, y = 0) and p0 (z) (i.e., DKL

(
qφ (z | hL, y = 0) ‖p0 (z)

)
) (first row, right-hand side),

the KL divergence of qφ (z | hL, y = 1) and p1 (z) (i.e., DKL

(
qφ (z | hL, y = 1) ‖p1 (z)

)
) (second

row, left-hand side), the MMD distance of qφ (z | hL, y = 0) and qφ (z | hL, y = 1) (second row,
middle), and the reconstruction loss (second row, right-hand side) across epochs.

Visualization of Latent Codes of Two Classes in The Latent Space In this experiment, we set
the dimension of the latent space to 2 to visualize the latent codes of the two classes before and after

8



Published as a conference paper at ICLR 2019

training. As shown in Figure 4, the latent codes of the two classes are intermingled before training,
whereas, they become more separable and distinct after training. This shows that our proposed
methods discover data representations that support the classification task.

Figure 4: The 2D latent codes in the latent space before (left) and after (right) training. The green
points are the means of two distributions qφ (z | hL, y = 0) and qφ (z | hL, y = 1).

5 CONCLUSION

The detection of vulnerabilities in binary code is an important problem in the software industry
and in the field of computer security. In this paper, we leverage recent advances in deep learning
representation to propose the Maximal Divergence Sequential Auto-Encoder for binary vulnerability
detection. Specifically, latent codes representing vulnerable and non-vulnerable binaries are
encouraged to be maximally different, while still being able to maintain crucial information from
the original binaries. To address the issue of limited labelled public binary datasets for this problem
and to facilitate research in the application of machine learning and deep learning to the domain
of binary vulnerability detection, we have created a labelled binary software dataset. Furthermore,
our developed tool and approach can be reused to create other high-quality binary datasets. We
conducted extensive experiments to compare our proposed methods with the baselines. The
experimental results show that our proposed methods outperform the baselines in all performance
measures of interest.
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A APPENDIX: THE PROCESS TO OBTAIN BINARIES FROM SOURCE CODE

The process of compiling the VulDeePecker dataset into binaries is divided into three main stages:
collecting functions’ source code, detecting and fixing source code, and compiling source code to
binary functions.

A.1 COLLECTING FUNCTIONS’ SOURCE CODE

The source code is collected from VulDeePecker GitHub5. This source code involve two types of
vulnerability in C/C++ programs: buffer error vulnerability CWE-119 (11,427 files) and resource
management error vulnerability CWE-399 (2,088 files). Figure 8 provides an example of a source
code file together with its highlighted buffer error vulnerability. We then use Joern’s parser 6 to
identify the start and end points of each function in order to recognize the function scope. After this
step, 19,009 non-vulnerable and 12,946 vulnerable functions are detected and obtained. However,
there are a considerable number of functions which are identical to each other. They are either
some common functions that are widely used or some unchanged functions in different versions of a
particular source code file. To address this issue, these identical functions are removed. Eventually,
the numbers of distinctive non-vulnerable and vulnerable functions are 6,412 and 6,592 functions
respectively (See Figure 5).

Figure 5: Detailed steps of the process of compiling VulDeePecker dataset into binaries.

A.2 DETECTING ERRORS AND FIXING SOURCE CODE

At the second stage, as these functions are incomplete C/C++ code snippets and cannot be compiled
successfully, the errors in source code are required being detected and fixed to generate binaries.
Therefore, we develop an automatic tool based on Joern to detect and fix these functions. The activity
diagram of our tool is described in Figure 6. In the targeted directory, our automatic tool reads every
file (each contains the source code of a function) sequentially. The process of detecting and fixing
each function commences with the preprocessing of source code, which adds some necessary C/C++
libraries and the main function. It is worth noting that at this step, our tool is able to reformat the
source code using the clang-format 7. Subsequently, the tool invokes the gcc/g++ (MinGW) compiler
to compile the C/C++ source code respectively. The compiler then captures the error messages and
calls the corresponding solver for each specific error. The semantic and syntactic relationships of the
error messages with respect to the source code are mainly analyzed by Joern’s parser. A function’s

5https://github.com/CGCL-codes/VulDeePecker
6http://mlsec.org/joern/
7https://clang.llvm.org/docs/ClangFormat.html
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Figure 6: The activity diagram for detecting and fixing functions with syntax errors.

source code is fixed successfully and ready to compile when the compiler cannot issue any error
messages in the process of detecting it.

The process of detecting errors and fixing source code also has its own challenges. As
mentioned before, we collect the code snippets of the functions which are always incomplete.
This leads to the missing of the declarations for some objects due to the lack of certain
libraries to which those objects belong. Figure 7 refers to a typical example of an
uncompilable function. For that code, when our automatic tool starts detecting the error,
the gcc/g++ (MinGW) compiler informs the following error message which needs to be fixed
at line 23: ‘CWE761 Free Pointer Not at Start of Buffer wchar t environment 34 unionType’
has no member named ‘unionFirst’. The error information is then sent to Joern’s parser
in order to analyze and find the appropriate solution to fix this error. Unfortunately, the
parser is not confident enough to declare the ‘unionFirst’ variable as a member of the
‘CWE761 Free Pointer Not at Start of Buffer wchar t environment 34 unionType’ class. The
reason arising from the fact that the ‘myUnion.unionFirst’ was assigned to the ‘data’ variable, but
the parser cannot give any information about the data type of this variable. In this situation, the error
description is logged into a log file, the execution of the function including this error is skipped, and
our tool proceeds to the next function. After detecting and fixing errors process, we synthesize and
do some statistics from the log file to know which errors account for the most popular quantities to
upgrade promptly our tool. We also consider the complexity of functions and the priority order of
errors to ensure errors fixed from easiest to hardest. After each upgrade, our automatic tool is very
likely to detect and fix more complex errors to become more completed and stable.

The result we obtain from this stage is 8,991 fixed source code. It is noticeable that while an original
function’s source code has 40 errors on average, our automatic tool is able to detect and fix up to 22
and 28 general errors for each C and C++ source code respectively.

A.3 COMPILING SOURCE CODE TO BINARY CODE

At the last stage, we compile 8,991 fixed functions which contain 4,501 non-vulnerable and 4,490
vulnerable functions into binaries under two platforms (Windows and Ubuntu) and architectures
(x86/x64). The process of compilation raises a certain number of small errors due to the behavior
inconsistency of gcc/g++ between two platforms which leads to the fact that some fixed functions
cannot be compiled. The total number of binary functions are 32,281 wherein 15,954 functions
are non-vulnerable binaries and 16,327 functions are vulnerable binaries. As the consequence, we
utilize the Capstone software to disassemble these binaries into assembly code. Figure 9 shows
the assembly code together with its highlighted buffer error vulnerability of the source code file

12



Published as a conference paper at ICLR 2019

Figure 7: Example of an uncompilable function.

in Figure 8. Overall, Figure 5 shows the details of the stages in VulDeePecker dataset processing,
together with the number of vulnerable and non-vulnerable functions obtained at the end of each
stage.
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Figure 8: Example of a source code file from VulDeePecker dataset together with its highlighted
buffer error vulnerability.
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Figure 9: The vulnerability highlighted assembly code of the corresponding function’s source code
in Figure 8. 15




