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Abstract

The increasing complexity of deep Artificial Neural Networks (ANNs) allows to
solve complex tasks in various applications. This comes with less understanding
of decision processes in ANNs. Therefore, introspection techniques have been
proposed to interpret how the network accomplishes its task. Those methods mostly
visualize their results in the input domain and often only process single samples.
For images, highlighting important features or creating inputs which activate
certain neurons is intuitively interpretable. The same introspection for speech is
much harder to interpret. In this paper, we propose an alternative method which
analyzes neuron activations for whole data sets. Its generality allows application
to complex data like speech. We introduce time-independent Neuron Activation
Profiles (NAPs) as characteristic network responses to certain groups of inputs. By
clustering those time-independent NAPs, we reveal that layers are specific to certain
groups. We demonstrate our method for a fully-convolutional speech recognizer.
There, we investigate whether phonemes are implicitly learned as an intermediate
representation for predicting graphemes. We show that our method reveals, which
layers encode phonemes and graphemes and that similarities between phonetic
categories are reflected in the clustering of time-independent NAPs.

1 Introduction

Artificial Neural Networks (ANNs) have proven to be highly successful in various fields of application.
The success of Deep Learning (DL) is related to the implementation of ANNs with deeper or wider
architectures [30]. This allows the model to learn complex patterns for solving a particular task. Such
pattern detection performs particularly well in computer vision, for example in image classification
[12]] or segmentation [S)]. Besides computer vision, DL is successful for audio processing tasks,
including machine translation [33]] or speech recognition [4]].

The growing complexity of DL models complicates the understanding of how the network accom-
plishes its task [35]]. To interpret those decision processes, several introspection methods have been
proposed [28, 1361 27]]. Most of those techniques have been developed for the computer vision domain.
This is due to the intuitive interpretation of introspection results by a human observer. In speech
related tasks like Automatic Speech Recognition (ASR), evaluating the results is not as intuitive.
Therefore, visualization of input patterns which are typical for certain predicted graphemes has been
proposed [13]. However, visualizing those patterns gives only little insight to the actual decision
processes within the network.

Assessing whether a speech-related ANN learns reasonable representations in its layers remains
a hard challenge. The intermediate representations of speech have been researched, but only for
predicting acoustic features using simple architectures [20, 21} [19} [16]. Those methods are not
applicable for analyzing more complex networks for ASR. For representing speech as accurately and
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robust as possible, words can be split into individual acoustic components, their phonemes [6]. This
leads to the question whether an ANN for end-to-end speech-to-text prediction is learning its task in
a similar way.

In this work, we propose a method to assess intermediate representations and demonstrate it for
an ANN which predicts graphemes from speech. To this end, we introduce Neuron Activation
Profiles (NAPs) to characterize neuron responses to groups of input examples in convolutional
networks. Moreover, we adapt a method for visualizing representations by Nagamine et al. [20] using
our NAPs so it can be applied to Convolutional Neural Networks (CNNs). With this adapted method,
we investigate to which extent an ANN for ASR learns phonemes as an intermediate representation
to predict graphemes. We show that our method reveals that phonemes are encoded in earlier layers
than graphemes. Additionally, we demonstrate that similarity between phonetic categories is reflected
in clustering of NAPs for phonemes and graphemes.

2 Background

2.1 Automatic Speech Recognition

Application of CNNs for speech is not uncommon, but often as part of hybrid models. Such models
can for example involve Hidden Markov Models [1]] or Recurrrent Neural Networks (RNNs) [32]].
Due to their complexity, understanding their decision processes is much harder than those of fully-
convolutional networks. Besides ASR, CNNs are also used for other speech-related tasks, like
learning spectrum feature representations [8]].

For ASR, we implement an architecture based on Wav2Letter [7]. This model is a 11-layer fully-
1D-convolutional neural network, which predicts graphemes from spectrograms. We follow training
and network design by Kunze et al., described in detail in [14]]. The network is trained on z-
normalized spectrograms, scaled to 128 mel-frequency bins. The training data are whole-sequence
audio recordings from the LibriSpeech corpus [23]. Each grapheme prediction can use 206 time
steps (a time frame of 2.1 s) due to the receptive field of the convolutions. While the acoustic model
outputs one grapheme per frame, the sequence of predicted letters is decoded using a Connectionist
Temporal Classification (CTC) beam search decoder [[11]]. Different to Kunze et al. we slightly
changed the number of neurons per layer to powers of two (250 to 256 neurons and 2000 to 2048
neurons). Moreover, we used a vocabulary with repetition characters like Collobert et al. [7]] used
with their Auto Segmentation Criterion (ASG) loss.

2.2 Introspection

Currently there are two major categories of introspection techniques. Firstly, local introspection
methods are tracing back, which parts of the input caused an activation of a particular neuron
[28L 36, 27, [10]. This is usually performed for the output neuron, to reveal prediction-relevant
regions. Local introspection only analyzes single examples, making it hard to draw conclusions
about the decision processes in general. The second category is global introspection, which performs
introspection without using a specific input. This mostly is done by learning an input which maximally
activates certain parts of the network [9}|18}[35]]. It is common to optimize for neurons of intermediate
layers or even whole layers, as in Google DeepDream [[18]].

The aforementioned introspection techniques are visualizing network responses by back-projecting
them onto the input layer. This makes sense for applications in computer vision, as a human observer
can easily interpret images. In speech recognition, evaluating artificial optimal audio or relevant
frequencies in the input requires expert knowledge or can even be impossible. Therefore, to analyze
networks for speech recognition, it is reasonable to analyze neuron activations themselves instead of
projecting information onto the input.

A common method to analyze the representational power of layers in an ANN is to decode classes
directly from intermediate representations using linear classifiers [2]]. However, this method can not
identify similarities between representations of different classes. For example, in speech recognition,
it is not possible to identify whether similar phonetic categories are reflected in similar network
responses. Another option is to perform statistical analyses on neuron activations. For example, recent
research applied Canonical Correlation Analysis (CCA) to analyze and compare representations
in ANNSs [[17]. In speech, previous research investigated representations in acoustic modelling



using Multi-Layer PerceptronsMLPs) [20, 21, [19] or Deep Belief Nets[16). Nagamine et al.

trained anMLP for predicting phonemes from speech and analyzed whether similarity of neuron
activations corresponds to similar phonetic categories in the i28t They performed clustering on
average neuron responses over phonemes and showed that phonetic categories are re ected in the
neuron activations. In later publications, they extended this analysis to sigmoid and Recti ed Linear
Unit (ReLU) units and more analysis methods like multidimensional scaling of softmax layer outputs

or sample-dependent linear transfof2,[19]. However, those studies in speech only diePs and

predict phonemes. Recent modelsASR use more complex architectur&y] and some predict
graphemes in an end-to-end manmneér [7].

2.3 Grapheme-to-Phoneme translation

Grapheme-to-Phonem&2P models are important for Natural Language ProcessiidP), as they

are often used iIASR and text-to-speeclTS) systems. Phonemes are an abstract representation of
speech sounds, which describe pronunciation of words. Therefore, instead of mapping speech directly
to text, it is simpler to use phonemes as an intermediate step. Data of speech and the corresponding
text is often available, yet the phonetic representation is not. We use a network trained on the
LibriSpeech corpus, which is not providing phonetic representations. Therefore, we need to obtain
phonemes for the data set. The problem of obtaining the phonemes can be modelled as a translation
problem, where the graphemes represent the input language and phonemes are considered the output
language.

Words have a speci ¢ pronunciation. However, there are exceptions like heteronymes, where
words are spelled identical and pronounced differently. The idea of the International Pronunciation
Alphabet (PA) is to provide a table of symbols that allows to generally describe words of any kind
of language. Smaller versions of tHeA exist for speci ¢ languages, removing unused sounds and
stresses, such as the CMU Pronunciation Diction@{Dict) for the English language. The
CMUDict [15] is an open source pronunciation dictionary developed at Carnegie Mellon Uni\@rsity
Currently, version 0.7b contains over 134.000 entries.

Recent research uses neural models3aP, especially Long Short-Term Memori$TM) architec-

tures B4,125,129], which outperform former statistical models. For our task, we adopt the approach of
Toshniwal & LivesculB1]. We train this model on th€EMUDict and generate a phonetic transcription

of our output texts. The model is designed as an attention-based encoder-decoder model to generate
phoneme representations for the whole data set. Two layers of bidiredti8mas form the encoder.

The decoder uses a global attention mecharnBjrarid further consists of two unidirectionabTMs.

3 Experiments

There is a large variety of spectrograms which are predicted as the same grapheme. This is due to
different pronunciations of the same grapheme, for example dependent on the speaker and the word it
is included in. Moreover, the pronunciation of a word given its written form is highly idiosyncratic.
For example, compare how the grapheme "W" is articulated in the word "where" in contrast to
the word "who". Phonemes also show variability across speakers but are not dependent on other
phonemes in their context. Therefore, the representation of a phoneme learneAi amould be

less complex than that of a grapheme. Moreover, we hypothesize that for predicting grapheme for a
given speech sample, it is necessary to implicitly learn a representation of phonemes as well.

For an exemplary speech recognizer, which predicts graphemes from spectrograms, we investigate

whether it learned phonemes as an intermediate representation. To this end, we performed a compre-
hensive analysis of neuron activations upon processing data related to certain graphemes or phonemes,
respectively.

Our analysis is inspired by Nagamine et &0Jf They introduced hierarchical clustering of class-
averaged neuron activations in sth.P for acoustic modeling. However, we needed to adapt their
approach signi cantly, due to major differences in the model and scienti ¢ question. Firstly, our
model uses a 1D-convolutional architecture to apply it to larger inputs, like sentences. The obtained
neuron responses are not single values, but vectors of activations. Therefore, we introduce a novel
method to obtain and compare neuron responses. Secondly, instead of phonemes, our model predicts
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text from speech in an end-to-end manner. This allows us to investigate whether the speech recognizer
learns phonemes as intermediate representations.

Our analysis consists of three main steps. Firstly, we comy@ates, which characterize the network
response across many different instances of the same group. Secondly, we compare these characteristic
pro les between classes in different layers using hierarchical clustering. This allows to determine,
how speci ¢ certain layer's neurons are in response to a particular group. Finally, we contrast the
ndings for graphemes with those for phonemes to determine which layers are speci c to each of
them, respectively.

3.1 Time-independent Neuron Activation Pro les

We compute time-independent Neuron Activation Pro les (NAPS) to obtain characteristic responses
for particular groups. A group is not restricted to prediction classes, but can be any grouping of inputs.
The process is visualized exemplary for one group and one layer in Figure 1.

Figure 1. Computation of time-independent Neuron Activation Pro les (NAPs). The procedure is
exemplary shown for one group of inputs (predicted as grapheme 'A) and one layer (the rsttone).

All spectrogram frames belonging to the same group (in this case grapheme 'A) are used as input.
B: Data is processed with gSR network and neuron activations are stor€dNeuron activations

are averaged over all instances of the same grbuplormalization is performed by subtracting the
average neuron activation over the whole dataleBy sorting each neuron's activation, the pro les
become independent of the time of activation.

As inputs, we use spectrogram frames of 206 time steps (the size of the receptive eld), as exactly
one grapheme is predicted without adding any padding (1A). Each of these frames is fedki\the

and neuron activations are stored for each layer (1B). Due to the convolutional architecture, we obtain
two-dimensional activation patterns in all layers. To obtain characteristic neuron responses for the
given group, we compute the point-wise average over all activations of this group (1C). This averaging
process reduces the activation to those which are common across most of the group examples. Even
after averaging, some neurons have a high baseline activation, which is not speci ¢ to any group.
Probably, those are activated for natural speech in general. Those dominant baseline activations can
hide group-speci c information. In order to avoid this, we normalize the activations (1D). We perform
this normalization by subtracting the average activation over the inputs for all groups. The normalized
activation then indicates increased or decreased response for a particular group compared to the
overall mean activation. By using convolutions, features can be detected independent of their location.
However, the exact position of detected features is not of interest for evaluation of group-speci city.
Moreover, comparing activation strengths of different pro les would be hard, as the active positions
are not aligned. Therefore, we sort each neuron's normalized activations by their value (1E). With
this sorting, we obtain a time-independ®&#®P. We use these to characterize the network response

to spectrogram frames which correspond to certain graphemes or phonemes.



3.2 Mapping phonemes to acoustic model output

To compare time-independeNtAPs between graphemes and phonemes, we need the phonetic
representation of the words predicted by our speech recognizer. This process includes several steps,
which are visualized in Figure 2.

Figure 2: Assigning phoneme labels to spectrogram frames. In the acoustic model, spectrogram
frames are associated to a single grapheme prediction. The phoneme representation was derived for
the CTC decoded output. To map phonemes to spectrograms, we apply the visualized cascade of
mappings.

The acoustic model outputs a grapheme for every time step. This sequence of graphemes is translated
to words using &£TC decoder. The decoding does not retain a mapping to the original sequence.
Therefore, we remove duplicates from the acoustic model output and globally align it to the decoder
output using the Needleman-Wunsch algorithm [22] (matdh mismatch= 1, gap= 1).

We transform theCTC decoder output to phonemes with B8P model described in Section 2.3.
Training of the model was performed on t@6&UDict data, from which we select 125,515 entries of
words and abbreviations with multiple pronunciations. To obtain a single pronunciation per word,
we split entries with multiple pronunciations. For example, the widdftcan be pronounced as
/DH AH/or /DH 1Y/. We split this into two word-to-phoneme training exam@l€slE, /DH AH/)
and(THE, /DH 1Y/) . Thus, we obtain 134,093 samples and leave 20 % of the data for testing. For
evaluation of thes2Ptranslation model, we measure word error rate (WER) and BLEU sedted

select the best performing model. Our model for phoneme prediction achieves 0.29 WER and 0.78
BLEU score. This is around 0.05 WER worse than the results of Toshnival & LevastuHowever,

many errors are averaged out when crealidd®s for phonemes. Therefore, our analysis is robust to
small changes in G2P prediction quality.

Because grapheme and phoneme sequences might have different lengths, they are hard to compare.
In addition to the prediction, we want to assign every grapheme a phoneme. We use the model's
attention for this assignment. Each grapheme is replaced by the phoneme with the highest attentional
activation at this time step.

3.3 Comparison of NAPs across phonemes and graphemes

To compare the network responses to phonemes and graphemes, we use clustering of their time-
independenNAPs (described in Section 3.1). We use hierarchical clustering with Euclidean distance
and complete linkage. The distance threshold for forming clusters was set to the 80th percentile of
distances in each layer, respectively. We apply this clustering to the set of graphemes and phonemes
separately. Figures 3 and 4 show the result of the clustering for different layers. Each plot shows
the distance matrix, which the clustering is computed from. Rows and columns are ordered by a
dendrogram resulting from the hierarchical clustering. The dendrogram on each plot's left side shows
the similarities between different groups. Subtrees of equal color indicate the clusters that were
formed using the 80th percentile of distances.
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